导航:首页 > 文档加密 > 对称加密哈希运算

对称加密哈希运算

发布时间:2022-07-19 23:33:36

1. 谁帮我介绍下加密对称算法

A.对称加密技术 a. 描述 对称算法(symmetric algorithm),有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的。所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性至关重要。 b.特点分析 对称加密的优点在于算法实现后的效率高、速度快。 对称加密的缺点在于密钥的管理过于复杂。如果任何一对发送方和接收方都有他们各自商议的密钥的话,那么很明显,假设有N个用户进行对称加密通信,如果按照上述方法,则他们要产生N(N-1)把密钥,每一个用户要记住或保留N-1把密钥,当N很大时,记住是不可能的,而保留起来又会引起密钥泄漏可能性的增加。常用的对称加密算法有DES,DEA等。 B.非对称加密技术 a.描述 非对称加密(dissymmetrical encryption),有时又叫公开密钥算法(public key algorithm)。这种加密算法是这样设计的:用作加密的密钥不同于用作解密的密钥,而且解密密钥不能根据加密密钥计算出来(至少在合理假定的长时间内)。之所以又叫做公开密钥算法是由于加密密钥可以公开,即陌生人可以得到它并用来加密信息,但只有用相应的解密密钥才能解密信息。在这种加密算法中,加密密钥被叫做公开密钥(public key),而解密密钥被叫做私有密钥(private key)。 b.特点分析 非对称加密的缺点在于算法实现后的效率低、速度慢。 非对称加密的优点在于用户不必记忆大量的提前商定好的密钥,因为发送方和接收方事先根本不必商定密钥,发放方只要可以得到可靠的接收方的公开密钥就可以给他发送信息了,而且即使双方根本互不相识。但为了保证可靠性,非对称加密算法需要一种与之相配合使用的公开密钥管理机制,这种公开密钥管理机制还要解决其他一些公开密钥所带来的问题。常用的非对称加密算法有RSA等。 (3) 关于密码技术 密码技术包括加密技术和密码分析技术,也即加密和解密技术两个方面。在一个新的加密算法的研发需要有相应的数学理论证明,证明这个算法的安全性有多高,同时还要从密码分析的角度对这个算法进行安全证明,说明这个算法对于所知的分析方法来说是有防范作用的。 三、对称加密算法分析 对称加密算法的分类 对称加密算法可以分成两类:一类为序列算法(stream algorithm):一次只对明文中单个位(有时为字节)加密或解密运算。另一类为分组算法(block algorithm):一次明文的一组固定长度的字节加密或解密运算。 现代计算机密码算法一般采用的都是分组算法,而且一般分组的长度为64位,之所以如此是由于这个长度大到足以防止分析破译,但又小到足以方便使用。 1.DES加密算法 (Data Encryption Standard )
(1) 算法简介
1973 年 5 月 15 日,美国国家标准局 (NBS) 在“联邦注册”上发布了一条通知,征求密码算法,用于在传输和存储期间保护数据。IBM 提交了一个候选算法,它是 IBM 内部开发的,名为 LUCIFER。在美国国家安全局 (NSA) 的“指导”下完成了算法评估之后,在 1977 年 7 月 15 日,NBS 采纳了 LUCIFER 算法的修正版作为新的数据加密标准。
原先规定使用10年,但由于新的加密标准还没有完成,所以DES算法及其的变形算法一直广泛的应用于信息加密方面。 (2) 算法描述 (包括加密和解密)
Feistel结构(画图说明)。

