⑴ 软件加密技术有几种
采用密码技术对信息加密,是最常用的安全交易手段。在电子商务中获得广泛应用的加密技术有以下两种:
(1)公共密钥和私用密钥(public key and private key)
这一加密方法亦称为RSA编码法,是由Rivest、Shamir和Adlernan三人所研究发明的。它利用两个很大的质数相乘所产生的乘积来加密。这两个质数无论哪一个先与原文件编码相乘,对文件加密,均可由另一个质数再相乘来解密。但要用一个质数来求出另一个质数,则是十分困难的。因此将这一对质数称为密钥对(Key Pair)。在加密应用时,某个用户总是将一个密钥公开,让需发信的人员将信息用其公共密钥加密后发给该用户,而一旦信息加密后,只有用该用户一个人知道的私用密钥才能解密。具有数字凭证身份的人员的公共密钥可在网上查到,亦可在请对方发信息时主动将公共密钥传给对方,这样保证在Internet上传输信息的保密和安全。
(2)数字摘要(digital digest)
这一加密方法亦称安全Hash编码法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所设计。该编码法采用单向Hash函数将需加密的明文“摘要”成一串128bit的密文,这一串密文亦称为数字指纹(Finger Print),它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。这样这摘要便可成为验证明文是否是“真身”的“指纹”了。
上述两种方法可结合起来使用,数字签名就是上述两法结合使用的实例。
3.2数字签名(digital signature)
在书面文件上签名是确认文件的一种手段,签名的作用有两点,一是因为自己的签名难以否认,从而确认了文件已签署这一事实;二是因为签名不易仿冒,从而确定了文件是真的这一事实。数字签名与书面文件签名有相同之处,采用数字签名,也能确认以下两点:
a. 信息是由签名者发送的。
b. 信息在传输过程中未曾作过任何修改。
这样数字签名就可用来防止电子信息因易被修改而有人作伪;或冒用别人名义发送信息;或发出(收到)信件后又加以否认等情况发生。
数字签名采用了双重加密的方法来实现防伪、防赖。其原理为:
(1) 被发送文件用SHA编码加密产生128bit的数字摘要(见上节)。
(2) 发送方用自己的私用密钥对摘要再加密,这就形成了数字签名。
(3) 将原文和加密的摘要同时传给对方。
(4) 对方用发送方的公共密钥对摘要解密,同时对收到的文件用SHA编码加密产生又一摘要。
(5) 将解密后的摘要和收到的文件在接收方重新加密产生的摘要相互对比。如两者一致,则说明传送过程中信息没有被破坏或篡改过。否则不然。
3.3数字时间戳(digital time-stamp)
交易文件中,时间是十分重要的信息。在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。
在电子交易中,同样需对交易文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。
数字时间戳服务(DTS)是网上安全服务项目,由专门的机构提供。时间戳(time-stamp)是一个经加密后形成的凭证文档,它包括三个部分:1)需加时间戳的文件的摘要(digest),2)DTS收到文件的日期和时间,3)DTS的数字签名。
时间戳产生的过程为:用户首先将需要加时间戳的文件用HASH编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入了收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。由Bellcore创造的DTS采用如下的过程:加密时将摘要信息归并到二叉树的数据结构;再将二叉树的根值发表在报纸上,这样更有效地为文件发表时间提供了佐证。注意,书面签署文件的时间是由签署人自己写上的,而数字时间戳则不然,它是由认证单位DTS来加的,以DTS收到文件的时间为依据。因此,时间戳也可作为科学家的科学发明文献的时间认证。
