⑴ 线性代数里的特征多项式是什么求其概念。
要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:
设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式
Ax=λx
成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。
然后,我们也就可以对关系式进行变换:
(A-λE)x=0
其中E为单位矩阵
这是n个未知数n个方程的齐次线性方程组,它有非零解的充要条件是系数行列式为0,即
|A-λE|=0
带入具体的数字或者符号,可以看出该式是以λ为未知数的一元n次方程,称为方阵A的特征方程,左端
|A-λE|是λ的n次多项式,也称为方阵A的特征多项式。
到此为止,特征多项式的定义表述完毕。
⑵ 线性代数多项式,最大公因式第七大题第二小问,怎么做
可以因式分解在先:
f(x) = x^3(x+1)-(3x+1)(x+1) = (x+1)(x^3-3x-1)
g(x) = x^2(x+1)-(x+1) = (x+1)(x^2-1)
因为 (x^3-3x-1) 与 (x^2-1) 互质,所以最大公因式为 x+1.
f(x)u(x) + g(x)v(x) = (f(x),g(x)) = x+1
两边消去 x+1, 得:(x^3-3x-1)u(x) + (x^2-1)v(x) = 1
取 u(x) = 1, v(x) = -(x^3-3x-2)/(x^2-1)
⑶ 线性代数多项式的问题
设f(x) = x^4+2x^3+x+1, g(x) = x^4+x^3-2x^2+2x-1, h(x) = x^3-2x. 先用“辗转相除法”求出f(x)和g(x)的最大公因式d(x), 同时得到u(x)和v(x)使得f(x)u(x) + g(x)v(x) = d(x). 再比较h(x)和d(x), 如果h(x) = d(x), 那么上面得到的u(x)和v(x)即为所求, 如果h(x) = k(x)d(x), 则在f(x)u(x) + g(x)v(x) = d(x)两边同时乘以k(x)得 f(x)[k(x)u(x)] + g(x)[k(x)v(x)] = k(x)d(x) = h(x), 从而得到k(x)u(x)和k(x)v(x)作为最终结果. 网上有很多关于整数的“辗转相除法”,如: http://..com/question/225684377.html http://ke..com/view/255668.htm 比较容易理解,多项式的“辗转相除法”与之类似, 可以参考我做过的作业(见下图)⑷ 线性多项式插值的几何意义
线性多项式就是一次多项式,几何上就是直线。
线性多项式插值,就是在曲线上选定一些点以后,在曲线上相邻的点用线段连接起来。
⑸ 线性代数,求多项式的系数,这个题怎么做
这个需要熟知行列式的定义。
行列式的加减项为不同行不同列元素的乘积,要得出x^4,必须在每行都取到x。这样只有一种可能,即第1行取x,第2行取2x,第3行取3x,第4行取x,它们的乘积是6x^4。
这几个元素所在的列依次为2134,逆序数为1,所以前面应取减号,所以x^4的系数是-6。
概念
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。
含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。
AES是分组密钥,算法输入128位数据,密钥长度也是128位。用Nr表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表1所列)。每一轮都需要一个与输入分组具有相同长度的扩展密钥Expandedkey(i)的参与。由于外部输入的加密密钥K长度有限,所以在算法中要用一个密钥扩展程序(Keyexpansion)把外部密钥K扩展成更长的比特串,以生成各轮的加密和解密密钥。
1.1圈变化
AES每一个圈变换由以下三个层组成:
非线性层——进行Subbyte变换;
线行混合层——进行ShiftRow和MixColumn运算;
密钥加层——进行AddRoundKey运算。
① Subbyte变换是作用在状态中每个字节上的一种非线性字节转换,可以通过计算出来的S盒进行映射。
