⑴ 分形几何求电子书
分形几何
文件名
大小
浏览量
分形市场分析—将混沌理论应用到投资与经济...
5.5 M 12
分形艺术程序设计.pdf
4.5 M 8
分形几何-数学基础及其应用-曾文曲.pdf
6.4 M 8
分形几何中的技巧.pdf
8.6 M 9
分形几何学(第2版) 陈颙.pdf
7.1 M 10
分形几何学.pdf
7.3 M 12
分形图形学.pdf
⑵ 分形几何 此书有没有免费的
叹为观止!数学大师与漂亮的分形几何学
《美国数学会会志》今年连续在9月号和10月号上刊发忆述文章,回忆了美籍法国数学大师、“分形几何学之父”伯努瓦•曼德尔布罗的奋斗历程,并高度评价他为科学发展作出了巨大贡献。
《美国数学会会志》(Notices of the AMS)今年连续在9月号和10月号上刊发忆述文章,回忆了美籍法国数学大师、“分形几何学之父”伯努瓦•曼德尔布罗(BenoitMandelbrot)的奋斗历程,并高度评价他为科学发展作出了巨大贡献。
曼德尔布罗的生平与奋斗
1924年11月20日,伯努瓦•曼德尔布罗出生于波兰华沙的一个立陶宛犹太人家庭。父亲是成衣批发商,母亲是牙科医生。由于当时局势紧张,他的学业时断时续,受的教育也很不正规。他声称自己从未认真学习过字母,也没有系统地背诵过乘法口诀,只背过五以下的乘法表。11岁时,他跟着家人逃避战乱来到法国巴黎,投奔他的叔叔、知名数学家佐列姆•曼德尔布罗。战争来临时,一家人又逃到法国南部的蒂勒镇。曼德尔布罗做过一阵子机床维修学徒工后,巴黎解放,没有什么学术根底的他,完全靠自己的天赋和直觉,通过了巴黎高等理工学校长达一个月的笔试和口试。在该校学习期间,他参加过法国着名的数学团体——布尔巴基(Bourbaki)协会,但由于该协会摒弃一切图画,过分强调逻辑分析和形式主义,使得他无法忍受而成了一位叛逆者。那时候他已经意识到,不管给出什么解析问题,他总是可以用脑海中浮现的形状来思考。
曼德尔布罗1948年获美国加州理工学院硕士学位,1952年获巴黎大学博士学位。毕业后,他的职业生涯并不顺利,先是在瑞士知名心理学家让•皮亚杰(JeanPiaget)手下干了一段时间,然后于1953年前往美国普林斯顿高等研究院工作了一年。1958年,他在IBM公司的沃森研究中心获得一个职位。在那里,他依靠自己的几何直觉去研究看似毫无规律可循的事物,分析过棉花价格的涨落规律、尼罗河水位的变化情况、电话通路中自发噪声的本质以及英国海岸线的真实长度。在他看来,自然界的规律并不总是通过简化为理想的图形才能发现,往往复杂性本身也是有规律的。
与经典的描绘光滑、圆润对象的几何学(如欧氏几何学)相反,曼德尔布罗创造了一种表现斑点、缠绕、破碎对象的几何学。他认为,这种复杂性不是随机和偶然的,这些奇形怪状是有意义的,是自相似的,是跨越不同尺度对称的,而且这常常是理解事物本质的关键。他为这种复杂性引入了分维和分形(fractal)的概念,并将分形理论归纳为一个简洁的公式:f(z)=z?+c。在2010年春季的一次演讲中,曼德尔布罗解释说,如果你切开一朵花椰菜,会看到一样的花椰菜,只是小一点;如果你不断地切、不断地切,你还会看到一样的花椰菜,只是更小一点。
曼德尔布罗擅长于形象的、空间的思维,具有把复杂问题化为简单的、生动的、甚至彩色的图象的本领。他是个数学天才,又是个几何学与计算机科学兼通的奇才。1967年发表于美国《科学》杂志上的“英国的海岸线有多长”的划时代论文,是他的分形思想萌芽的重要标志。1973年,在法兰西科学院讲学期间,他提出了分形几何学的整体思想,并认为分维是个可用于研究许多自然现象的有力工具。
1982年,曼德尔布罗完成了经典着作《大自然的分形几何学》。这本书将他对宇宙所知和所怀疑的一切都搜罗其中,其销量超过任何一本其他高等数学书籍。曼德尔布罗的奇思妙想,在当时主流科学家看来解决不了什么问题,因为它既不能证明什么东西,也不能创造什么东西。实际上,分形在当今多种学科中得到了广泛的应用,由于分形的引入,一些学科焕发新的活力。在经济学领域,人们用分形来分析股票价格;在生物学领域,人们用分形来分析细胞生长规律;在物理学领域,人们用分形来分析湍流和临界现象。