DES 的工作方式:可怕的细节
DES 将消息分成 64 位(即 16 个十六进制数)一组进行加密。DES 使用“密钥”进行加密,从符号的角度来看,“密钥”的长度是 16 个十六进制数(或 64 位)。但是,由于某些原因(可能是因为 NSA 给 NBS 的“指引”),DES 算法中每逢第 8 位就被忽略。这造成密钥的实际大小变成 56 位。编码系统对“强行”或“野蛮”攻击的抵抗力与其密钥空间或者系统可能有多少密钥有直接关系。使用的位数越多转换出的密钥也越多。密钥越多,就意味着强行攻击中计算密钥空间中可能的密钥范围所需的时间就越长。从总长度中切除 8 位就会在很大程度上限制了密钥空间,这样系统就更容易受到破坏。
DES 是块加密算法。这表示它处理特定大小的纯文本块(通常是 64 位),然后返回相同大小的密码块。这样,64 位(每位不是 0 就是 1)有 264 种可能排列,DES 将生成其中的一种排列。每个 64 位的块都被分成 L、R 左右两块,每块 32 位。
DES 算法使用以下步骤:
1. 创建 16 个子密钥,每个长度是 48 位。根据指定的顺序或“表”置换 64 位的密钥。如果表中的第一项是 "27",这表示原始密钥 K 中的第 27 位将变成置换后的密钥 K+ 的第一位。如果表的第二项是 36,则这表示原始密钥中的第 36 位将变成置换后密钥的第二位,以此类推。这是一个线性替换方法,它创建了一种线性排列。置换后的密钥中只出现了原始密钥中的 56 位。
2. 接着,将这个密钥分成左右两半,C0 和 D0,每一半 28 位。定义了 C0 和 D0 之后,创建 16 个 Cn 和 Dn 块,其中 1<=n<=16。每一对 Cn 和 Dn 块都通过使用标识“左移位”的表分别从前一对 Cn-1 和 Dn-1 形成,n = 1, 2, ..., 16,而“左移位”表说明了要对哪一位进行操作。在所有情况下,单一左移位表示这些位轮流向左移动一个位置。在一次左移位之后,28 个位置中的这些位分别是以前的第 2、3……28 位。
通过将另一个置换表应用于每一个 CnDn 连接对,从而形成密钥 Kn,1<=n<=16。每一对有 56 位,而置换表只使用其中的 48 位,因为每逢第 8 位都将被忽略。
3. 编码每个 64 位的数据块。
64 位的消息数据 M 有一个初始置换 IP。这将根据置换表重新排列这些位,置换表中的项按这些位的初始顺序描述了它们新的排列。我们以前见过这种线性表结构。
使用函数 f 来生成一个 32 位的块,函数 f 对两个块进行操作,一个是 32 位的数据块,一个是 48 位的密钥 Kn,连续迭代 16 次,其中 1<=n<=16。用 + 表示 XOR 加法(逐位相加,模除 2)。然后,n 从 1 到 16,计算 Ln = Rn-1 Rn = Ln-1 + f(Rn-1,Kn)。即在每次迭代中,我们用前一结果的右边 32 位,并使它们成为当前步骤中的左边 32 位。对于当前步骤中的右边 32 位,我们用算法 f XOR 前一步骤中的左边 32 位。
要计算 f,首先将每一块 Rn-1 从 32 位扩展到 48 位。可以使用选择表来重复 Rn-1 中的一些位来完成这一操作。这个选择表的使用就成了函数 f。因此 f(Rn-1) 的输入块是 32 位,输出块是 48 位。f 的输出是 48 位,写成 8 块,每块 6 位,这是通过根据已知表按顺序选择输入中的位来实现的。
我们已经使用选择表将 Rn-1 从 32 位扩展成 48 位,并将结果 XOR 密钥 Kn。现在有 48 位,或者是 8 组,每组 6 位。每组中的 6 位现在将经历一次变换,该变换是算法的核心部分:在叫做“S 盒”的表中,我们将这些位当作地址使用。每组 6 位在不同的 S 盒中表示不同的地址。该地址中是一个 4 位数字,它将替换原来的 6 位。最终结果是 8 组,每组 6 位变换成 8 组,每组 4 位(S 盒的 4 位输出),总共 32 位。
f 计算的最后阶段是对 S 盒输出执行置换 P,以得到 f 的最终值。f 的形式是 f = P(S1(B1)S2(B2)...S8(B8))。置换 P 根据 32 位输入,在以上的过程中通过置换输入块中的位,生成 32 位输出。

