导航:首页 > 源码编译 > 常用算法

常用算法

发布时间:2022-01-17 07:43:05

1. 常见的分类算法有哪些

决策树 贝叶斯 人工神经网络 k-近邻 支持向量机 基于关联规则的分类 集成学习

2. 计算机编程常用算法有哪些

贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法。

模拟退火+遗传算法混合编程例子:
http://..com/question/43266691.html
自适应序贯数论算法例子:
http://..com/question/60173220.html

3. 常见算法有哪些

模拟
拟阵
暴力
贪心
二分法
整体二
三分法
一般动规与递推
斯坦纳树
动态树分治
2-SAT
并查集
差分约束
最短路
最小割
费用流
最大流
有上下界网络流
虚树
矩阵树定理
最小生成树
点分治
树链剖分
prufer编码
哈夫曼树
拉格朗日乘数法
BSGS
博弈论
矩阵乘法
高斯消元
容斥原理
抽屉原理
模线性方程组
莫比乌斯反演
快速傅里叶变换
扩展欧几里得算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
广度搜索
双向广搜
启发式搜索
dancing link
回文自动机
KMP
字典树
后缀数组
AC自动机
后缀自动机
manacher
凸包
扫描线
三角剖分
旋转卡壳
半平面交
cdq分治
莫队算法
爬山算法
分数规划
模拟退火
朱刘算法
随机增量法
倍增算法

4. 数据挖掘常用算法有哪些

1、 朴素贝叶斯


朴素贝叶斯(NB)属于生成式模型(即需要计算特征与类的联合概率分布),计算过程非常简单,只是做了一堆计数。NB有一个条件独立性假设,即在类已知的条件下,各个特征之间的分布是独立的。这样朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中的R来讲,就是特征冗余。


2、逻辑回归(logistic regression)


逻辑回归是一个分类方法,属于判别式模型,有很多正则化模型的方法(L0,L1,L2),而且不必像在用朴素贝叶斯那样担心特征是否相关。与决策树与SVM相比,还会得到一个不错的概率解释,甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法online gradient descent)。如果需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者希望以后将更多的训练数据快速整合到模型中去,那么可以使用它。


3、 线性回归


线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化。


4、最近邻算法——KNN


KNN即最近邻算法,其主要过程为:计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);对上面所有的距离值进行排序;选前k个最小距离的样本;根据这k个样本的标签进行投票,得到最后的分类类别;如何选择一个最佳的K值,这取决于数据。


5、决策树


决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。


6、SVM支持向量机


高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。

5. 什么是算法,常用的算法描述有哪些

算法的描述方式主要有自然语言,流程图,伪代码等,它们的优势和不足可以简单地归纳如下:1、自然语言优势:自然语言描述的算法通俗易懂,不用专门的训练不足:a.由于自然语言的歧义性,容易导致算法执行的不确定性.b.自然语言的语句一般较长,导致描述的算法太长.c.当一个算法中循环和分歧较多时就很难清晰地表示出来.d.自然语言表示的算法不便翻译成计算机程序设计语言.2、流程图优势:流程图描述的算法清晰简洁,容易表达选择结构,它不依赖于任何具体的计算机和计算机程序设计语言,从而有利于不同环境的程序设计.不足:不易书写,修改起来比较费事,可以借助于专用的流程图制作软件来提升绘制和修改.3、伪代码优势:伪代码回避了程序设计语言的严格、烦琐的书写格式,书写方便,同时具备格式紧凑,易于理解,便于向计算机程序设计语言过渡的优点.不足:由于伪代码的种类繁多,语句不容易规范,有时会产生误读.

6. 常用的算法有哪些,是怎么分类的

数据元素相互之间的关系称为结构。有四类基本结构:集合、线性结构、树形结构、图状结构;

集合结构:除了同属于一种类型外,别无其它关系

线性结构:元素之间存在一对一关系常见类型有: 数组,链表,队列,栈,它们之间在操作上有所区别.例如:链表可在任意位置插入或删除元素,而队列在队尾插入元素,队头删除元素,栈只能在栈顶进行插
入,删除操作.

树形结构:元素之间存在一对多关系,常见类型有:树(有许多特例:二叉树、平衡二叉树、查找树等)