② ShiftRow是一个字节换位。它将状态中的行按照不同的偏移量进行循环移位,而这个偏移量也是根据Nb的不同而选择的[3]。
③ 在MixColumn变换中,把状态中的每一列看作GF(28)上的多项式a(x)与固定多项式c(x)相乘的结果。 b(x)=c(x)*a(x)的系数这样计算:
*运算不是普通的乘法运算,而是特殊的运算,即 b(x)=c(x)·a(x)(mod x4+1) 对于这个运算 b0=02。a0+03。a1+a2+a3 令xtime(a0)=02。a0
其中,符号“。”表示模一个八次不可约多项式的同余乘法[3]。
对于逆变化,其矩阵C要改变成相应的D,即b(x)=d(x)*a(x)。
④ 密钥加层运算(addround)是将圈密钥状态中的对应字节按位“异或”。
⑤ 根据线性变化的性质[1],解密运算是加密变化的逆变化。
⑺ 常用的加密算法有哪些
对称密钥加密
对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。
分组密码
分组密码 Block Cipher 又称为“分块加密”或“块加密”,将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。这也就意味着分组密码的一个优点在于可以实现同步加密,因为各分组间可以相对独立。
与此相对应的是流密码:利用密钥由密钥流发生器产生密钥流,对明文串进行加密。与分组密码的不同之处在于加密输出的结果不仅与单独明文相关,而是与一组明文相关。
DES、3DES
数据加密标准 DES Data Encryption Standard 是由IBM在美国国家安全局NSA授权下研制的一种使用56位密钥的分组密码算法,并于1977年被美国国家标准局NBS公布成为美国商用加密标准。但是因为DES固定的密钥长度,渐渐不再符合在开放式网络中的安全要求,已经于1998年被移出商用加密标准,被更安全的AES标准替代。
DES使用的Feistel Network网络属于对称的密码结构,对信息的加密和解密的过程极为相似或趋同,使得相应的编码量和线路传输的要求也减半。
DES是块加密算法,将消息分成64位,即16个十六进制数为一组进行加密,加密后返回相同大小的密码块,这样,从数学上来说,64位0或1组合,就有2^64种可能排列。DES密钥的长度同样为64位,但在加密算法中,每逢第8位,相应位会被用于奇偶校验而被算法丢弃,所以DES的密钥强度实为56位。
3DES Triple DES,使用不同Key重复三次DES加密,加密强度更高,当然速度也就相应的降低。
AES
高级加密标准 AES Advanced Encryption Standard 为新一代数据加密标准,速度快,安全级别高。由美国国家标准技术研究所NIST选取Rijndael于2000年成为新一代的数据加密标准。
AES的区块长度固定为128位,密钥长度可以是128位、192位或256位。AES算法基于Substitution Permutation Network代换置列网络,将明文块和密钥块作为输入,并通过交错的若干轮代换"Substitution"和置换"Permutation"操作产生密文块。
AES加密过程是在一个4*4的字节矩阵(或称为体State)上运作,初始值为一个明文区块,其中一个元素大小就是明文区块中的一个Byte,加密时,基本上各轮加密循环均包含这四个步骤:
ECC
ECC即 Elliptic Curve Cryptography 椭圆曲线密码学,是基于椭圆曲线数学建立公开密钥加密的算法。ECC的主要优势是在提供相当的安全等级情况下,密钥长度更小。
ECC的原理是根据有限域上的椭圆曲线上的点群中的离散对数问题ECDLP,而ECDLP是比因式分解问题更难的问题,是指数级的难度。而ECDLP定义为:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。
数字签名
数字签名 Digital Signature 又称公钥数字签名是一种用来确保数字消息或文档真实性的数学方案。一个有效的数字签名需要给接收者充足的理由来信任消息的可靠来源,而发送者也无法否认这个签名,并且这个消息在传输过程中确保没有发生变动。
数字签名的原理在于利用公钥加密技术,签名者将消息用私钥加密,然后公布公钥,验证者就使用这个公钥将加密信息解密并对比消息。一般而言,会使用消息的散列值来作为签名对象。