3.4数字凭证(digital certificate, digital ID)
数字凭证又称为数字证书,是用电子手段来证实一个用户的身份和对网络资源的访问的权限。在网上的电子交易中,如双方出示了各自的数字凭证,并用它来进行交易操作,那么双方都可不必为对方身份的真伪担心。数字凭证可用于电子邮件、电子商务、群件、电子基金转移等各种用途。
数字凭证的内部格式是由CCITT X.509国际标准所规定的,它包含了以下几点:
(1) 凭证拥有者的姓名,
(2) 凭证拥有者的公共密钥,
(3) 公共密钥的有效期,
(4) 颁发数字凭证的单位,
(5) 数字凭证的序列号(Serial number),
(6) 颁发数字凭证单位的数字签名。
数字凭证有三种类型:
(1) 个人凭证(Personal Digital ID):它仅仅为某一个用户提供凭证,以帮助其个人在网上进行安全交易操作。个人身份的数字凭证通常是安装在客户端的浏览器内的。并通过安全的电子邮件(S/MIME)来进行交易操作。
(2) 企业(服务器)凭证(Server ID):它通常为网上的某个Web服务器提供凭证,拥有Web服务器的企业就可以用具有凭证的万维网站点(Web Site)来进行安全电子交易。有凭证的Web服务器会自动地将其与客户端Web浏览器通信的信息加密。
(3) 软件(开发者)凭证(Developer ID):它通常为Internet中被下载的软件提供凭证,该凭证用于和微软公司Authenticode技术(合法化软件)结合的软件,以使用户在下载软件时能获得所需的信息。
上述三类凭证中前二类是常用的凭证,第三类则用于较特殊的场合,大部分认证中心提供前两类凭证,能提供各类凭证的认证中心并不普遍
⑵ 按施工方法桩分为哪几类
桩按施工方法可分为
预制桩
和
灌注桩
两大类。
1.预制桩预制桩是指在桩体投入
地基
之前在预制厂或现场制作的桩。预制桩成桩质量比较稳定而可靠。预制桩除木桩、钢桩外,
目前
大量应用的是
钢筋
混凝土桩
。预制桩根据设桩方法尚可分为
打入桩
、压入桩、振
沉桩
及旋入桩等。
(1)打入桩
打入桩是靠
机具
动力冲击将桩体挤入地基土中的。古代木桩都是人工打入的,而现代打入桩则采用各种专门打桩
机械
,如
柴油锤打桩机
等。
为了减少震动,尤其克服较大的沉桩阻力,先在地
基桩
位处钻一浅孔或较细的桩孔,然后再将桩体打入。这在打桩遇到
局部
硬
土层
或透镜体面难以穿越时常有采用。预钻孔打入法,方便了施工,但也使桩挤土的效应减少,使桩的
承载力
有一定的损失,这在
桩基
设计时应预先估计到。
(2)压入桩
压入桩是靠专门的
压桩机
以静力将预制桩体压挤入地基中。压入法施工几乎不存在打入桩那样的振动与
噪声
等问题,但沉桩能力小于打入法,因而适用于对桩承载力要求不很高的情况,如既能
建筑物
基础
的托换加固等。
(3)旋入桩
旋入桩是在桩端处设一螺旋板,利用外部机械的扭力将其逐渐转入地基中。这种桩的桩身
断面
一般较小,而螺旋板相对较大,在旋入施工过程中对桩侧
土体
的扰动较大,因而主要靠桩端螺旋板承担桩体轴向的压力或拉力。
振沉桩即振动沉入桩,利用振动沉桩机械的上下振动作而将预制桩沉入地基中。这种施工方法
基本上
介于打入法与压入法之间。
⑶ 桩基础的工程施工规范
1、配筋率:当桩身直径为300~2000mm时,正截面配筋率可取0.65%~0.2% (小直径桩取高值);对受荷载特别大的桩、抗拔桩和嵌岩端承桩应根据计算确定配筋率,并不应小于上述规定值。
2、配筋长度:
1) 端承型桩和位于坡地岸边的基桩应沿桩身等截面或变截面通长配筋。
2)桩径大于600mm的摩擦型桩配筋长度不应小于2/3桩长;当受水平荷载时,配筋长度尚不宜小于4.0/?(?为桩的水平变形系数)。