四处出击的曼德尔布罗,曾经不被他涉足的所有领域所接纳,即便是在数学家中间,他也是被遗忘的,直到其怪诞想法发展成为一门成熟的几何学,他提供的技术和语言成为混沌科学不可分割的部分。到了晚年,他获得的各种荣誉和头衔不可计数,包括着名的沃尔夫物理学奖。沃尔夫奖委员会对他的评语是,“通过认识分形普遍存在和发展研究分形的数学工具,他改变了我们的自然观。”有学者预言,分形几何学可能具有如相对论一般的意义。
美国知名科普作家詹姆斯•格莱克(James Gleick)在《混沌:开创新科学》一书中评价曼德尔布罗说,他始终是个局外人,在数学的不时髦的角落里持着非正统的看法,探索着一些并未使他受欢迎的学科,为了把文章发表出去不得不把最伟大的思想隐藏起来,主要靠着约克镇高地(IBM总部所在地)雇主的信任才得以存活。他对像经济学这样的一些领域搞过突击,然后又撤走,留下一些招惹性的想法而缺少论据充分的工作。
曼德尔布罗非常崇拜有“数学全才”之称的亨利•庞加莱(Henri Poincare);他说,“一位极其伟大的数学家,他开创了数学的许多分支。他曾经说过他本人从不去证明复杂的定理,也不太在意这些证明,他更注重的是概念。”他还说,“跟他相比我还差得很多。我的意思是我发现的许多真相并不是纯数学推导而来,而是对数学图景的熟练掌握之后所提出的新问题而已。”
曼德尔布罗还说过,如果把竞赛置于一切之上,如果为了阐明竞赛规则而退缩到狭隘定义的专业中去,科学就会毁灭。别人称他为“分形几何学之父”,而他却戏谑自己是“流浪汉学者”,又称自己是“特立独行者”和“按需先锋队”,徜徉于自己爱好的天地中。他一直是哈佛大学、马萨诸塞理工学院的访问教授,但1987年才在耶鲁大学数学系获得正式教职,12年后才成为终身教授,此时他已经75岁。
曼德尔布罗投身科学事业50余年来,在许多领域做出了重要贡献,横跨数学、物理学、地学、哲学、经济学、生理学、计算机科学、天文学、情报学、信息与通讯、城市与人口、设计与艺术等学科和专业,是一位名副其实的博学家。
2010年10月14日,曼德尔布罗在美国马萨诸塞州剑桥市因病逝世,享年85岁。法国总统尼古拉•萨科齐向曼德尔布罗家人表示哀悼,“法国对曾经接纳伯努瓦•曼德尔布罗、让他受益于最好的教育而感到骄傲”,“他的工作完全是在主流科学之外发展起来,却成为现代信息理论的基础”。国际学术界也对失去这位勇于创新的天才数学家感到悲痛。
分形几何学的意义与应用
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,成为自相似性。自相似性是指局部是整体成比例缩小的性质。形象地说,就是当用不同倍数的照相机拍摄研究对象时,无论放大倍数如何改变,看到的照片都是相似的,而从相片上无法判断所用的相机的倍数,即标度不变性或全息性。
例如,一棵参天大树与它自身上的树枝及树枝上的枝杈在形状上没什么大的区别,大树与树枝这种关系,在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。正如曼德尔布罗在《大自然的分形几何》一书中写道:“云朵不是球形的,山峦不是锥形的,海岸线不是圆形的,树皮不是光滑的,闪电也不是一条直线。”
在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以梢加推广,认为点是零维的,还可以引入高维空间,人们通常习惯于整数的维数。然而,分形几何学认为维数也可以是分数,称其为分数维(简称分维);分维是分形的定量表征和基本参数。曼德尔布罗曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。
德国知名数学家费利克斯•豪斯道夫(Felix Hausdorff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是整数也可以是分数,被称为豪斯道夫维数。因此,曼德尔布罗也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。