解密只是加密的逆过程,使用以上相同的步骤,但要逆转应用子密钥的顺序。DES 算法是可逆的
(2) 算法的安全性分析
在知道一些明文和密文分组的条件下,从理论上讲很容易知道对DES进行一次穷举攻击的复杂程度:密钥的长度是56位,所以会有 种的可能的密钥。
在1993年的一年一度的世界密码大会上,加拿大北方电信公司贝尔实验室的 Michael Wiener 描述了如何构造一台专用的机器破译DES,该机器利用一种每秒能搜索5000万个密钥的专用芯片。而且此机器的扩展性很好,投入的经费越多则效率越高。用100万美元构造的机器平均3.5小时就可以破译密码。
如果不用专用的机器,破译DES也有其他的方法。在1994年的世界密码大会上,M.Matsui 提出一种攻克DES的新方法--"线性密码分析"法。它可使用平均 个明文及其密文,在12台HP9000/735工作站上用此方法的软件实现,花费50天时间完成对DES的攻击。
如前所述DES作为加密算法的标准已经二十多年了,可以说是一个很老的算法,而在新的加密算法的国际标准出现之前,许多DES的加固性改进算法仍有实用价值,在本文的3.4节详细的描述,同时考虑的以上所述DES的安全性已受到了威胁。
(4) 算法的变体 三重DES(TDEA),使用3个密钥,执行3次DES算法:
加密:C = Ek3[Dk2[Ek1[P]]] 解密:P = Dk1[Ek2[Dk3[C]]]
特点:安全性得到增强,但是速度变慢。
2.AES
自 20 世纪 70 年代以来一直广泛使用的“数据加密标准”(DES) 日益显出衰老的痕迹,而一种新的算法 -- Rijndael -- 正顺利地逐渐变成新标准。这里,Larry Loeb 详细说明了每一种算法,并提供了关于为什么会发生这种变化的内幕信息。
DES 算法是全世界最广泛使用的加密算法。最近,就在 2000 年 10 月,它在其初期就取得的硬件方面的优势已经阻碍了其发展,作为政府加密技术的基础,它已由“高级加密标准”(AES) 中包含的另一种加密算法代替了。AES 是指定的标准密码系统,未来将由政府和银行业用户使用。AES 用来实际编码数据的加密算法与以前的 DES 标准不同。我们将讨论这是如何发生的,以及 AES 中的 Rijndael 算法是如何取代 DES 的算法的。
“高级加密标准”成就
但直到 1997 年,美国国家标准技术局 (NIST) 才开始打着 AES 项目的旗帜征集其接任者。1997 年 4 月的一个 AES 研讨会宣布了以下 AES 成就的最初目标:
• 可供政府和商业使用的功能强大的加密算法
• 支持标准密码本方式
• 要明显比 DES 3 有效
• 密钥大小可变,这样就可在必要时增加安全性
• 以公正和公开的方式进行选择
• 可以公开定义
• 可以公开评估
AES 的草案中最低可接受要求和评估标准是:
A.1 AES 应该可以公开定义。
A.2 AES 应该是对称的块密码。
A.3 AES 应该设计成密钥长度可以根据需要增加。
A.4 AES 应该可以在硬件和软件中实现。
A.5 AES 应该 a) 可免费获得。
A.6 将根据以下要素评价符合上述要求的算法:
1. 安全性(密码分析所需的努力)
2. 计算效率
3. 内存需求
4. 硬件和软件可适用性
5. 简易性
6. 灵活性
7. 许可证需求(见上面的 A5)
Rijndael:AES 算法获胜者
1998年8月20日NIST召开了第一次AES侯选会议,并公布了15个AES侯选算法。经过一年的考察,MARS,RC6,Rijndael,Serpent,Twofish共5种算法通过了第二轮的选拔。2000 年 10 月,NIST 选择 Rijndael(发音为 "Rhine dale")作为 AES 算法。它目前还不会代替 DES 3 成为政府日常加密的方法,因为它还须通过测试过程,“使用者”将在该测试过程后发表他们的看法。但相信它可以顺利过关。
Rijndael 是带有可变块长和可变密钥长度的迭代块密码。块长和密钥长度可以分别指定成 128、192 或 256 位。
Rijndael 中的某些操作是在字节级上定义的,字节表示有限字段 GF(28) 中的元素,一个字节中有 8 位。其它操作都根据 4 字节字定义。
加法照例对应于字节级的简单逐位 EXOR。
在多项式表示中,GF(28) 的乘法对应于多项式乘法模除阶数为 8 的不可约分二进制多项式。(如果一个多项式除了 1 和它本身之外没有其它约数,则称它为不可约分的。)对于 Rijndael,这个多项式叫做 m(x),其中:m(x) = (x8 + x4 + x3 + x + 1) 或者十六进制表示为 '11B'。其结果是一个阶数低于 8 的二进制多项式。不像加法,它没有字节级的简单操作。
不使用 Feistel 结构!
在大多数加密算法中,轮回变换都使用着名的 Feistel 结构。在这个结构中,中间 State 的位部分通常不做更改调换到另一个位置。(这种线性结构的示例是我们在 DES 部分中讨论的那些表,即使用固定表的形式交换位。)Rijndael 的轮回变换不使用这个古老的 Feistel 结构。轮回变换由三个不同的可逆一致变换组成,叫做层。(“一致”在这里表示以类似方法处理 State 中的位。)
线性混合层保证了在多个轮回后的高度扩散。非线性层使用 S 盒的并行应用,该应用程序有期望的(因此是最佳的)最差非线性特性。S 盒是非线性的。依我看来,这就 DES 和 Rijndael 之间的密钥概念差异。密钥加法层是对中间 State 的轮回密钥 (Round Key) 的简单 EXOR,如以下所注。

