A. k-means算法和fcm算法有什么不同
K均值聚类算法即是HCM(普通硬-C均值聚类算法),它是一种硬性划分的方法,结果要么是1要么是0,没有其他情况,具有“非此即彼”的性质。里面的隶属度矩阵是U。 FCM是把HCM算法推广到模糊情形,用在模糊性的分类问题上,给了隶属度一个权重。
B. 寻找FCM聚类算法的聚类中心数据
聚类可以理解为根据你划定的半径取圈样本,圈出几类就是几类,半径大类就少,半径小类就多。中心选择可以随机选取,那就是无监督算法,现在有一种半监督算法,先用少量标记好的样本产生一些类别作为聚类中心,指导聚类的过程。可以使用kmeans和SVM结合
C. 急求FCM算法在C或MATLAB上实现
function [U,V,num_it]=fcm(U0,X)
% MATLAB (Version 4.1) Source Code (Routine fcm was written by Richard J.
% Hathaway on June 21, 1994.) The fuzzification constant
% m = 2, and the stopping criterion for successive partitions is epsilon =??????.
%*******Modified 9/15/04 to have epsilon = 0.00001 and fix univariate bug********
% Purpose:The function fcm attempts to find a useful clustering of the
% objects represented by the object data in X using the initial partition in U0.
%
% Usage: [U,V,num_it]=fcm(U0,X)
%
% where: U0 = on entry, the initial partition matrix of size c x n
% X = on entry, the object data matrix of size s x n
% U = on exit, the final partition matrix of size c x n
% V = on exit, the final prototype matrix of size s x c
% num_it = on exit, the number of iterations done
% Check for legal input values of U0 and X:
%
[c,n]=size(U0);
[s,nn]=size(X);
if min(min(U0)) < 0 | max(max(U0)) > 1 | any(abs(sum(U0) - 1) > .001),
error('U0 is not properly initialized.')
elseif nn ~= n,
error('Dimensions of U0 and X are inconsistent.')
end;
%
% Initialize variables:
%
temp=zeros(c,n); num_it=0; max_it=1000; U=U0; d=zeros(c,n);
epsilon=.00001;min_d=1.0e-100; step_size=epsilon; Vones=zeros(s,n);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Begin the main loop:
%
while num_it < max_it & step_size >= epsilon,
num_it = num_it + 1;
U0 = U;
%
% Get new V prototypes:
%
temp = U0 .* U0;
work = sum(temp');
V = X*temp';
for i=1:c, V(:,i) = V(:,i) / work(i); end
%
% Get new squared-distance values d:
%
% First, get new initial values for d:
for i=1:c,
for j=1:s,
Vones(j,:)=V(j,i)*ones(1,n);
end
temp = X - Vones;
temp = temp.*temp;
if s > 1,
d(i,:) = sum(temp);
else
d(i,:) = temp;
end
end
% Second, adjust all d values to be at least as big as min_d:
j = find(d < min_d);
d(j) = d(j) - d(j) + min_d;
%
% Get new partition matrix U:
%
U = 1 ./ d;
work = sum(U);
for i=1:c, U(i,:) = U(i,:) ./ work; end
%
% Calculate step_size and return to top of loop:
%
step_size=max(max(abs(U-U0)));
%
% End the main loop:
%
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
return
D. 谁有FCM算法的源程序,谢谢!
我贴部分FCM的Matlab代码:
expo = options(1); % Exponent for U
max_iter = options(2); % Max. iteration
min_impro = options(3); % Min. improvement
display = options(4); % Display info or not
obj_fcn = zeros(max_iter, 1); % Array for objective function
U = initfcm(cluster_n, data_n); % Initial fuzzy partition
% Main loop
for i = 1:max_iter,
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% check termination condition
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end,
end
end
其中
U = initfcm(cluster_n, data_n); % Initial fuzzy partition
这个就是初始化划分矩阵,随机产生一个隶属度矩阵,
代码如下:
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);
上面就是它初始化的一个隶属度矩阵,
cluster_n行,data_n列。
即一列中从上到下表示每个样本隶属与每一类的隶属度。
然后在算法中不断迭代,
最后得到的还是如此大的一个矩阵,代表每个样本隶属与每一类的隶属度
然后选择最大的那个就是,它就属于那一类。
E. 有人会使用FCM算法吗
function [U,center,result,w,obj_fcn]= fenlei(data)
[data_n,in_n] = size(data);
m= 2; % Exponent for U
max_iter = 100; % Max. iteration
min_impro =1e-5; % Min. improvement
c=3;
[center, U, obj_fcn] = fcm(data, c);
for i=1:max_iter
if F(U)>0.98
break;
else
w_new=eye(in_n,in_n);
center1=sum(center)/c;
a=center1(1)./center1;
deta=center-center1(ones(c,1),:);
w=sqrt(sum(deta.^2)).*a;
for j=1:in_n
w_new(j,j)=w(j);
end
data1=data*w_new;
[center, U, obj_fcn] = fcm(data1, c);
center=center./w(ones(c,1),:);
obj_fcn=obj_fcn/sum(w.^2);
end
end
display(i);
result=zeros(1,data_n);U_=max(U);
for i=1:data_n
for j=1:c
if U(j,i)==U_(i)
result(i)=j;continue;
end
end
end
F. matlab如何调用fcm函数处理一副图像。 不是查看fcm函数,算法我已经了解了,我只是不知道
data = rand(100, 2);
[center,U,obj_fcn] = fcm(data, 2);
plot(data(:,1), data(:,2),'o');
maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2, :) == maxU);
line(data(index1,1),data(index1, 2),'linestyle','none',...
'marker','*','color','g');
line(data(index2,1),data(index2, 2),'linestyle','none',...
'marker', '*','color','r');
G. 在matlab中做模糊C均值聚类(fcm)算法如何体现初始隶属度
它的程序里面是用rand函数随机初始化了一个矩阵N*c,然后对这个随机矩阵进行归一化,即满足一行(也可能是列记不清楚了),反正是让它满足隶属度的每个样本属于所有类隶属度为1的条件。用这个矩阵进行初始化,计算新的中心 新的隶属度 新的中心。。。。 知道满足阈值。matlab里面自己有函数一招就能找到
H. python 中如何调用FCM算法
以下代码调试通过:
1234567classLuciaClass:#定义类defluciaprint(self,text):#类里面的方法print(' ',text)#方法就是输出textx=LuciaClass()#方法的实例xx.luciaprint('todayisabadday~~~')#实例调用类方法
运行效果:
I. 求:FCM,PCM聚类算法MATLAB程序
function [U,center,result,w,obj_fcn]= fenlei(data)
[data_n,in_n] = size(data);
m= 2; % Exponent for U
max_iter = 100; % Max. iteration
min_impro =1e-5; % Min. improvement
c=3;
[center, U, obj_fcn] = fcm(data, c);
for i=1:max_iter
if F(U)>0.98
break;
else
w_new=eye(in_n,in_n);
center1=sum(center)/c;
a=center1(1)./center1;
deta=center-center1(ones(c,1),:);
w=sqrt(sum(deta.^2)).*a;
for j=1:in_n
w_new(j,j)=w(j);
end
data1=data*w_new;
[center, U, obj_fcn] = fcm(data1, c);
center=center./w(ones(c,1),:);
obj_fcn=obj_fcn/sum(w.^2);
end
end
display(i);
result=zeros(1,data_n);U_=max(U);
for i=1:data_n
for j=1:c
if U(j,i)==U_(i)
result(i)=j;continue;
end
end
end