上世纪80年代初开始的“分形热”经久不息。美国物理学大师约翰•惠勒(John Wheeler)曾说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。
中国知名学者周海中曾指出:分形几何不仅展示了数学之美,也揭示了世界的本质,从而改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。
分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。
分形打开了一个完全崭新和令人兴奋的几何学大门。它不仅给人们以美的享受,在实际应用方面也有重要的价值。例如英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德尔布罗的计算,英国海岸线的维数为1.26。有了分维,海岸线的长度就可以确定了。
海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与10公里长海岸线的两张照片,看上去会十分相似。
分形几何学在数学、物理学、生物学等许多科学领域中都得到了广泛的应用,甚至对流行文化领域也产生了重要影响。例如在1970年代后期曼德尔布罗集合成为一种文化符号,被大量印制在T恤、棒球帽和帆布包上。今天,人们可以在网络上,浏览与欣赏各种不同风格且优美奇妙的分形作品,这类作品一般是运用迭代法并通过计算机处理才能表现出来的;有的针对科学研究中要表达的一些特别的对象,有的则完全是艺术。美妙惊奇的分形图画,有时令人心旷神怡,有时又令人眼花缭乱。分形几何使我们看到从《星际迷航》、《星球大战》直到《指环王》、《阿凡达》、《让子弹飞》中的一幕幕激动人心的特效场景,把手机天线缩小到能够藏进机身,把飞机仪表板设计得更加一目了然,把屋内装修设计得更加舒适美观......
最后一提的是,英国的数学“极客”丹尼尔•怀特(Daniel White)利用特定的数学方程式,经过反复运用迭代算法(迭代算法是用计算机解决问题的一种基本方法,利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令或一定步骤进行重复执行,在每次执行这组指令或步骤时,都从变量的原值推出一个新值),最终创作出一组令人叹为观止的三维分形结构图案;这组图案被英国《自然》杂志评为“2009年度十大科学图片”之一。(金炳南写于法国图卢兹大学)
⑶ 《分形几何学》txt下载在线阅读全文,求百度网盘云资源
《分形几何学》(陈颙 陈凌)电子书网盘下载免费在线阅读
链接:
书名:分形几何学
作者:陈颙 陈凌
豆瓣评分:8.2
出版社:地震出版社
出版年份:2005-2
页数:284
内容简介:
作 者:陈颙,陈凌着 页数:290页 出版社:地震出版社
简介:本书是分形几何的普及教材。
⑷ 《分形物理学》pdf下载在线阅读,求百度网盘云资源
《分形物理学》(杨展如)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1iCiVnNwacTX4FBf0GHsoAw
书名:分形物理学
作者:杨展如
出版社:上海科技教育出版社
出版年份:1996-09
页数:241
内容简介:
内容提要
本书是非线性科学丛书中的一种,概要介绍了分形物理的
理论及其最新进展。全书计分7章,内容包括分形几何的基本概
念,自旋系统的相变,临界动力学,分形上的动力学,多重分形及
分形生长。本书可供大学物理系、数学系教师、研究生和高年级
学生阅读,也可供自然科学和工程技术领域中的研究人员参考。
本书由陶瑞宝、文志英审阅。
⑸ 《分形大自然的艺术构造》pdf下载在线阅读,求百度网盘云资源
