① 如何快速判断一个函数是奇函数还是偶函数、以及增函数和减函数
按定义来说:对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x)
所以,一般来说判断一个函数是奇函数还是偶函数必须要将定义域中的的所有数带入,这肯定不可能的.
那么我们可以先看看定义域,奇偶函数的定义域必须是对称的,一个函数的定义域若不是对称的,那么就不用判断了,肯定不是.这个基本一看就能看出.
定义域对称,这时候要判断奇偶性,首先是利用公式,若能推出f(x)=f(-x)
或者f(x)=-f(-x),那么就可以判定了.所以若是有表达式,一般是将-x带入.
还有可以看图像,看图象是否关于原点对称(此为奇函数)或关于y轴对称(此为偶函数).
若以上两种都没有判断出奇偶,一般就很可能是非奇非偶函数了.不过考虑有的函数表达式复杂,f(x)=f(-x)
或者f(x)=-f(-x)难以推断,我们也可以将之分解,化成几个函数相加减或乘除的形式,然后根据各自的奇偶性再判断.当然这时要记住奇函数、偶函数相加减或乘除之后的奇偶变化.
② 奇函数和偶函数的运算怎样计算,怎样判断
首先判断定义域,如果定义域不关于原点对称,则既非奇函数又非偶函数。
奇函数,f(x)=-f(-x),
偶函数,f(x)=f(-x)
③ 奇偶函数怎么计算。奇加奇,奇加偶,奇乘偶,偶乘偶等。谢谢。
奇函数偶函数运算法则:
(1) 两个偶函数相加所得的和为偶函数。
(2) 两个奇函数相加所得的和为奇函数。
(3) 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
(4) 两个偶函数相乘所得的积为偶函数。
(5) 两个奇函数相乘所得的积为偶函数。
(6) 一个偶函数与一个奇函数相乘所得的积为奇函数。
(3)奇函数快速算法扩展阅读:
偶函数公式:
1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足 f(x)=f(-x) 如y=x*x;
2、如果知道图像,偶函数图像关于y轴(直线x=0)对称.
3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件.
例如:f(x)=x^2,x∈R,此时的f(x)为偶函数.f(x)=x^2,x∈(-2,2](f(x)等于x的平方,-2<x≤2),此时的f(x)不是偶函数。
奇函数性质:
1. 两个奇函数相加所得的和或相减所得的差为奇函数。
2. 一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
3. 两个奇函数相乘所得的积或相除所得的商为偶函数。
4. 一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
④ 判断函数奇偶性有什么快速的方法
1、奇函数、偶函数的定义中,首先函数定义域D关于原点对称。它们的图像特点是:奇函数的图像关于原点对称,偶函数的图像关于X轴对称。即f(-x)=-f(x)为奇函数,f(-x)=f(x)为偶函数
2、判断函数的奇偶性大致有下列二种方法:
(1)用奇、偶函数的定义,主要考察f(-x)是否与-f(x) ,f(x) ,相等。
(2)利用一些已知函数的奇偶性及下列准则:两个奇函数的代数和是奇函数;两个偶函数的代数和是偶函数;奇函数与偶函数的和既非奇函数,也非偶函数;两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;奇函数与偶函数的乘积是奇函数。
⑤ 怎样快速判断奇函数偶函数
奇函数是f(x)+f(-x)=0,关于原点对称,偶函数是f(x)=f(-x),关于y轴对称
⑥ 如何正确快速的判断奇函数或偶函数!!!!
亲,只要将(-x)带入f(x)里面,看是等于f(x) [此为偶函数] 还是-f(x) [此为奇函数] 就可以判断是奇函数还是偶函数了
望采纳给好评!~
⑦ 怎么快速判断函数奇偶性常用方法
1.f(x)=f(-x)为偶函数
f(x)=-f(-x)为奇函数
2.偶函数的图象关于y轴对称
奇函数的图象关于原点对称
注意:1.两者成立的前提:他们的定义域关于原点对称,如[-2,2],(-10,10)
对于奇函数而言,有f(0)=0
2.如需证明,则需用第一种方法证明f(x)=f(-x)或 f(x)=-f(-x) (并且定义域关于原点对称)
⑧ 关于奇函数 偶函数 的计算
奇函数关于原点对称且f(-x)=-f(x)成立
如y=1/x
偶函数关于y轴对称且f(-x)=f(x)成立
如y=x²
也就是说给你一个函数问你是奇还是偶,先看定义域是否关于原点对称若是的话在看f(-x)=什么?若等于-f(x)则是奇函数
若等于f(x)则是偶函数
若定义域不是关于原点对称则是非奇非偶
⑨ 奇偶函数计算准则
⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。
⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。
⑶如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)和f(-x)=f(x),(x∈r,且r关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
⑷如果对于函数定义域内的存在一个a,使得f(-a)≠f(a),存在一个b,使得f(-b)≠f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
定义域互为相反数,定义域必须关于y轴对称
特殊的,f(x)=0既是奇函数,又是偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。
编辑本段奇偶函数图像的特征奇函数图像的特征定理 奇函数的图像关于原点成中心对称图形
f(x)为奇函数<=>f(x)的图像关于原点对称
奇函数
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
点(x,y)→(-x,-y)偶函数图像的特征定理 偶函数的图像关于y轴成轴对称图形
f(x)为偶函数<=>f(x)的图像关于Y轴对称
偶函数
点(x,y)→(-x,y)
偶函数在某一区间上单调递减,则在它的对称区间上单调递增。
编辑本段证明方法⑴定义法:函数定义域是否关于原点对称,对应法则是否相同
⑵图像法:f(x)为奇函数<=>f(x)的图像关于原点对称
点(x,y)→(-x,-y)
f(x)为偶函数<=>f(x)的图像关于Y轴对称
点(x,y)→(-x,y)
⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。
⑷性质法
利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇函数与偶函数的积(商)是奇函数。
编辑本段性质1、偶函数没有反函数(偶函数在整个定义域内非单调函数),奇函数的反函数仍是奇函数。
2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。
3、奇±奇=奇 偶±偶=偶 奇X奇=偶 偶X偶=偶 奇X偶=奇(两函数定义域要关于原点对称)
4、对于F(x)=f[g(x)]:若g(x)是偶函数,则F[x]是偶函数
若g(x)奇函数且f(x)是奇函数,则F(x)是奇函数
若g(x)奇函数且f(x)是偶函数,则F(x)是偶函数
5、奇函数与偶函数的定义域必须关于原点对称