图形结构:元素之间存在多对多关系,图形结构中每个结点的前驱结点数和后续结点多个数可以任意

7. 几种常用的算法简介

1、穷举法穷举法是最基本的算法设计策略,其思想是列举出问题所有的可能解,逐一进行判别,找出满足条件的解。
穷举法的运用关键在于解决两个问题:
在运用穷举法时,容易出现的问题是可能解过多,导致算法效率很低,这就需要对列举可能解的方法进行优化。
以题1041--纯素数问题为例,从1000到9999都可以看作是可能解,可以通过对所有这些可能解逐一进行判别,找出其中的纯素数,但只要稍作分析,就会发现其实可以大幅度地降低可能解的范围。根据题意易知,个位只可能是3、5、7,再根据题意可知,可以在3、5、7的基础上,先找出所有的二位纯素数,再在二位纯素数基础上找出三位纯素数,最后在三位纯素数的基础上找出所有的四位纯素数。
2、分治法分治法也是应用非常广泛的一种算法设计策略,其思想是将问题分解为若干子问题,从而可以递归地求解各子问题,再综合出问题的解。
分治法的运用关键在于解决三个问题:
我们熟知的如汉诺塔问题、折半查找算法、快速排序算法等都是分治法运用的典型案例。
以题1045--Square
Coins为例,先对题意进行分析,可设一个函数f(m,
n)等于用面值不超过n2的货币构成总值为m的方案数,则容易推导出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
这里的k是币值为n2的货币最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
对于这样的题目,一旦分析出了递推公式,程序就非常好写了。所以在动手开始写程序之前,分析工作做得越彻底,逻辑描述越准确、简洁,写起程序来就会越容易。
3、动态规划法
动态规划法多用来计算最优问题,动态规划法与分治法的基本思想是一致的,但处理的手法不同。动态规划法在运用时,要先对问题的分治规律进行分析,找出终结子问题,以及子问题向父问题归纳的规则,而算法则直接从终结子问题开始求解,逐层向上归纳,直到归纳出原问题的解。
动态规划法多用于在分治过程中,子问题可能重复出现的情况,在这种情况下,如果按照常规的分治法,自上向下分治求解,则重复出现的子问题就会被重复地求解,从而增大了冗余计算量,降低了求解效率。而采用动态规划法,自底向上求解,每个子问题只计算一次,就可以避免这种重复的求解了。
动态规划法还有另外一种实现形式,即备忘录法。备忘录的基本思想是设立一个称为备忘录的容器,记录已经求得解的子问题及其解。仍然采用与分治法相同的自上向下分治求解的策略,只是对每一个分解出的子问题,先在备忘录中查找该子问题,如果备忘录中已经存在该子问题,则不须再求解,可以从备忘录中直接得到解,否则,对子问题递归求解,且每求得一个子问题的解,都将子问题及解存入备忘录中。
例如,在题1045--Square
Coins中,可以采用分治法求解,也可以采用动态规划法求解,即从f(m,
1)和f(1,
n)出发,逐层向上计算,直到求得f(m,
n)。
在竞赛中,动态规划和备忘录的思想还可以有另一种用法。有些题目中的可能问题数是有限的,而在一次运行中可能需要计算多个测试用例,可以采用备忘录的方法,预先将所有的问题的解记录下来,然后输入一个测试用例,就查备忘录,直接找到答案输出。这在各问题之间存在父子关系的情况下,会更有效。例如,在题1045--Square
Coins中,题目中已经指出了最大的目标币值不超过300,也就是说问题数只有300个,而且各问题的计算中存在重叠的子问题,可以采用动态规划法,将所有问题的解先全部计算出来,再依次输入测试用例数据,并直接输出答案。
4、回溯法回溯法是基于问题状态树搜索的求解法,其可适用范围很广。从某种角度上说,可以把回溯法看作是优化了的穷举法。回溯法的基本思想是逐步构造问题的可能解,一边构造,一边用约束条件进行判别,一旦发现已经不可能构造出满足条件的解了,则退回上一步构造过程,重新进行构造。这个退回的过程,就称之为回溯。
回溯法在运用时,要解决的关键问题在于:
回溯法的经典案例也很多,例如全排列问题、N后问题等。
5、贪心法贪心法也是求解最优问题的常用算法策略,利用贪心法策略所设计的算法,通常效率较高,算法简单。贪心法的基本思想是对问题做出目前看来最好的选择,即贪心选择,并使问题转化为规模更小的子问题。如此迭代,直到子问题可以直接求解。
基于贪心法的经典算法例如:哈夫曼算法、最小生成树算法、最短路径算法等。

8. c语言常用算法有哪些

0) 穷举法
穷举法简单粗暴,没有什么问题是搞不定的,只要你肯花时间。同时对于小数据量,穷举法就是最优秀的算法。就像太祖长拳,简单,人人都能会,能解决问题,但是与真正的高手过招,就颓了。
1) 贪婪算法
贪婪算法可以获取到问题的局部最优解,不一定能获取到全局最优解,同时获取最优解的好坏要看贪婪策略的选择。特点就是简单,能获取到局部最优解。就像打狗棍法,同一套棍法,洪七公和鲁有脚的水平就差太多了,因此同样是贪婪算法,不同的贪婪策略会导致得到差异非常大的结果。
2) 动态规划算法
当最优化问题具有重复子问题和最优子结构的时候,就是动态规划出场的时候了。动态规划算法的核心就是提供了一个memory来缓存重复子问题的结果,避免了递归的过程中的大量的重复计算。动态规划算法的难点在于怎么将问题转化为能够利用动态规划算法来解决。当重复子问题的数目比较小时,动态规划的效果也会很差。如果问题存在大量的重复子问题的话,那么动态规划对于效率的提高是非常恐怖的。就像斗转星移武功,对手强它也会比较强,对手若,他也会比较弱。
3)分治算法
分治算法的逻辑更简单了,就是一个词,分而治之。分治算法就是把一个大的问题分为若干个子问题,然后在子问题继续向下分,一直到base cases,通过base cases的解决,一步步向上,最终解决最初的大问题。分治算法是递归的典型应用。
4) 回溯算法
回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个
分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。
5) 分支限界算法
回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解(一般来说要获取最优解)。

阅读全文

与常用算法相关的资料

热点内容
两个pdf怎么合并 浏览:293
php查询为空 浏览:589
香港服务器丢包了怎么办 浏览:46
linux系统管理教程 浏览:643
共享文件夹怎么设置只读文件 浏览:295
小米添加云服务器地址 浏览:581
qt入门pdf 浏览:670
视频监控取消默认加密 浏览:294
云服务器怎么设置输入键盘 浏览:817
单片机支持多大mhz 浏览:42
linux启动mysql命令 浏览:792
编程和游戏买什么笔记本 浏览:902
程序员座位图片大全 浏览:142
aix重启命令 浏览:462
腾讯云服务器的后台 浏览:47
安卓怎么定时打开软件 浏览:597
笨手机应用加密怎么删除 浏览:97
为什么vc6编译是灰色 浏览:390
python音标读法 浏览:577
反转语句python 浏览:23