《分形》(汪富泉)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1xs-FrpQ1nYVp9QqBjMJWIg
书名:分形
作者:汪富泉
出版社:山东教育出版社
出版年份:1996-12
页数:236
内容简介:内容提要
分形是当代科学中最有影响和感召力的基本概
念之一,分形几何学是探索复杂性的有效工具,对各
门自然科学均产生了并将继续产生深远的影响。本
书共分两篇六章。第一篇深入浅出地介绍分形与分
维的基本概念、计算分形维数的方法及纯数学中的
分形实例。第二篇分五章介绍自然界中形形色色的
分形现象,既有物质世界的真实形态,又有计算机仿
真结果。内容包括:宇宙大尺度的分形结构,多姿多
彩的地表形态及复杂地质构造的分形特征,物理、化
学、生物等领域中的物体与过程在组织结构与形态
上的分形艺术。其中较详细地介绍了作者近年来在
分形理论及地球科学、生物物理、化学物理中的分形
等研究工作。
本书可供高等学校高年级学生、教师和科技人
员阅读。
作者简介:作者简介
汪富泉,男,1955年生,四川师范学院副教授。
已发表的论着有《分形几何与动力系统》、《利齐曲率
满足某些条件的极小子流形》、《关于黎曼流形的某
些整体性质》、《直积流形拟共形平坦的条件》、《蛋白
质的谱维数》、《G-P算法的改进及其应用》和《关联
维数在油气勘探中的应用》等。
李后强,男,1962年生,四川联合大学教授,非
线性科学研究室主任,博士生导师。作为第一作者合
着的《分形理论在分子科学中的应用》获1992年度
国家教委科学技术进步一等奖,已发表的论着还有
《分形与分维》、《分形理论及其应用》等。
⑹ 《大自然的分形几何学》pdf下载在线阅读,求百度网盘云资源
《大自然的分形几何学》([波] 伯努瓦·B. 曼德布罗特)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1nfXxRZYPVfQ9GGkfWlH1Fg
书名:大自然的分形几何学
作者:[波] 伯努瓦·B. 曼德布罗特
译者:陈守吉
豆瓣评分:8.7
出版社:上海远东出版社
出版年份:1998-12
页数:575
作者简介:
作者简历
1924年12月20日生于波兰华沙。
1944年就读于法国巴黎高等技术学院,1947 年毕业,获工程师证书。
1948 -1949 年 获美国加州理工学院航空工程硕士,后任航空学工程
师。
1952 年获巴黎大学数学科学博士。
1949 -1957年 法国国家科学研究中心(CNRS)成员(先任随员,后任授
课教师,再后任导师)
1957-1958年 法国里尔大学应用数学讲师。
法国巴黎高等技术学院分析数学讲师。
1958-1993 年 纽约IBM托马斯・J・华生研究中心成员(1958-1947
年),研究员(1974-1993年)。
1987- 耶鲁大学数学系副教授。
⑺ 分形几何是什么
分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为自相似性。
例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
分形几何与传统几何相比有什么特点:
(1)从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
(2)在不同尺度上,图形的规则性又是相同的。上述的海 岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的, 还有一些是用来描述混沌和非线性系统的。
⑻ 分形理论简述
分形几何(Fractal Geometry)的概念是由曼德布罗特(B.B.Mandelbrot.1975)在1975年首先提出的.几十年来,它已经发展成为一门新型的数学分支.这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学,并且实际上正起着把现代科学各个领域连接起来的作用,分形是从新的角度解释了事物发展的本质.
