1. 遗传算法tsp问题求解~80高分求解还会继续加分
遗传算法GA
遗传算法:
旅行商问题(traveling saleman problem,简称tsp):
已知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回出发城市。如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短?
用图论的术语来说,假设有一个图 g=(v,e),其中v是顶点集,e是边集,设d=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只通过一次的具有最短距离的回路。
这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商问题(dij≠dji,,任意i,j=1,2,3,…,n)。
若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:
min l=σd(t(i),t(i+1)) (i=1,…,n)
旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法求其近似解。
遗传算法:
初始化过程:用v1,v2,v3,…,vn代表所选n个城市。定义整数pop-size作为染色体的个数,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。
适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).
评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=alpha*(1-alpha).^(i-1) 。[随机规划与模糊规划]
选择过程:选择过程是以旋转赌轮pop-size次为基础,每次旋转都为新的种群选择一个染色体。赌轮是按每个染色体的适应度进行选择染色体的。
step1 、对每个染色体vi,计算累计概率qi,q0=0;qi=σeval(vj) j=1,…,i;i=1,…pop-size.
step2、从区间(0,pop-size)中产生一个随机数r;
step3、若qi-1<r<qi,则选择第i个染色体 ;
step4、重复step2和step3共pop-size次,这样可以得到pop-size个复制的染色体。
grefenstette编码:由于常规的交叉运算和变异运算会使种群中产生一些无实际意义的染色体,本文采用grefenstette编码《遗传算法原理及应用》可以避免这种情况的出现。所谓的grefenstette编码就是用所选队员在未选(不含淘汰)队员中的位置,如:
8 15 2 16 10 7 4 3 11 14 6 12 9 5 18 13 17 1
对应:
8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1。
交叉过程:本文采用常规单点交叉。为确定交叉操作的父代,从 到pop-size重复以下过程:从[0,1]中产生一个随机数r,如果r<pc ,则选择vi作为一个父代。
将所选的父代两两组队,随机产生一个位置进行交叉,如:
8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1
6 12 3 5 6 8 5 6 3 1 8 5 6 3 3 2 1 1
交叉后为:
8 14 2 13 8 6 3 2 5 1 8 5 6 3 3 2 1 1
6 12 3 5 6 8 5 6 3 7 3 4 3 2 4 2 2 1
变异过程:本文采用均匀多点变异。类似交叉操作中选择父代的过程,在r<pm 的标准下选择多个染色体vi作为父代。对每一个选择的父代,随机选择多个位置,使其在每位置按均匀变异(该变异点xk的取值范围为[ukmin,ukmax],产生一个[0,1]中随机数r,该点变异为x'k=ukmin+r(ukmax-ukmin))操作。如:
8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1
变异后:
8 14 2 13 10 6 3 2 2 7 3 4 5 2 4 1 2 1
反grefenstette编码:交叉和变异都是在grefenstette编码之后进行的,为了循环操作和返回最终结果,必须逆grefenstette编码过程,将编码恢复到自然编码。
循环操作:判断是否满足设定的带数xzome,否,则跳入适应度f的计算;是,结束遗传操作,跳出。
//c++的程序
#include<iostream.h>
#include<stdlib.h>
template<class T>
class Graph
{
public:
Graph(int vertices=10)
{
n=vertices;
e=0;
}
~Graph(){}
virtual bool Add(int u,int v,const T& w)=0;
virtual bool Delete(int u,int v)=0;
virtual bool Exist(int u,int v)const=0;
int Vertices()const{return n;}
int Edges()const{return e;}
protected:
int n;
int e;
};
template<class T>
class MGraph:public Graph<T>
{
public:
MGraph(int Vertices=10,T noEdge=0);
~MGraph();
bool Add(int u,int v,const T& w);
bool Delete(int u,int v);
