A. 求3des密码系统
3DES加密算法代码(我的课本有算法和代码,但是码字太费劲,我直接从网上找的,这个算法是公开的): using System;
using System.Text;
using System.IO;
using System.Security.Cryptography;
class Class1
{
static void Main()
{
Console.WriteLine("Encrypt String...");
txtKey = "tkGGRmBErvc=";
btnKeyGen();
Console.WriteLine("Encrypt Key :{0}",txtKey);
txtIV = "Kl7ZgtM1dvQ=";
btnIVGen();
Console.WriteLine("Encrypt IV :{0}",txtIV);
Console.WriteLine();
string txtEncrypted = EncryptString("1111");
Console.WriteLine("Encrypt String : {0}",txtEncrypted);
string txtOriginal = DecryptString(txtEncrypted);
Console.WriteLine("Decrypt String : {0}",txtOriginal);
}
private static SymmetricAlgorithm mCSP;
private static string txtKey;
private static string txtIV;
private static void btnKeyGen()
{
mCSP = SetEnc();
byte[] byt2 = Convert.FromBase64String(txtKey);
mCSP.Key = byt2;
}
private static void btnIVGen()
{
byte[] byt2 = Convert.FromBase64String(txtIV);
mCSP.IV = byt2;
}
private static string EncryptString(string Value)
{
ICryptoTransform ct;
MemoryStream ms;
CryptoStream cs;
byte[] byt;
ct = mCSP.CreateEncryptor(mCSP.Key, mCSP.IV);
byt = Encoding.UTF8.GetBytes(Value);
ms = new MemoryStream();
cs = new CryptoStream(ms, ct, CryptoStreamMode.Write);
cs.Write(byt, 0, byt.Length);
cs.FlushFinalBlock();
cs.Close();
return Convert.ToBase64String(ms.ToArray());
}
private static string DecryptString(string Value)
{
ICryptoTransform ct;
MemoryStream ms;
CryptoStream cs;
byte[] byt;
ct = mCSP.CreateDecryptor(mCSP.Key, mCSP.IV);
byt = Convert.FromBase64String(Value);
ms = new MemoryStream();
cs = new CryptoStream(ms, ct, CryptoStreamMode.Write);
cs.Write(byt, 0, byt.Length);
cs.FlushFinalBlock();
cs.Close();
return Encoding.UTF8.GetString(ms.ToArray());
}
private static SymmetricAlgorithm SetEnc()
{
return new DESCryptoServiceProvider();
}
}
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),是DES的一个更安全的变形。它以DES为基本模块,通过组合分组方法设计出分组加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,P代表明文,C代表密表,这样,
3DES加密过程为:C=Ek3(Dk2(Ek1(P)))
3DES解密过程为:P=Dk1((EK2(Dk3(C)))
具体的加/解密过程如图2所示。K1、K2、K3决定了算法的安全性,若三个密钥互不相同,本质上就相当于用一个长为168位的密钥进行加密。多年来,它在对付强力攻击时是比较安全的。若数据对安全性要求不那么高,K1可以等于K3。在这种情况下,密钥的有效长度为112位。
B. 3DES的算法介绍
3DES又称Triple DES,是DES加密算法的一种模式,它使用3条56位的密钥对数据进行三次加密。数据加密标准(DES)是美国的一种由来已久的加密标准,它使用对称密钥加密法,并于1981年被ANSI组织规范为ANSI X.3.92。DES使用56位密钥和密码块的方法,而在密码块的方法中,文本被分成64位大小的文本块然后再进行加密。比起最初的DES,3DES更为安全。
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,P代表明文,C代表密文,这样:
3DES加密过程为:C=Ek3(Dk2(Ek1(P)))
3DES解密过程为:P=Dk1(EK2(Dk3(C)))
C. 3des加密原理
使用3Des加密算法前,我们需要了解一下当前主流的加密模式:单向加密和双向加密,两者最大的区别在于加密的密文是否具有可逆性。
单向加密:将需要加密的数据进行加密,并且密文不可进行解密,像我们常用的加密算法MD5就属于这种。
双向加密:和单向加密不同的是可以通过某些方式进行加解密的操作,其中分为对称加密和非对称加密。
对称加密:指数据使用者必须拥有相同的密钥才可以进行加密解密,就像彼此约定的一串暗号,本文介绍的3Des加密就属于这种。