Rijndael算法

加密算法
Rijndael算法是一个由可变数据块长和可变密钥长的迭代分组加密算法,数据块长和密钥长可分别为128,192或256比特。
数据块要经过多次数据变换操作,每一次变换操作产生一个中间结果,这个中间结果叫做状态。状态可表示为二维字节数组,它有4行,Nb列,且Nb等于数据块长除32。如表2-3所示。

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

数据块按a0,0 , a1,0 , a2,0 , a3,0 , a0,1 , a1,1 , a2,1 , a3,1 , a0,2…的顺序映射为状态中的字节。在加密操作结束时,密文按同样的顺序从状态中抽取。
密钥也可类似地表示为二维字节数组,它有4行,Nk列,且Nk等于密钥块长除32。算法变换的圈数Nr由Nb和Nk共同决定,具体值列在表2-4中。
表3-2 Nb和Nk决定的Nr的值
Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14

3.2.1圈变换
加密算法的圈变换由4个不同的变换组成,定义成:
Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey); (EXORing a Round Key to the State)
}
加密算法的最后一圈变换与上面的略有不同,定义如下:
FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
AddRoundKey(State,RoundKey);
}

ByteSub变换
ByteSub变换是作用在状态中每个字节上的一种非线形字节变换。这个S盒子是可逆的且由以下两部分组成:
把字节的值用它的乘法逆替代,其中‘00’的逆就是它自己。
经(1)处理后的字节值进行如下定义的仿射变换:

y0 1 1 1 1 1 0 0 0 x0 0
y1 0 1 1 1 1 1 0 0 x1 1
y2 0 0 1 1 1 1 1 0 x2 1
y3 0 0 0 1 1 1 1 1 x3 0
y4 = 1 0 0 0 1 1 1 1 x4 + 0
y5 1 1 0 0 0 1 1 1 x5 0
y6 1 1 1 0 0 0 1 1 x6 1
y7 1 1 1 1 0 0 0 1 x7 1

ShiftRow变换
在ShiftRow变换中,状态的后3行以不同的移位值循环右移,行1移C1字节,行2移C2字节,行3移C3字节。
移位值C1,C2和C3与加密块长Nb有关,具体列在表2-5中:
表3-3 不同块长的移位值
Nb C1 C2 C3
4 1 2 3

MixColumn变换
在MixColumn变换中,把状态中的每一列看作GF(28)上的多项式与一固定多项式c(x)相乘然后模多项式x4+1,其中c(x)为:
c(x) =‘03’x3 + ‘01’x2 + ‘01’x + ‘02’
圈密钥加法
在这个操作中,圈密钥被简单地使用异或操作按位应用到状态中。圈密钥通过密钥编制得到,圈密钥长等于数据块长Nb。

在这个表示法中,“函数”(Round, ByteSub, ShiftRow,...) 对那些被提供指针 (State, RoundKey) 的数组进行操作。ByteSub 变换是非线性字节交换,各自作用于每个 State 字节上。在 ShiftRow 中,State 的行按不同的偏移量循环移位。在 MixColumn 中,将 State 的列视为 GF(28) 多项式,然后乘以固定多项式 c( x ) 并模除 x4 + 1,其中 c( x ) = '03' x3 + '01' x2+ '01' x + '02'。这个多项式与 x4 + 1 互质,因此是可逆的。
轮回密钥通过密钥计划方式从密码密钥 (Cipher Key) 派生而出。它有两个组件:密钥扩展 (Key Expansion) 和轮回密钥选择 (Round Key Selection)。轮回密钥的总位数等于块长度乘以轮回次数加 1(例如,块长度等于 128 位,10 次轮回,那么就需要 1408 个轮回密钥位)。
密码密钥扩充成扩展密钥 (Expanded Key)。轮回密钥是通过以下方法从这个扩展密钥中派生的:第一个轮回密钥由前 Nb(Nb = 块长度)个字组成,第二个由接着的 Nb 个字组成,以此类推。
加密算法由以下部分组成:初始轮回密钥加法、Nr-1 个轮回和最后一个轮回。在伪 C 代码中:
Rijndael(State,CipherKey)
{
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr).
}
如果已经预先执行了密钥扩展,则可以根据扩展密钥指定加密算法。
Rijndael(State,ExpandedKey)
{
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr);
}
由于 Rijndael 是可逆的,解密过程只是颠倒上述的步骤。
最后,开发者将仔细考虑如何集成这种安全性进展,使之成为继 Rijndael 之后又一个得到广泛使用的加密算法。AES 将很快应一般商业团体的要求取代 DES 成为标准,而该领域的发展进步无疑将追随其后。