bool Exist(int u,int v)const;
void Floyd(T**& d,int**& path);
void print(int Vertices);
private:
T NoEdge;
T** a;
};
template<class T>
MGraph<T>::MGraph(int Vertices,T noEdge)
{
n=Vertices;
NoEdge=noEdge;
a=new T* [n];
for(int i=0;i<n;i++){
a[i]=new T[n];
a[i][i]=0;
for(int j=0;j<n;j++)if(i!=j)a[i][j]=NoEdge;
}
}
template<class T>
MGraph<T>::~MGraph()
{
for(int i=0;i<n;i++)delete[]a[i];
delete[]a;
}
template<class T>
bool MGraph<T>::Exist(int u,int v)const
{
if(u<0||v<0||u>n-1||v>n-1||u==v||a[u][v]==NoEdge)return false;
return true;
}
template<class T>
bool MGraph<T>::Add(int u,int v,const T& w)
{
if(u<0||v<0||u>n-1||v>n-1||u==v||a[u][v]!=NoEdge){
cerr<<"BadInput!"<<endl;
return false;
}
a[u][v]=w;
e++;
return true;
}
template<class T>
bool MGraph<T>:delete(int u,int v)
{
if(u<0||v<0||u>n-1||v>n-1||u==v||a[u][v]==NoEdge){
cerr<<"BadInput!"<<endl;
return false;
}
a[u][v]=NoEdge;
e--;
return true;
}
template<class T>
void MGraph<T>::Floyd(T**& d,int**& path)
{
d=new T* [n];
path=new int* [n];
for(int i=0;i<n;i++){
d[i]=new T[n];
path[i]=new int[n];
for(int j=0;j<n;j++){
d[i][j]=a[i][j];
if(i!=j&&a[i][j]<NoEdge)path[i][j]=i;
else path[i][j]=-1;
}
}
for(int k=0;k<n;k++){
for(i=0;i<n;i++)
for(int j=0;j<n;j++)
if(d[i][k]+d[k][j]<d[i][j]){
d[i][j]=d[i][k]+d[k][j];
path[i][j]=path[k][j];
}
}
}
template<class T>
void MGraph<T>::print(int Vertices)
{
for(int i=0;i<Vertices;i++)
for(int j=0;j<Vertices;j++)
{
cout<<a[i][j]<<' ';if(j==Vertices-1)cout<<endl;
}
}
#define noEdge 10000
#include<iostream.h>
void main()
{
cout<<"请输入该图的节点数:"<<endl;
int vertices;
cin>>vertices;
MGraph<float> b(vertices,noEdge);
cout<<"请输入u,v,w:"<<endl;
int u,v;
float w;
cin>>u>>v>>w;
while(w!=noEdge){
//u=u-1;
b.Add(u-1,v-1,w);
b.Add(v-1,u-1,w);
cout<<"请输入u,v,w:"<<endl;
cin>>u>>v>>w;
}
b.print(vertices);
int** Path;
int**& path=Path;
float** D;
float**& d=D;
b.Floyd(d,path);
for(int i=0;i<vertices;i++){
for(int j=0;j<vertices;j++){
cout<<Path[i][j]<<' ';
if(j==vertices-1)cout<<endl;
}
}
int *V;
V=new int[vertices+1];
cout<<"请输入任意一个初始H-圈:"<<endl;
for(int n=0;n<=vertices;n++){
cin>>V[n];
}
for(n=0;n<55;n++){
for(i=0;i<n-1;i++){
for(int j=0;j<n-1;j++)
{
if(i+1>0&&j>i+1&&j<n-1){
if(D[V[i]][V[j]]+D[V[i+1]][V[j+1]]<D[V[i]][V[i+1]]+D[V[j]][V[j+1]]){
int l;
l=V[i+1];V[i+1]=V[j];V[j]=l;
}
}
}
}
}
float total=0;
cout<<"最小回路:"<<endl;
for(i=0;i<=vertices;i++){
cout<<V[i]+1<<' ';
}
cout<<endl;
for(i=0;i<vertices;i++)
total+=D[V[i]][V[i+1]];
cout<<"最短路径长度:"<<endl;
cout<<total;
}
这个你 看得懂么?