非对称加密:通过一组包含公钥和私钥的密码来加密解密,用公钥加密,私钥解密,首推的就是RSA加密
---------------------------------------------------------------------------------------------------------------------------------------
3Des加密算法,由于可以逆推原文,所以主要通过本地的唯一密钥来保证数据的安全性,我这边通过生成随机的256位加密字符串存储在本地,代码读取时将其通过md5加密成32位的字符串(由于本地有原始密钥,不必担心md5加密不可逆),最后以这32位加密字符串作为密钥进行加解密的操作。
D. 什么是3DES对称加密算法
DES加密经过下面的步骤
1、提供明文和密钥,将明文按照64bit分块(对应8个字节),不足8个字节的可以进行填充(填充方式多种),密钥必须为8个字节共64bit
填充方式:
当明文长度不为分组长度的整数倍时,需要在最后一个分组中填充一些数据使其凑满一个分组长度。
* NoPadding
API或算法本身不对数据进行处理,加密数据由加密双方约定填补算法。例如若对字符串数据进行加解密,可以补充\0或者空格,然后trim
* PKCS5Padding
加密前:数据字节长度对8取余,余数为m,若m>0,则补足8-m个字节,字节数值为8-m,即差几个字节就补几个字节,字节数值即为补充的字节数,若为0则补充8个字节的8
解密后:取最后一个字节,值为m,则从数据尾部删除m个字节,剩余数据即为加密前的原文。
例如:加密字符串为为AAA,则补位为AAA55555;加密字符串为BBBBBB,则补位为BBBBBB22;加密字符串为CCCCCCCC,则补位为CCCCCCCC88888888。
* PKCS7Padding
PKCS7Padding 的填充方式和PKCS5Padding 填充方式一样。只是加密块的字节数不同。PKCS5Padding明确定义了加密块是8字节,PKCS7Padding加密快可以是1-255之间。
2、选择加密模式
**ECB模式** 全称Electronic Codebook模式,译为电子密码本模式
**CBC模式** 全称Cipher Block Chaining模式,译为密文分组链接模式
**CFB模式** 全称Cipher FeedBack模式,译为密文反馈模式
**OFB模式** 全称Output Feedback模式,译为输出反馈模式。
**CTR模式** 全称Counter模式,译为计数器模式。
3、开始加密明文(内部原理--加密步骤,加密算法实现不做讲解)
image
1、将分块的64bit一组组加密,示列其中一组:将此组进行初始置换(IP置换),目的是将输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位。
2、开始Feistel结构的16次转换,第一次转换为:右侧数据R0和子密钥经过轮函数f生成用于加密左侧数据的比特序列,与左侧数据L0异或运算,
运算结果输出为加密后的左侧L0,右侧数据则直接输出为右侧R0。由于一次Feistel轮并不会加密右侧,因此需要将上一轮输出后的左右两侧对调后才正式完成一次Feistel加密,
3、DES算法共计进行16次Feistel轮,最后一轮输出后左右两侧无需对调,每次加密的子密钥不相同,子密钥是通过秘钥计算得到的。
4、末置换是初始置换的逆过程,DES最后一轮后,左、右两半部分并未进行交换,而是两部分合并形成一个分组做为末置换的输入
DES解密经过下面的步骤
1、拿到密文和加密的密钥
2、解密:DES加密和解密的过程一致,均使用Feistel网络实现,区别仅在于解密时,密文作为输入,并逆序使用子密钥。
3、讲解密后的明文去填充 (padding)得到的即为明文
Golang实现DES加密解密
package main
import (
"fmt"
"crypto/des"
"bytes"
"crypto/cipher"
)
func main() {
var miwen,_= DESEncode([]byte("hello world"),[]byte("12345678"))
fmt.Println(miwen) // [11 42 146 232 31 180 156 225 164 50 102 170 202 234 123 129],密文:最后5位是补码
var txt,_ = DESDecode(miwen,[]byte("12345678"))
fmt.Println(txt) // [104 101 108 108 111 32 119 111 114 108 100]明码
fmt.Printf("%s",txt) // hello world
}
// 加密函数
func DESEncode(orignData, key []byte)([]byte,error){
// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}
// 明文分组,不足的部分加padding
txt := PKCS5Padding(orignData,block.BlockSize())
// 设定加密模式,为了方便,初始向量直接使用key充当了(实际项目中,最好别这么做)
blockMode := cipher.NewCBCEncrypter(block,key)
// 创建密文长度的切片,用来存放密文字节
crypted :=make([]byte,len(txt))
// 开始加密,将txt作为源,crypted作为目的切片输入
blockMode.CryptBlocks(crypted,txt)
// 将加密后的切片返回
return crypted,nil
}
// 加密所需padding
func PKCS5Padding(ciphertext []byte,size int)[]byte{
padding := size - len(ciphertext)%size
padTex := bytes.Repeat([]byte{byte(padding)},padding)
return append(ciphertext,padTex...)