3.IDEA加密算法 (1) 算法简介 IDEA算法是International Data Encryption Algorithmic 的缩写,意为国际数据加密算法。是由中国学者朱学嘉博士和着名密码学家James Massey 于1990年联合提出的,当时被叫作PES(Proposed Encryption Standard)算法,后为了加强抵抗差分密码分,经修改于1992年最后完成,并命名为IDEA算法。 (2) 算法描述 这个部分参见论文上的图 (3) 算法的安全性分析 安全性:IDEA的密钥长度是128位,比DES长了2倍多。所以如果用穷举强行攻击的话, 么,为了获得密钥需要 次搜索,如果可以设计一种每秒能搜索十亿把密钥的芯片,并且 采用十亿个芯片来并行处理的话,也要用上 年。而对于其他攻击方式来说,由于此算法 比较的新,在设计时已经考虑到了如差分攻击等密码分析的威胁,所以还未有关于有谁 发现了能比较成功的攻击IDEA方法的结果。从这点来看,IDEA还是很安全的。
4.总结
几种算法的性能对比
算法 密钥长度 分组长度 循环次数
DES 56 64 16
三重DES 112、168 64 48
AES 128、192、256 128 10、12、14
IDEA 128 64 8

速度:在200MHz的奔腾机上的对比。
C++ DJGP(++pgcc101)
AES 30.2Mbps 68.275Mbps
DES(RSAREF) 10.6Mbps 16.7Mbps
3DES 4.4Mbps 7.3Mbps

Celeron 1GHz的机器上AES的速度,加密内存中的数据
128bits密钥:
C/C++ (Mbps) 汇编(Mbps)
Linux 2.4.7 93 170
Windows2K 107 154
256bits密钥:
C/C++ (Mbps) 汇编(Mbps)
Linux 2.4.7 76 148
Windows2K 92 135

安全性
1990年以来,特制的"DES Cracker"的机器可在几个小时内找出一个DES密钥。换句话说,通过测试所有可能的密钥值,此硬件可以确定用于加密信息的是哪个密钥。假设一台一秒内可找出DES密钥的机器(如,每秒试255个密钥),如果用它来找出128-bit AES的密钥,大约需要149万亿年。

四、对称加密应用 在保密通信中的应用。(保密电话) 附加内容
安全哈希算法(SHA)
由NIST开发出来的。
此算法以最大长度不超过264位的消息为输入,生成160位的消息摘要输出。主要步骤:
1. 附加填充位
2. 附加长度
3. 初始化MD缓冲区,为160位的数据
A=67452301
B=EFCDAB89
C=89BADCFE
D=10325476
E=C3D2E1F0
4. 处理512位消息块,将缓冲虚数据和消息块共同计算出下一个输出
5. 输出160位摘要
此外还有其他哈希算法,如MD5(128位摘要),RIPEMD-160(160位摘要)等。

2. 对称加密和不对称加密有什么不同它们各有什么优缺点hash算法有什么功能

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES、IDEA和AES。

3. 怎样将哈希结果用作对称加解密算法密钥

呵呵,你的问题意思不通,多了个字吧?!应该是:数字信封技术为什么要用对称密码DES加密数据,用非称加解密RSA算法加密密钥?
非对称加密算法对大容量数据加密时,运算速度非常慢,比对称算法差好几个数量级!!
所以用对称算法加密大容量数据,非对称算法加密密钥。

4. 朋友老说哈希算法,请问到底什么是哈希算法

首先,一般哈希算法不是大学里数据结构课里那个HASH表的算法。一般哈希算法是密码学的基础,比较常用的有MD5和SHA,最重要的两条性质,就是不可逆和无冲突。
所谓不可逆,就是当你知道x的HASH值,无法求出x;
所谓无冲突,就是当你知道x,无法求出一个y, 使x与y的HASH值相同。