分形(fractal)一词最早由B.B.Mandelbrot于1975年从拉丁文fractus创造出来,《自然界中的分形几何》(Mandelbrot,1982)为其经典之作.最先它所描述的是具有严格自相似结构的几何形体,物体的形状与标度无关,子体的数目N(r)与线性尺度(标度r)之间存在幂函数关系,即N(r)∝1/rD.分形的核心是标度不变性(或自相似性),即在任何标度下物体的性质(如形状,结构等)不变.数学上的分形实际是一种具有无穷嵌套结构的极限图形,分形的突出特点就是不存在特征尺度,描述分形的特征量是分形维数D.不过,现实的分形只是在一定的标度范围内呈现出自相似或自仿射的特性,这一标度范围也就称为(现实)分形的无标度区,在无标度区内,幂函数关系始终成立.
分形理论认为,分形内部任何一个相对独立的部分,在一定程度上都是整体的再现和相对缩影(分形元),人们可以通过认识部分来认识整体.但是分形元只是构成整体的单位,与整体相似,并不简单地等同于整体,整体的复杂性远远大于分形元.更为重要的是,分形理论指出了分形元构成整体所遵循的原理和规律,是对系统论的一个重要的贡献.
从分析事物的角度来看,分形论和系统论体现了从两个极端出发达到对事物全面认识的思路.系统论从整体出发来确立各部分的系统性质,从宏观到微观考察整体与部分的相关性;而分形论则是从部分出发确立整体性质,沿着从微观到宏观的方向展开.系统论强调部分对整体的依赖性,而分形论则强调整体对部分的依赖性,两者的互补,揭示了系统多层次面、多视角、多方位的联系方式,丰富和深化了局部与整体之间的辩证关系.
分形论的提出,对科学认识论与方法论具有广泛而深远的意义.第一,它揭示了整体与部分之间的内在联系,找到了从部分过渡到整体的媒介与桥梁,说明了部分与整体之间的信息“同构”.第二,分形与混沌和现代非线性科学的普遍联系与交叉渗透,打破了学科间的条块分割局面,使各个领域的科学家团结在一起.第三,为描述非线性复杂系统提供了简洁有力的几何语言,使人们的系统思维方法由线性进展到非线性,并得以从局部中认识整体,从有限中认识无限,从非规则中认识规则,从混沌中认识有序.
分形理论与耗散结构理论、混沌理论是相互补充和紧密联系的,都是在非线性科学的研究中所取得的重要成果.耗散结构理论着眼于从热力学角度研究在开放系统和远离平衡条件下形成的自组织,为热力学第二定律的“退化论”和达尔文的“进化论”开辟了一条联系通道,把自然科学和社会科学置于统一的世界观和认识论中.混沌理论侧重于从动力学观点研究不可积系统轨道的不稳定性,有助于消除对于自然界的确定论和随机论两套对立描述体系之间的鸿沟,深化对于偶然性和必然性这些范畴的认识.分形理论则从几何角度,研究不可积系统几何图形的自相似性质,可能成为定量描述耗散结构和混沌吸引子这些复杂而无规则现象的有力工具,进一步推动非线性科学的发展.
分形理论是一门新兴的横断学科,它给自然科学、社会科学、工程技术、文学艺术等极广泛的学科领域提供了一般的科学方法和思考方式.就目前所知,它有很高程度的应用普遍性.这是因为,具有标度不变性的分形结构是现实世界普遍存在的一大类结构,该结构的含义十分丰富,它不仅指研究对象的空间几何形态,而是一般地指其拓扑维(几何维数)小于其测量维数的点集,如事件点的分布,能量点的分布,时间点的分布,过程点的分布,甚至是意识点、思维点的分布.
分形思想的基本点可以简单表述如下:分形研究的对象是具有自相似性的无序系统,其维数的变化是连续的.从分形研究的进展看,近年来,又提出若干新的概念,其中包括自仿射分形、自反演分形、递归分形、多重分形、胖分形等等.有些分形常不具有严格的自相似性,正如定义所表达的,局部以某种方式与整体相似.