}
// 解密函数
func DESDecode(cripter, key []byte) ([]byte,error) {
// 建立密码块
block ,err:=des.NewCipher(key)
if err!=nil{ return nil,err}
// 设置解密模式,加密模式和解密模式要一样
blockMode := cipher.NewCBCDecrypter(block,key)
// 设置切片长度,用来存放明文字节
originData := make([]byte,len(cripter))
// 使用解密模式解密,将解密后的明文字节放入originData 切片中
blockMode.CryptBlocks(originData,cripter)
// 去除加密的padding部分
strByt := UnPKCS5Padding(origenData)
return strByt,nil
}
// 解密所需要的Unpadding
func UnPKCS5Padding(origin []byte) []byte{
// 获取最后一位转为整型,然后根据这个整型截取掉整型数量的长度
// 若此数为5,则减掉转换明文后的最后5位,即为我们输入的明文
var last = int(origin[len(origin)-1])
return origin[:len(origin)-last]
}
注意:在设置加密模式为CBC的时候,我们需要设置一个初始化向量,这个量的意思 在对称加密算法中,如果只有一个密钥来加密数据的话,明文中的相同文字就会也会被加密成相同的密文,这样密文和明文就有完全相同的结构,容易破解,如果给一个初始化向量,第一个明文使用初始化向量混合并加密,第二个明文用第一个明文的加密后的密文与第二个明文混合加密,这样加密出来的密文的结构则完全与明文不同,更加安全可靠。CBC模式图如下
CBC
3DES
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
对比DES,发现只是换了NewTripleDESCipher。不过,需要注意的是,密钥长度必须24byte,否则直接返回错误。关于这一点,PHP中却不是这样的,只要是8byte以上就行;而Java中,要求必须是24byte以上,内部会取前24byte(相当于就是24byte)。另外,初始化向量长度是8byte(目前各个语言都是如此,不是8byte会有问题)
E. 对称加密算法有哪些
对称加密算法是应用较早的加密算法,技术成熟。
主要有DES算法,3DES算法,TDEA算法,Blowfish算法,RC5算法,IDEA算法。
F. 常用的对称密码算法有哪些
对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;
G. 3DES的加密过程
3DES加密过程为:C=Ek3(Dk2(Ek1(P)))
3DES解密过程为:P=Dk1(EK2(Dk3(C)))
具体的加/解密过程如图所示。
using System;
using System.Text;
using System. IO;
using System.Security.Cryptography;
class Class1
{
static void Main()
{
Console.WriteLine(Encrypt String...);
txtKey = tkGGRmBErvc=;
btnKeyGen();
Console.WriteLine(Encrypt Key :{0},txtKey);
txtIV = Kl7ZgtM1dvQ=;
btnIVGen();
Console.WriteLine(Encrypt IV :{0},txtIV);
Console.WriteLine();
string txtEncrypted = EncryptString(1111);
Console.WriteLine(Encrypt String : {0},txtEncrypted);
string txtOriginal = DecryptString(txtEncrypted);
Console.WriteLine(Decrypt String : {0},txtOriginal);
}
private static SymmetricAlgorithm mCSP;
private static string txtKey;
private static string txtIV;
private static void btnKeyGen()
{
mCSP = SetEnc();
byte[] byt2 = Convert.FromBase64String(txtKey);
mCSP.Key = byt2;
}
private static void btnIVGen()
{
byte[] byt2 = Convert.FromBase64String(txtIV);
mCSP.IV = byt2;
}
private static string EncryptString(string Value)
{
ICryptoTransform ct;
MemoryStream ms;
CryptoStream cs;
byte[] byt;
ct = mCSP.CreateEncryptor(mCSP.Key, mCSP.IV);
byt = Encoding.UTF8.GetBytes(Value);
ms = new MemoryStream();