这两条性质在数学上都是不成立的。因为一个函数必然可逆,且由于HASH函数的值域有限,理论上会有无穷多个不同的原始值,它们的hash值都相同。MD5和SHA做到的,是求逆和求冲突在计算上不可能,也就是正向计算很容易,而反向计算即使穷尽人类所有的计算资源都做不到。

我觉得密码学的几个算法(HASH、对称加密、公私钥)是计算机科学领域最伟大的发明之一,它授予了弱小的个人在强权面前信息的安全(而且是绝对的安全)。举个例子,只要你一直使用https与国外站点通讯,并注意对方的公钥没有被篡改,G**W可以断开你的连接,但它永远不可能知道你们的传输内容是什么。

顺便说一下,王小云教授曾经成功制造出MD5的碰撞,即md5(a) = md5(b)。这样的碰撞只能随机生成,并不能根据一个已知的a求出b(即并没有破坏MD5的无冲突特性)。但这已经让他声名大噪了。

5. 如何使用hash运算实现消息验证

对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文

6. 对称与非对称加密算法有何不同

在谈到加密的时候,最新的不一定是最好的。你应该选择那种合适的、已经被大量公开分析和测试过的加密算法,因为在密码学领域是没有机会去尝试一个新算法的。让我们来看看一些已经被广泛应用的算法。
对绝大多数人来说,加密就是将明文转换为密文的过程,用密钥(key)或者密码(secret)来对内容进行加密和解密。这就是对称加密,相对于其他类型的加密方法(如,非对称加密),它速度更快。在对称密匙加密中,应用最为广泛的是AES(高级加密标准),它包含三个加密模块:AES-128、AES-192和AES-256,其中任何一种都足以有效保护政府的机密(SECRET)信息,最高机密(TOP SECRET)采用的是192位或者256位长度的密钥。
对称密匙加密最大的缺点是:所有参与的部门在他们解密前必须交换他们用于加密的密钥。这要求必须安全地发布和管理大量密钥数据,也意味着大多数的密码服务还需要其他类型的加密算法。例如为了具备不可抵赖性(non-repudiation),Secure MIME(S/MIME)采用了一种非对称算法(公钥/私钥算法),还使用了一种对称算法来对隐私和数据进行有效地保护。
非对称加密算法采用两个相互依赖的密钥:一个进行加密,另一个进行解密。这种相互依赖的关系提供了一些不同特性,其中最重要的也许是数字签名,它可以确保一条信息被某个特定的实体或者远程授权的系统或者用户创建。RSA(Rivest,Shamir and Adleman)非对称加密算法被广泛地应用于电子商务协议(如SSL),考虑到RSA提供了充分长的密钥并利用了最新的实现方式,它被认为是安全的。由于RSA比对称密码要慢很多,所以典型的做法是对数据使用对称算法进行加密,然后再使用RSA算法对较短的对称密匙进行加密。这使得解密数据所需的密钥可以安全地随对称加密数据一起传到另一方。
在某种程度上,一个加密哈希的功能与其他加密算法有所不同。例如,它可以返回一个数据、一个文件或者信息的值。一个好的哈希算法能够避免针对某个哈希值产生一个初始输入,并禁止通过哈希值逆推出初始输入。MD5和SHA-1曾是被广泛应用的哈希算法,但现在它们的加密强度都不够了,已被SHA-244、SHA-256、SHA-384或SHA-512所代替(这些算法有时会被统一看成是SHA-2算法)。微软甚至表示,早在2005年它就禁止开发者在任何场合都使用DES、MD4和MD5,在某些情况下甚至禁止使用SHA-1加密算法。虽然针对SHA-2的各个版本还未出现任何攻击报告,但它们在算法上和SHA-1很相似,所以SHA-3在未来几年将会以一种和AES相似的方式被选择成为新的哈希方式。正如你所能看到的,密码学领域总是在不断的变化,并始终和最新的技术发展保持一致

7. 区块链技术中的哈希算法是什么

1.1. 简介

计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:

