Ⅰ 从1加到100的和是多少怎么算
1加到100公式推导过程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50个101)
=50×101
=5050
因此得到简便算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
1加到100其实就是一个等差数列的求和,首项=1,末项=100,一共有100项,直接使用公式是最简单的,和=(首项+末项)×项数÷2。
(1)1到100求和简便算法扩展阅读:
等差数列的其他推导公式:
1、和=(首项+末项)×项数÷2。
2、项数=(末项-首项)÷公差+1。
3、首项=2x和÷项数-末项或末项-公差×(项数-1)。
4、末项=2x和÷项数-首项。
5、末项=首项+(项数-1)×公差。
6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
Ⅱ 求1到100的和是多少啊
5050。采用高斯算法:首项加末项乘以项数除以2。其中项数的计算方法是末项减去首项除以项差(每项之间的差)加1。如:1+2+3+4+5+······+n,则用字母表示为:n(1+n)/2
计算过程如下:
1+2+3+....+100
=(1+100)X100÷2
=101X50
=5050
(2)1到100求和简便算法扩展阅读
高斯小时候非常淘气,一次数学课上,老师为了让他们安静下来,给他们列了一道很难的算式,让他们一个小时内算出1+2+3+4+5+6+……+100的得数。
全班只有高斯用了不到20分钟给出了答案,因为他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50个101,所以50×101就是1加到一百的得数。后来人们把这种简便算法称作高斯算法。
Ⅲ 1到100的各位数字和是多少
先分析各数字的构成特点,1-9,10-19,20-29……90-99,100,我们把100个数字分成11组,先排除100这个数字,很明显,个位数的话,0排除在外,1-9这个顺序出现了10次,十位数的话,1-9各个数字分别了10次,所以,各位数之和应该是(10+10)*(1+2+3+……+8+9)+1=20*55+1=1101
Ⅳ 一到一百的数加起来应该怎么算
1.很简单,这个用高中的等差数列求和公式可以:
100*1+100*(100-1)*1/2=5050
2.我们可以看出这个数虽然是一个垒加的数值,比较长,比较繁琐,但是我们从1垒加到100,是可以发现规律的。什么规律呢?
1+99=100
2+98=100.
3+97=100
......
49+51=100
加上本来就有一个单独的100,也就是一共有50个100;也就是说50*100=5000,但是我们前49个数值相加起来等于100,最后发现还剩下最后一个50的没有加起来,应该是5000+50=5050;望采纳,给我一个赞,不用谢,请叫我活雷锋
Ⅳ 从1加到100的简便方法有哪些
解:从1加到100的和可以看作是一个公差为1的等差数列,直接利用等差数列的公式(首项+末项)×项数÷2可以很快得出答案。
解:
sn = 1+2+3+4+...+100
= [n*(a1+an)]/2
= 100*(1 + 100)/2
= 5050
得出结果,从1加到100的和等于5050。
(5)1到100求和简便算法扩展阅读:
“4.9+0.1-4.9+0.1”这是小学数学第八册练习二十七第二题中的一道非常简单的常见简便运算题。当我给学生布置了这道题后,我以为学生会毫不犹豫地使用加法交换率和结合率,顺利完成此题,但是当我批改学生的作业时,却发现了以下三种情况:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
Ⅵ 1到100相加等于多少
1加到100公式推导过程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50个101)
=50×101
=5050
因此得到简便算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
Ⅶ 一加到100等于几怎么算出来的
1加到100公式推导过程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50个101)
=50×101
=5050
因此得到简便算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
1加到100其实就是一个等差数列的求和,首项=1,末项=100,一共有100项,直接使用公式是最简单的,和=(首项+末项)×项数÷2。
(7)1到100求和简便算法扩展阅读:
等差数列的其他推导公式:
1、和=(首项+末项)×项数÷2。
2、项数=(末项-首项)÷公差+1。
3、首项=2x和÷项数-末项或末项-公差×(项数-1)。
4、末项=2x和÷项数-首项。
5、末项=首项+(项数-1)×公差。
6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
Ⅷ 从1加到一百总和是多少有什么公式吗
和为5050,有三种公式算法;
第一种最普通的就是我们最熟悉的加法公式:1+2+3...+100=5050,全部相加即可。
第二种就是等差数列求和公式:n*(n+1)/2=100*101/2=5050。
第三种是高斯算法公式:以首项加末项乘以项数除以2用来计算“1+2+3+4+5+···+(n-1)+n”=:(1+100)+(2+99)+...+(50+51)=101*50=5050
高斯的算法由来
一次数学课上,老师让学生练习算数。于是让他们一个小时内算出1+2+3+4+5+6+……+100的得数。
全班只有高斯用了不到20分钟给出了答案,因为他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50个101,所以50×101就是1加到一百的得数。后来人们把这种简便算法称作高斯算法。
高斯
约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)
高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。
是德国着名数学家、物理学家、天文学家、大地测量学家,是近代数学奠基者之一,被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
Ⅸ 从1加到100等于多少简便方法
1+100=101
2+99=101
3+98=101
……
49+52=101
50+51=101
这样的组合一共有100÷2=50组
所以,1+2+3+……+100的简便算法就是(1+100)×(100÷2)=5050。
Ⅹ 从1到100相加等于多少有几种简便方法
按梯形面积公式计算最简便:把1看作是上底,100看作是下底,高就是100喽,由此得出:
【(1+100)X100】÷2=5050
5050。
计算方法:先算1+99,2+98,一直到49+51。一共49个100。即4900,再加中间的50与最后的100为5050