分形理论的自相似性概念,最初是指形态或结构的相似性,即在形态或结构上具有相似性的几何对象称为分形,研究这种分形特性的几何称为分形几何学.随着研究工作的深入发展和领域的拓展,又由于一些新学科,如系统论、信息论、控制论、耗散结构理论和协同论等相继涌现的影响,自相似性概念得到充实与扩展,把信息、功能和时间上的自相似性也包含在自相似性概念之中.于是,把形态(结构)、或信息、或功能、或时间上具有自相似性的客体称为广义分形.广义分形及其生成元可以是几何实体,也可以是由信息或功能支撑的数理模型,分形体系可以在形态(结构)、信息和功能各个方面同时具有自相似性,也允许只在某一方面具有自相似性;分形体系中的自相似性可以是完全相似,这种情况是不多见的,也可以是统计意义上的相似,这种情况占大多数,相似性具有层次或级别上的差别.级别最低的为生成元,级别最高的为分形体系的整体.级别愈接近,相似程度越好,级别相差愈大,相似程度越差,当超过一定范围时,则相似性就不存在了.
分形具有以下几个基本性质:
(1)自相似性是指事物的局部(或部分)与整体在形态、结构、信息、功能和时间等方面具有统计意义上的相似性.
(2)适当放大或缩小分形对象的几何尺寸,整个结构并不改变,这种性质称为标度不变性.
(3)自然现象仅在一定的尺度范围内,一定的层次中才表现出统计自相似性,在这样的尺度之外,不再具有分形特征.换言之,在不同尺度范围或不同层次上具有不同的分形特征.
(4)在欧氏几何学中,维数只能是整数,但是在分形几何学中维数可以是整数或分数.
(5)自然界中分形是具有幂函数分布的随机现象,因而必须用统计的方法进行分析和处理.
目前分形的分类有以下几种:①确定性分形与随机分形;②比例分形与非比例分形;③均匀分形与非均匀分形;④理论分形与自然分形;⑤空间分形与分形事件(时间分形).
分形研究应注意以下几个问题:
(1)统计性(随机性).研究统计意义上的分形特征,由统计数据分析中找出稳态规律,才能最客观地描述自然纹理与粗糙度.从形成过程来看,分形是一个无穷随机过程的体现.如大不列颠海岸线的复杂度是由长期海浪冲击、侵蚀及风化形成的,其他许多动力过程、凝聚过程也都是无穷随机的,不可能由某个特征量来形成.因此,探讨分形与随机序列、信息熵之间的内在联系是非常必要的.
(2)全局性.分形是整体与局部比较而存在的,它包括多层嵌套及无穷的精细结构.研究一个平面(二维)或立体(三维)的粗糙度,要考虑全局范围各个方向的平稳性,即区别各向同性或各向异性分布规律.
(3)多标度性.一个物体的分形特性通常是在某些尺度下体现出来,在另一些尺度下则不是分形特性.理想的无标度区几乎不存在,只有从多标度中研究分形特性才较实际.
模型的建立,其实是分形(相似性)模型的建立.利用相似性原理,建立模型单元,对预测单元进行分形处理和预测.
分形的正问题是给出规律,通过迭代和递推过程产生分形,产生的几何对象显然具有某种相似性.反问题叫做分形重构.广义而言,它指任何一个几何上认为是分形的图形,能否找到产生它的规律,以某种方式来生成它.当我们研究非线性动力学时,混沌动力学会产生分形,而分形重构则是动力学系统研究的逆问题.由于存在“一因多果”、“多因一果”,由分维重构分形还需加入另外参数.
临界现象与分形有关.重整化群是研究临界现象的一种方法.该方法首先对小尺寸模型进行计算,然后被重整化至大的或更大的尺度.如果我们有网格状的一组元素,每个元素具有一定的渗透概率,重整化群方法的一个应用就是计算渗透的开始问题.当元素渗透率达到某一临界值时,这一组元素的渗透流动就会突然地发生.一旦流动开始后,相联结元素之间便具有分形结构.