8. 什么是哈希算法

就是空间映射函数,例如,全体的长整数的取值作为一个取值空间,映射到全部的字节整数的取值的空间,这个映射函数就是HASH函数。通常这种映射函数是从一个非常大的取值空间映射到一个非常小的取值空间,由于不是一对一的映射,HASH函数转换后不可逆,即不可能通过逆操作和HASH值还原出原始的值,受到计算能力限制(注意,不是逻辑上不可能,前面的不可能是逻辑上的)而且也无法还原出所有可能的全部原始值。HASH函数运用在字典表等需要快速查找的数据结构中,他的计算复杂度几乎是O(1),不会随着数据量增加而增加。另外一种用途就是文件签名,文件内容很多,将文件内容通过HASH函数处理后得到一个HASH值,验证这个文件是否被修改过,只需要把文件内容用同样的HASH函数处理后得到HASH值再比对和文件一起传送的HASH值即可,如不公开HASH算法,那么信道是无法篡改文件内容的时候篡改文件HASH值,一般应用的时候,HASH算法是公开的,这时候会用一个非对称加密算法加密一下这个HASH值,这样即便能够计算HASH值,但没有加密密钥依然无法篡改加密后HASH值。这种算法用途很广泛,用在电子签名中。HASH算法也可进行破解,这种破解不是传统意义上的解密,而是按照已有的HASH值构造出能够计算出相同HASH值的其他原文,从而妨碍原文的不可篡改性的验证,俗称找碰撞。这种碰撞对现有的电子签名危害并不严重,主要是要能够构造出有意义的原文才有价值,否则就是构造了一个完全不可识别的原文罢了,接收系统要么无法处理报错,要么人工处理的时候发现完全不可读。理论上我们终于找到了在可计算时间内发现碰撞的算法,推算了HASH算法的逆操作的时间复杂度大概的范围。HASH算法的另外一个很广泛的用途,就是很多程序员都会使用的在数据库中保存用户密码的算法,通常不会直接保存用户密码(这样DBA就能看到用户密码啦,好危险啊),而是保存密码的HASH值,验证的时候,用相同的HASH函数计算用户输入的密码得到计算HASH值然后比对数据库中存储的HASH值是否一致,从而完成验证。由于用户的密码的一样的可能性是很高的,防止DBA猜测用户密码,我们还会用一种俗称“撒盐”的过程,就是计算密码的HASH值之前,把密码和另外一个会比较发散的数据拼接,通常我们会用用户创建时间的毫秒部分。这样计算的HASH值不大会都是一样的,会很发散。最后,作为一个老程序员,我会把用户的HASH值保存好,然后把我自己密码的HASH值保存到数据库里面,然后用我自己的密码和其他用户的用户名去登录,然后再改回来解决我看不到用户密码而又要“偷窥”用户的需要。最大的好处是,数据库泄露后,得到用户数据库的黑客看着一大堆HASH值会翻白眼。

9. java中如何把计算出来的哈希函数值(MD5)转换为对称加密(DES)的密钥

package com.kingsoft.main;/**
* @author King_wangyao
*/
public class MD5Main {
private final static String[] hexDigits = { "0", "1", "2", "3", "4", "5",
"6", "7", "8", "9", "A", "B", "C", "D", "E", "F" }; /**
* 转换字节数组为16进制字串
*
* @param b
* 字节数组
* @return 16进制字串
*/
public static String byteArrayToHexString(byte[] b) {
StringBuffer resultSb = new StringBuffer();
for (int i = 0; i < b.length; i++) {
resultSb.append(byteToHexString(b[i]));
}
return resultSb.toString();
} private static String byteToHexString(byte b) {
int n = b;
if (n < 0)
n = 256 + n;
int d1 = n / 16;
int d2 = n % 16;
return hexDigits[d1] + hexDigits[d2];
} /**
* MD5 摘要计算(byte[]).
*
* @param src
* byte[]
* @throws Exception
* @return byte[] 16 bit digest
*/
public static byte[] md5Digest(byte[] src) throws Exception {
java.security.MessageDigest alg = java.security.MessageDigest
.getInstance("MD5"); // MD5 is 16 bit message digest return alg.digest(src);
} /**
* MD5 摘要计算(String).
*
* @param src
* String
* @throws Exception
* @return String
*/
public static String md5Digest(String src) throws Exception {
return byteArrayToHexString(md5Digest(src.getBytes()));
} /** Test crypt */
public static void main(String[] args) {
try {
// 获得的明文数据
String desStr = "MERCHANTID=2300000003&ORDERSEQ=5465646&ORDERDATE=20100919&ORDERAMOUNT=1";
System.out.println("原文字符串:" + desStr);
// 生成MAC
String MAC = MainTest_T1.md5Digest(desStr);
System.out.println(" MAC:" + MAC);
// 使用key值生成 SIGN
String keyStr = "123456";// 使用固定key
// 获得的明文数据
desStr = "UPTRANSEQ=20080101000001&MERCHANTID=0250000001&ORDERID=2006050112564931556&PAYMENT=10000&RETNCODE=00&RETNINFO=00&PAYDATE =20060101";
// 将key值和明文数据组织成一个待签名的串
desStr = desStr + "&KEY:" + keyStr;
System.out.println("原文字符串:" + desStr);
// 生成 SIGN
String SIGN = md5Digest(desStr);
System.out.println(" SIGN:" + SIGN); } catch (Exception ex) {
ex.printStackTrace();
}
}
}