3)对于受地震作用的基桩,桩身配筋长度应穿过可液化土层和软弱土层,进入稳定土层的深度不应小于本规范第3.4.6条规定的深度。
4)受负摩阻力的桩、因先成桩后开挖基坑而随地基土回弹的桩,其配筋长度应穿过软弱土层并进入稳定土层,进入的深度不应小于2~3倍桩身直径。
5)专用抗拔桩及因地震作用、冻胀或膨胀力作用而受拔力的桩,应等截面或变截面通长配筋。
3、对于受水平荷载的桩,主筋不应小于8φ12;对于抗压桩和抗拔桩,主筋不应少于6φ10;纵向主筋应沿桩身周边均匀布置,其净距不应小于60mm。
4、箍筋应采用螺旋式,直径不应小于6mm,间距宜为200~300mm;受水平荷载较大桩基、承受水平地震作用的桩基以及考虑主筋作用计算桩身受压承载力时,桩顶以下5d范围内的箍筋应加密,间距不应大于100mm。
当桩身位于液化土层范围内时箍筋应加密;当考虑箍筋受力作用时,箍筋配置应符合现行国家标准《混凝土结构设计规范》GB 50010的有关规定;当钢筋笼长度超过4m时,应每隔2m设一道直径不小于12mm的焊接加劲箍筋。
桩身混凝土及混凝土保护层厚度应符合下列要求:
1)桩身混凝土强度等级不得小于C25,混凝土预制桩尖强度等级不得小于C30。
2)灌注桩主筋的混凝土保护层厚度不应小于35mm,水下灌注 桩的主筋混凝土保护层厚度不得小于50mm。
3)四类、五类环境中桩身混凝土保护层厚度应符合国家现行标准《港口工程混凝土结构设计规范》JTJ 267、《工业建筑防腐蚀设计规范》GB 50046的相关规定。
扩底灌注桩扩底端尺寸应符合下列规定:
1)当持力层承载力较高、上覆土层较差、桩的长径比较小时,可采用扩底桩;扩底端直径与桩身直径之比D/d,应根据承载力要求及扩底端侧面和桩端持力层土性特征以及扩底施工方法确定;挖孔桩的D/d不应大于3,钻孔桩的D/d不应大于2.5。
2)扩底端侧面的斜率应根据实际成孔及土体自立条件确定,a/hc 可取1/4~1/2,砂土可取1/4,粉土、黏性土可取1/3~1/2。
3)扩底端底面宜呈锅底形,矢高hb可取(0.15~0.20)D。
(3)加密设桩通常有两种方法分别为扩展阅读:
一、施工方法
1、锤击法。
桩基施工中采用最广泛的一种沉桩方法。以锤的冲击能量克服土对桩的阻力,使桩沉到预定深度。一般适用于硬塑、软塑粘性土。用于砂土或碎石土有困难时,可辅以钻孔法及水冲法。常用桩锤有蒸汽锤、柴油锤(见打桩机)。
2、振动法。
振动法沉桩是以大功率的电动激振器产生频率为700~900次/分钟的振动,克服土对桩的阻力,使桩沉入土中。一般适用于砂土中沉入钢板桩,亦可辅以水冲法沉入预制钢筋混凝土管桩。
用于振动沉桩的振动机的常用规格为20吨及40吨。目前,使用高频率达10000次/分钟的沉桩机头,震动与噪声小,沉桩速度快(见振动沉桩机)。
3、压入法。
压入法沉桩具有无噪声、无震动、成本低等优点,常用压桩机有80吨及120吨两种。压桩需借助设备自重及配重,经过传动机构加压把桩压入土中,故仅用于软土地基。
4、射水法。
锤击、振动两种沉桩方法的辅助方法。施工时利用高压水泵,产生高速射流,破坏或减小土的阻力,使锤击或振动更易将桩沉入土中。射水法多适用于砂土或碎石土中,使用时需控制水冲深度。
二、施工定类
桩基由桩和桩承台组成(见桩基础)。桩的施工法分为预制桩和灌注桩两大类。打桩方法的选定,除了根据工程地质条件外,还要考虑桩的类型、断面、长度、场地环境及设计要求。
中国古代已有用石硪夯打木桩施工。其后桩长、桩径加大,石硪逐渐被拉动铸铁的落锤取代。17世纪80年代始有蒸汽锤问世。至19世纪30年代已应用导杆式柴油锤。
随着建筑工业的发展,为了适应大型桩基工程的需要,桩基础施工技术既要增加锤重和改进起重、吊装操作工艺,又要减少震动噪声和对环境的污染。有的预制桩的施工以钻孔取土后沉桩的钻打(或钻压)结合工艺,取代原来单纯锤击挤土或压入挤土等方法。