2. 用遗传算法求解TSP问题能获得最优解么
遗传算法属于启发式算法的一种,启发式算法与精确算法的区别之一就是不能得到最优解,但是可以得到次优解。
3. 遗传算法解决TSP问题
遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。
一、遗传算法的特点
1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。
这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。
2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。
由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。
3.遗传算法有极强的容错能力
遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。
4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。
这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。
5.遗传算法具有隐含的并行性
遗传算法的基础理论是图式定理。它的有关内容如下:
(1)图式(Schema)概念
一个基因串用符号集{0,1,*}表示,则称为一个因式;其中*可以是0或1。例如:H=1x x 0 x x是一个图式。
(2)图式的阶和长度
图式中0和1的个数称为图式的阶,并用0(H)表示。图式中第1位数字和最后位数字间的距离称为图式的长度,并用δ(H)表示。对于图式H=1x x0x x,有0(H)=2,δ(H)=4。
(3)Holland图式定理
低阶,短长度的图式在群体遗传过程中将会按指数规律增加。当群体的大小为n时,每代处理的图式数目为0(n3)。
遗传算法这种处理能力称为隐含并行性(Implicit Parallelism)。它说明遗传算法其内在具有并行处理的特质。
二、遗传算法的应用关键
遗传算法在应用中最关键的问题有如下3个
1.串的编码方式
这本质是问题编码。一般把问题的各种参数用二进制编码,构成子串;然后把子串拼接构成“染色体”串。串长度及编码形式对算法收敛影响极大。
2.适应函数的确定
适应函数(fitness function)也称对象函数(object function),这是问题求解品质的测量函数;往往也称为问题的“环境”。一般可以把问题的模型函数作为对象函数;但有时需要另行构造。
3.遗传算法自身参数设定
遗传算法自身参数有3个,即群体大小n、交叉概率Pc和变异概率Pm。
群体大小n太小时难以求出最优解,太大则增长收敛时间。一般n=30-160。交叉概率Pc太小时难以向前搜索,太大则容易破坏高适应值的结构。一般取Pc=0.25-0.75。变异概率Pm太小时难以产生新的基因结构,太大使遗传算法成了单纯的随机搜索。一般取Pm=0.01—0.2。
三、遗传算法在神经网络中的应用
遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。
1.遗传算法在网络学习中的应用
在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用
(1)学习规则的优化
用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。
(2)网络权系数的优化
用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。
2.遗传算法在网络设计中的应用
用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种:
(1)直接编码法
这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。
(2)参数化编码法
参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。
(3)繁衍生长法
这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。
3.遗传算法在网络分析中的应用
遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。
遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。
4. 遗传算法和蚁群算法在求解TSP问题上的对比分析
【原创】比遗传算法性能更好:蚁群算法TSP(旅行商问题)通用matlab程序
声明:本程序为本人原创,在研学论坛首次发表,本人保留一切权利,仅供学习交流用,如转载请注明原作者!
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:[email protected]
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
%%第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);%Tau为信息素矩阵
Tabu=zeros(m,n);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,n);%各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
L_ave=zeros(NC_max,1);%各代路线的平均长度
while NC<=NC_max%停止条件之一:达到最大迭代次数
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已访问的城市
J=zeros(1,(n-j+1));%待访问的城市
P=J;%待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave)
function DrawRoute(C,R)
%%=========================================================================
%% DrawRoute.m
%% 画路线图的子函数
%%-------------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
hold on
end
设置初始参数如下:
m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
31城市坐标为:
1304 2312
3639 1315
4177 2244
3712 1399
3488 1535
3326 1556
3238 1229
4196 1004
4312 790
4386 570
3007 1970
2562 1756
2788 1491
2381 1676
1332 695
3715 1678
3918 2179
4061 2370
3780 2212
3676 2578
4029 2838
4263 2931
3429 1908
3507 2367
3394 2643
3439 3201
2935 3240
3140 3550
2545 2357
2778 2826
2370 2975
运行后得到15602的巡游路径,
5. TSP遗传算法的作用是什么
你是问为什么要用遗传算法求解TSP?那么答案就是,TSP问题如果用穷举的方法搜索,会由于可行解太多而无法在有效时间之内完成,而遗传算法则是不使用穷举的方法之一。
如果你是想问为什么要求解TSP,那么就是因为两个原因,一个是TSP本身是实际问题抽象而来的,而且和tsp近似的还有很多不同的最短路径问题,都是实际生活中会出现的,不管是规划人的路径还是机械手臂的路径,都会用到。第二个原因是tsp是NP完全问题,和很多其他问题一样,都是NP完全的,这就意味着,只要其中一个问题解决了,另外的NP完全问题也能够解决,所以研究它也具有理论价值。
6. 遗传算法在求解TSP问题中是如何编码解码的 二进制如何编码 如何求解
路径表示是按照城市的访问顺序排列的一种编码方式,是最自然、简单和符合逻辑的表示方法。然而,除非初始基因是固定的,否则这种编码方式不具备唯一性。例如,旅程(5-1-7-8-9-4-6-2-3)与(1-7-8-9-4-6-2-3-5)表示的是同一条旅程,因为路径表示法是遍历了每一个节点,所以不会产生子回路。
考虑到此次研究对象的初始基因是固定的,不会出现漏选,所以运用这种编码方法。
初始种群可以随机产生,也可以通过某种算法生成,但需要保证群体的多样性。在种群初始化时,需要可虑以下几个方面的因素:
1、根据问题固有的知识,设法把握最优解所占的空间在整个问题空间中的分布范围,然后,在次分布范围内设定初始群体。
2、随机生成一定数目的个体,然后从中挑选出最好的个体加入群体。这一过程不断进行迭代,直到初始种群中个体数达到了预先确定的规模。
亲和度设置为1/f f为总路径长度
此后根据城市序号在进行选择,交叉,变异即可