cs = new CryptoStream(ms, ct, CryptoStreamMode.Write);
cs.Write(byt, 0, byt.Length);
cs.FlushFinalBlock();
cs.Close();
return Convert.ToBase64String(ms.ToArray());
}
private static string DecryptString(string Value)
{
ICryptoTransform ct;
MemoryStream ms;
CryptoStream cs;
byte[] byt;
ct = mCSP.CreateDecryptor(mCSP.Key, mCSP.IV);
byt = Convert.FromBase64String(Value);
ms = new MemoryStream();
cs = new CryptoStream(ms, ct, CryptoStreamMode.Write);
cs.Write(byt, 0, byt.Length);
cs.FlushFinalBlock();
cs.Close();
return Encoding.UTF8.GetString(ms.ToArray());
}
private static SymmetricAlgorithm SetEnc()
{
return new DESCryptoServiceProvider();
}
}
K1、K2、K3决定了算法的安全性,若三个密钥互不相同,本质上就相当于用一个长为168位的密钥进行加密。多年来,它在对付强力攻击时是比较安全的。若数据对安全性要求不那么高,K1可以等于K3。在这种情况下,密钥的有效长度为112位。
H. 思科K9 3DES加密算法
密码学中,3DES(或称为Triple DES)是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)块密码的通称。它相当于是对每个数据块应用三次DES加密算法。由于计算机运算能力的增强,原版DES密码的密钥长度变得容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。
I. 对称加密算法的加密算法主要有哪些
1、3DES算法
3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,M代表明文,C代表密文,这样:
3DES加密过程为:C=Ek3(Dk2(Ek1(M)))
3DES解密过程为:M=Dk1(EK2(Dk3(C)))
2、Blowfish算法
BlowFish算法用来加密64Bit长度的字符串。
BlowFish算法使用两个“盒”——unsignedlongpbox[18]和unsignedlongsbox[4,256]。
BlowFish算法中,有一个核心加密函数:BF_En(后文详细介绍)。该函数输入64位信息,运算后,以64位密文的形式输出。用BlowFish算法加密信息,需要两个过程:密钥预处理和信息加密。
分别说明如下:
密钥预处理:
BlowFish算法的源密钥——pbox和sbox是固定的。我们要加密一个信息,需要自己选择一个key,用这个key对pbox和sbox进行变换,得到下一步信息加密所要用的key_pbox和key_sbox。具体的变化算法如下:
1)用sbox填充key_sbox
2)用自己选择的key8个一组地去异或pbox,用异或的结果填充key_pbox。key可以循环使用。
比如说:选的key是"abcdefghijklmn"。则异或过程为:
key_pbox[0]=pbox[0]abcdefgh;
key_pbox[1]=pbox[1]ijklmnab;
…………
…………
如此循环,直到key_pbox填充完毕。
3)用BF_En加密一个全0的64位信息,用输出的结果替换key_pbox[0]和key_pbox[1],i=0;
4)用BF_En加密替换后的key_pbox,key_pbox[i+1],用输出替代key_pbox[i+2]和key_pbox[i+3];
5)i+2,继续第4步,直到key_pbox全部被替换;
6)用key_pbox[16]和key_pbox[17]做首次输入(相当于上面的全0的输入),用类似的方法,替换key_sbox信息加密。
信息加密就是用函数把待加密信息x分成32位的两部分:xL,xRBF_En对输入信息进行变换。
3、RC5算法
RC5是种比较新的算法,Rivest设计了RC5的一种特殊的实现方式,因此RC5算法有一个面向字的结构:RC5-w/r/b,这里w是字长其值可以是16、32或64对于不同的字长明文和密文块的分组长度为2w位,r是加密轮数,b是密钥字节长度。
(9)3des加密过程扩展阅读:
普遍而言,有3个独立密钥的3DES(密钥选项1)的密钥长度为168位(三个56位的DES密钥),但由于中途相遇攻击,它的有效安全性仅为112位。密钥选项2将密钥长度缩短到了112位,但该选项对特定的选择明文攻击和已知明文攻击的强度较弱,因此NIST认定它只有80位的安全性。
对密钥选项1的已知最佳攻击需要约2组已知明文,2部,2次DES加密以及2位内存(该论文提到了时间和内存的其它分配方案)。
这在现在是不现实的,因此NIST认为密钥选项1可以使用到2030年。若攻击者试图在一些可能的(而不是全部的)密钥中找到正确的,有一种在内存效率上较高的攻击方法可以用每个密钥对应的少数选择明文和约2次加密操作找到2个目标密钥中的一个。