同时能量大、无公害的冲击体重达 60多吨的液压锤、125吨蒸汽锤和15吨柴油锤都已得到应用。灌注桩施工亦由原来泥浆护壁、套管成孔进展到无噪声、不排污、不挤土的全套管施工。
⑷ 传统的加密方法有哪些
本文只是概述几种简单的传统加密算法,没有DES,没有RSA,没有想象中的高端大气上档次的东东。。。但是都是很传统很经典的一些算法
首先,提到加密,比如加密一段文字,让其不可读,一般人首先会想到的是将其中的各个字符用其他一些特定的字符代替,比如,讲所有的A用C来表示,所有的C用E表示等等…其中早的代替算法就是由Julius Caesar发明的Caesar,它是用字母表中每个字母的之后的第三个字母来代替其本身的(C=E(3,p)=(p+3) mod 26),但是,这种加密方式,很容易可以用穷举算法来破解,毕竟只有25种可能的情况..
为了改进上诉算法,增加其破解的难度,我们不用简单的有序的替代方式,我们让替代无序化,用其中字母表的一个置换(置换:有限元素的集合S的置换就是S的所有元素的有序排列,且每个元素就出现一次,如S={a,b}其置换就只有两种:ab,ba),这样的话,就有26!种方式,大大的增加了破解的难度,但是这个世界聪明人太多,虽然26!很多,但是语言本身有一定的特性,每个字母在语言中出现的相对频率可以统计出来的,这样子,只要密文有了一定数量,就可以从统计学的角度,得到准确的字母匹配了。
上面的算法我们称之为单表代替,其实单表代替密码之所以较容易被攻破,因为它带有原始字母使用频率的一些统计学特征。有两种主要的方法可以减少代替密码里明文结构在密文中的残留度,一种是对明文中的多个字母一起加密,另一种是采用多表代替密码。
先说多字母代替吧,最着名的就是playfair密码,它把明文中的双字元音节作为一个单元并将其转换成密文的双字元音节,它是一个基于由密钥词构成的5*5的字母矩阵中的,一个例子,如密钥为monarchy,将其从左往右从上往下填入后,将剩余的字母依次填入剩下的空格,其中I/J填入同一个空格:
对明文加密规则如下:
1 若p1 p2在同一行,对应密文c1 c2分别是紧靠p1 p2 右端的字母。其中第一列被看做是最后一列的右方。
2 若p1 p2在同一列,对应密文c1 c2分别是紧靠p1 p2 下方的字母。其中第一行被看做是最后一行的下方。
3 若p1 p2不在同一行,不在同一列,则c1 c2是由p1 p2确定的矩形的其他两角的字母,并且c1和p1, c2和p2同行。
4 若p1 p2相同,则插入一个事先约定的字母,比如Q 。
5 若明文字母数为奇数时,则在明文的末端添加某个事先约定的字母作为填充。
虽然相对简单加密,安全性有所提高,但是还是保留了明文语言的大部分结构特征,依旧可以破解出来,另一个有意思的多表代替密码是Hill密码,由数学家Lester Hill提出来的,其实就是利用了线性代数中的可逆矩阵,一个矩阵乘以它的逆矩阵得到单位矩阵,那么假设我们对密文每m个字母进行加密,那么将这m个字母在字母表中的序号写成矩阵形式设为P(如abc,[1,2,3]),密钥就是一个m阶的矩阵K,则C=P*K mod26,,解密的时候只要将密文乘上K的逆矩阵模26就可以了。该方法大大的增加了安全性。
⑸ 文件夹如何加密呢,都谁用过 有谁知道,怎么给文件夹加密呢
给文件夹加密通常有两种方法:
方法一: 右击文件夹--添加到压缩文件--高级--设置密码,不要忘记密码,否则就很难找回了。
方法二:还是建议直接下载个加密软件,更简单方便,推荐“隐身侠隐私文件夹加密软件”,目前使用最多、评价最好的软件,永久免费,冯远征代言的,可以加密电脑文件夹、u盘、移动硬盘、文件夹、视频、程序等各种文件,目前最新版出倒2.30.8.4
简单给你介绍下使用方法:
第一步:下载安装隐身侠,并注册账号
第二步:创建保险箱,将需要加密文件放进保险箱,退出软件文件就被加密隐藏了。
第三步:双击隐身侠登陆图标,输入账号密码,即可解密
网络直接下就能下载到,希望我的回答能够帮你解决问题!