10. 电子合同中,对称加密、非对称加密、哈希算法、CA、时间戳、数字签名这些是什么,有什么用,你们知道吗

算法,因为只要你有足够的时间,完全可以用穷举法来进行试探,如果说一个加密算法是牢固的,一般就是指在现有的计算条件下,需要花费相当长的时间才能够穷举成功(比如100年)。一、主动攻击和被动攻击数据在传输过程中或者在日常的工作中,如果没有密码的保护,很容易造成文件的泄密,造成比较严重的后果。一般来说,攻击分为主动攻击和被动攻击。被动攻击指的是从传输信道上或者从磁盘介质上非法获取了信息,造成了信息的泄密。主动攻击则要严重的多,不但获取了信息,而且还有可能对信息进行删除,篡改,危害后果及其严重。 二、对称加密基于密钥的算法通常分为对称加密算法和非对称加密算法(公钥算法)。对成加密算法就是加密用的密钥和解密用的密钥是相等的。比如着名的恺撒密码,其加密原理就是所有的字母向后移动三位,那么3就是这个算法的密钥,向右循环移位就是加密的算法。那么解密的密钥也是3,解密算法就是向左循环移动3位。很显而易见的是,这种算法理解起来比较简单,容易实现,加密速度快,但是对称加密的安全性完全依赖于密钥,如果密钥丢失,那么整个加密就完全不起作用了。比较着名的对称加密算法就是DES,其分组长度位64位,实际的密钥长度为56位,还有8位的校验码。DES算法由于其密钥较短,随着计算机速度的不断提高,使其使用穷举法进行破解成为可能。三、非对称加密非对称加密算法的核心就是加密密钥不等于解密密钥,且无法从任意一个密钥推导出另一个密钥,这样就大大加强了信息保护的力度,而且基于密钥对的原理很容易的实现数字签名和电子信封。比较典型的非对称加密算法是RSA算法,它的数学原理是大素数的分解,密钥是成对出现的,一个为公钥,一个是私钥。公钥是公开的,可以用私钥去解公钥加密过的信息,也可以用公钥去解私钥加密过的信息。比如A向B发送信息,由于B的公钥是公开的,那么A用B的公钥对信息进行加密,发送出去,因为只有B有对应的私钥,所以信息只能为B所读取。牢固的RSA算法需要其密钥长度为1024位,加解密的速度比较慢是它的弱点。另外一种比较典型的非对称加密算法是ECC算法,基于的数学原理是椭圆曲线离散对数系统,这种算法的标准我国尚未确定,但是其只需要192 bit 就可以实现牢固的加密。所以,应该是优于RSA算法的。优越性:ECC > RSA > DES

阅读全文

与对称加密哈希运算相关的资料

热点内容
单片机高吸收 浏览:422
怎么区分五代头是不是加密喷头 浏览:242
hunt测试服务器是什么意思 浏览:510
2013程序员考试 浏览:641
毕业论文是pdf 浏览:736
服务器跑网心云划算吗 浏览:471
单片机定时器计数初值的计算公式 浏览:801
win7控制台命令 浏览:567
猫咪成年app怎么升级 浏览:692
360有没有加密软件 浏览:315
清除cisco交换机配置命令 浏览:751
华为删除交换机配置命令 浏览:473
shell打包命令 浏览:827
加密狗插上输不了密码 浏览:187
大学单片机相关科目 浏览:23
自己建了服务器地址 浏览:698
命令按钮的属性设置 浏览:965
证券技术分析pdf 浏览:779
linux命令连接oracle 浏览:202
垫江停车收费桩怎么上App 浏览:135