自组织临界现象的概念可以用来分析地震活动性.按照这个概念,一个自然界的系统处在稳定态的边缘,一旦偏离这个状态,系统会自然地演化回到边缘稳定的状态.临界状态不存在天然的长度标度,因而是分形的.简单的细胞自动机模型可以说明这种自组织临界现象.
分形理论作为非线性科学的一个分支,是研究自然界空间结构复杂性的一门学科,可从复杂的看似无序的图案中,提取出确定性、规律性的参量.既可以反演分形结构的形成机制,又可以从看似随机的演化过程(时间序列)中推测体系演化的结果,近年来倍受地球科学家的注意.在地质统计学,孔隙介质、储层非均匀性及石油勘探开发,固相表面或两相界面,岩石破裂、断层及地震和地形、地貌学等地球科学各个领域得到了广泛的应用.
自20世纪80年代初以来,一些专家学者注意到了地质学中的自相似现象,并试图将分形理论运用于地学之中.以地质学中普遍存在的自相似性现象、地质体高度不规则性和分割性与层次性、地质学中重演现象的普遍性、分形几何学在其他学科中应用实例与地质学中的研究对象的相似性、地质学中存在一些幂函数关系等为内在基础,以地质学定量化的需要、非线性地质学的发展及线性地质学难以解决诸多难点、分形理论及现代测试和电算技术的发展为外在基础,使分形理论与地质学相结合成为可能,它的进一步发展将充实数学地质的研究内容并推动数学地质迈上一个新台阶.目前,分形理论应用于地球科学主要包括以下两个方面的研究:
(1)对“地质存在”——地质体或某些地质现象的分形结构分析,求取相应分形维数,寻找分维值与有关物理参量之间的联系,探讨分形结构形成的机理.这方面的研究相对较多,如人们已对断裂、断层和褶皱等地质构造(现象)进行了分形分析,探讨分维值与岩石力学性质等之间的关系;从大到海底(或大陆)地貌,小到纳米级的微晶表面证实了各类粗糙表面具有分形特征;计算了河流网络,断裂网络,地质多孔介质和粘性指进的分维值以及脉厚与品位或品位与储量等之间的分形关系.
(2)对“地质演化”——地质作用过程进行分形分析,求取分形维数并考察其变化趋势,从而预测演化的结果.例如,科学家们通过对强震前小震分布的分形研究表明,强震前普遍出现降维现象,从而为地震预报提供有力理论工具.当今的研究,不仅仅局限于分维数的计算,分形模型的建立;而更着重于解释地质学中引起自相似性特征的原因或成因,自相似体系的生成过程及模拟,以及用分形理论解决地质学中的疑难问题与实践问题,如地震和灾害地质的预报、石油预测、岩体力学类型划分、成矿规律与成矿预测等.地球化学数据在很大程度上反映了地质现象的结构特征.分维是描述分形结构的定量参数,它有可能揭示出地球化学元素空间分布的内在规律.
分维与地质异常有一定的关系.我们可以对不同地段以一定的地质内容为参量对比它们分维大小的差异,以此求得结构地段的位置及范围,从而确定地质异常;也可以对不同时期可恢复的历史地质结构格局分别求分维,还可以确定分维背景值.分形是自然界中普遍存在的一种规律性.
总之,分形理论已经渗透到地学领域的各个角落,应用范围涉及地球物理学、地球化学、石油地质学、构造地质学及灾害地质学等.
⑼ 为什么高等数学会排斥分形几何
分形几何文件名大小浏览量分形市场分析—将混沌理论应用到投资与经济...5.5 M 12分形艺术程序设计.pdf4.5 M 8分形几何-数学基础及其应用-曾文曲.pdf6.4 M 8分形几何中的技巧.pdf8.6 M 9分形几何学(第2版) 陈颙.pdf7.1 M 10分形几何学.pdf7.3 M 12分形图形学.pdf