⑹ 目前具体的数据加密实现方法有哪两种
对称/非对称密钥加密算法
数据加密技术 所谓数据加密(Data Encryption)技术是指将一个信息(或称明文,plain text)经过加密钥匙(Encryption key)及加密函数转换,变成无意义的密文(cipher text),而接收方则将此密文经过解密函数、解密钥匙(Decryption key)还原成明文。加密技术是网络安全技术的基石。
数据加密技术要求只有在指定的用户或网络下,才能解除密码而获得原来的数据,这就需要给数据发送方和接受方以一些特殊的信息用于加解密,这就是所谓的密钥。其密钥的值是从大量的随机数中选取的。按加密算法分为专用密钥和公开密钥两种。
专用密钥,又称为对称密钥或单密钥,加密和解密时使用同一个密钥,即同一个算法。如DES和MIT的Kerberos算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。当一个文本要加密传送时,该文本用密钥加密构成密文,密文在信道上传送,收到密文后用同一个密钥将密文解出来,形成普通文体供阅读。在对称密钥中,密钥的管理极为重要,一旦密钥丢失,密文将无密可保。这种方式在与多方通信时因为需要保存很多密钥而变得很复杂,而且密钥本身的安全就是一个问题。
对称密钥是最古老的,一般说“密电码”采用的就是对称密钥。由于对称密钥运算量小、速度快、安全强度高,因而目前仍广泛被采用。
DES是一种数据分组的加密算法,它将数据分成长度为64位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。第一步将原文进行置换,得到64位的杂乱无章的数据组;第二步将其分成均等两段;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。
公开密钥,又称非对称密钥,加密和解密时使用不同的密钥,即不同的算法,虽然两者之间存在一定的关系,但不可能轻易地从一个推导出另一个。有一把公用的加密密钥,有多把解密密钥,如RSA算法。
非对称密钥由于两个密钥(加密密钥和解密密钥)各不相同,因而可以将一个密钥公开,而将另一个密钥保密,同样可以起到加密的作用。
在这种编码过程中,一个密码用来加密消息,而另一个密码用来解密消息。在两个密钥中有一种关系,通常是数学关系。公钥和私钥都是一组十分长的、数字上相关的素数(是另一个大数字的因数)。有一个密钥不足以翻译出消息,因为用一个密钥加密的消息只能用另一个密钥才能解密。每个用户可以得到唯一的一对密钥,一个是公开的,另一个是保密的。公共密钥保存在公共区域,可在用户中传递,甚至可印在报纸上面。而私钥必须存放在安全保密的地方。任何人都可以有你的公钥,但是只有你一个人能有你的私钥。它的工作过程是:“你要我听你的吗?除非你用我的公钥加密该消息,我就可以听你的,因为我知道没有别人在偷听。只有我的私钥(其他人没有)才能解密该消息,所以我知道没有人能读到这个消息。我不必担心大家都有我的公钥,因为它不能用来解密该消息。”
公开密钥的加密机制虽提供了良好的保密性,但难以鉴别发送者,即任何得到公开密钥的人都可以生成和发送报文。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题。
数字签名一般采用非对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。当然,签名也可以采用多种方式,例如,将签名附在明文之后。数字签名普遍用于银行、电子贸易等。
数字签名不同于手写签字:数字签名随文本的变化而变化,手写签字反映某个人个性特征,是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。
值得注意的是,能否切实有效地发挥加密机制的作用,关键的问题在于密钥的管理,包括密钥的生存、分发、安装、保管、使用以及作废全过程。
⑺ 什么是桩点控制``加密桩是什么意思
在放样过程中,常需要对曲线段中桩加密施设,以控制线形的布设。在直线段,中心桩距可放到20m甚至更大,而在曲线段(特别是小半径曲线),为保证线形圆顺则要对曲线要素点桩间布设加密桩,以方便现场施工人员施作,圆曲线放到10m,缓和曲线放到5m。也就是为了保证曲线与圆顺,放样时把曲线要素5大桩之间,多打一些桩,桩比原来多了,也就实现了加密。
⑻ 什么是曲线加密桩
一、名词解释:
如设计给的曲线只有 起,中,终 三点,理论上这条曲线是确定了,但实际上一段曲线有几百米长,仅靠这三点是控制不好道路线形的,因此就需要加密。实际放线时打桩,不仅要打出三个曲线要素点,还得打出位于曲线上的足够多的加密桩,满足施工的线形控制要求。
二、曲线加密桩的发现办法:
在工程测量中,常见的曲线测设方法有偏角法、切线支距法(直角坐标法)、弦线偏距法、弦线支距法、割线法等。但按常规去做显得特别烦琐,加上由于地形、地物的限制,往往会遇到种种困难,如交点或主要点不能设站及曲线上不通视等。都会给现场的放样工作增加许多困难,也拖延工作进度。为此笔者想到一种放样曲线的简单方法———方位角法,此方法是在曲线外的已知控制点设站,拨转任意方向的方位角,计算在该方向上测站点到曲线上的距离,即可进行放样。
⑼ 按施工方法桩分为哪几类
桩按施工方法可分为预制桩和灌注桩两大类。 1.预制桩预制桩是指在桩体投入地基之前在预制厂或现场制作的桩。预制桩成桩质量比较稳定而可靠。预制桩除木桩、钢桩外,目前大量应用的是钢筋混凝土桩。预制桩根据设桩方法尚可分为打入桩、压入桩、振沉桩及旋入桩等。 (1)打入桩 打入桩是靠机具动力冲击将桩体挤入地基土中的。古代木桩都是人工打入的,而现代打入桩则采用各种专门打桩机械,如柴油锤打桩机等。 为了减少震动,尤其克服较大的沉桩阻力,先在地基桩位处钻一浅孔或较细的桩孔,然后再将桩体打入。这在打桩遇到局部硬土层或透镜体面难以穿越时常有采用。预钻孔打入法,方便了施工,但也使桩挤土的效应减少,使桩的承载力有一定的损失,这在桩基设计时应预先估计到。 (2)压入桩 压入桩是靠专门的压桩机以静力将预制桩体压挤入地基中。压入法施工几乎不存在打入桩那样的振动与噪声等问题,但沉桩能力小于打入法,因而适用于对桩承载力要求不很高的情况,如既能建筑物基础的托换加固等。 (3)旋入桩 旋入桩是在桩端处设一螺旋板,利用外部机械的扭力将其逐渐转入地基中。这种桩的桩身断面一般较小,而螺旋板相对较大,在旋入施工过程中对桩侧土体的扰动较大,因而主要靠桩端螺旋板承担桩体轴向的压力或拉力。 振沉桩即振动沉入桩,利用振动沉桩机械的上下振动作而将预制桩沉入地基中。这种施工方法基本上介于打入法与压入法之间。