① python中的装饰器是作什么用的在哪可以找到这些教程。
装饰器是Python语法糖的一种,可以用来简化代码,让代码更加简洁
装饰器的作用是在不改变函数代码和调用方式的前提下,为已有函数功能添加额外的功能。
可以通过装饰器对代码实现权限管理,用户验证,日志管理,缓存判断,参数检查等等。
以上内容均来自传智播客,自己可以去搜搜,很多课。
② python 带可变参数的装饰器怎么用
装饰器本身是用来是为一个函数是实现新的功能,并且不改变原函数的代码以及调用方式。
遇到这样一种问题:
众多函数调用了你写的装饰器,但客户有需求说,我想实现我可以随之控制装饰器是否生效。
那你就不可能在得到命令的时候去原函数头部去做删除和添加装饰器调用的命令。这是就可以用到带参数的装饰器,定义一个开关,调用装饰器的时候,把这个装饰器的开关参数给传递进去,这样当开关打开的时候装饰器生效,关闭的时候则只执行原函数的代码。
举例:开关参数为True的时候执行过程:
F=True#step1装饰器的开关变量
defouter(flag):#step2
defwrapper(func):#step4
definner(*args,**kwargs):#stpe6
ifflag:#step9
print('before')#step10
ret=func(*args,**kwargs)#step11执行原函数
print('after')#step13
else:
ret=func(*args,**kwargs)
print('123')
returnret#step14
returninner#step7
returnwrapper#step5
@outer(F)#先执行step3:outer(True)这个函数,然后step6:@wrapper#此处把开关参数传递给装饰器函数
defhahaha():
pass#step12
hahaha()#step8相当于inner()
开关参数为False的时候执行过程:
F=False#stpe1装饰器的开关变量
defouter(flag):#step2
defwrapper(func):#step4
definner(*args,**kwargs):#stpe6
ifflag:#step9
print('before')
ret=func(*args,**kwargs)
print('after')
else:
ret=func(*args,**kwargs)#step10执行原函数
print('123')#step12
returnret#step13
returninner#step7
returnwrapper#step5
③ 什么是Python装饰器
所谓装饰器就是把函数包装一下,为函数添加一些附加功能,装饰器就是一个函数,参数为被包装的函数,返回包装后的函数:你可以试下:
defd(fp):
def_d(*arg,**karg):
print"dosthbeforefp.."
r=fp(*arg,**karg)
print"dosthafterfp.."
returnr
return_d
@d
deff():
print"callf"
#上面使用@d来表示装饰器和下面是一个意思
#f=d(f)
f()#调用f
④ 关于python装饰器的问题
装饰器函数参数要传函数,而不是字符串。
装饰器函数特点:
1,参数为函数对象
2,使用内部函数
3,返回函数对象
在你的代码中:
装饰器函数是arg_func(sex)
内部函数是func1()
被装饰函数是man()和woman()
所以代码要改成:
defarg_func(sex):
deffunc1():
sex()
if(sex.__name__=='man'):
print("youcan't")
if(sex.__name__=='woman'):
print("youcan")
returnfunc1
@arg_func
defman():
print('goodgoodstudy')
@arg_func
defwoman():
print('goodgoodstudy')
man()
woman()
PS:装饰器就是为了简化代码,增加可读性,方便团队开发,在不修改原函数代码的前提下,通过封装修改功能,而@修饰就是为了通过原函数名调用时,不直接执行原函数,而是把原函数传递到装饰器函数,通过内部函数(闭包)来调用原函数。这样好处,就是统一调用方式。
⑤ python装饰器使用
装饰器是从英文decorator翻译过来的,从字面上来看就是对某个东西进行修饰,增强被修饰物的功能,下面我们对装饰器做下简单介绍。
一、怎么编写装饰器
装饰器的实现很简单,本质是一个可调用对象,可以是函数、方法、对象等,它既可以装饰函数也可以装饰类和方法,为了简单说明问题,我们实现一个函数装饰器,如下代码:
有了这个装饰器,我们就可以打印出什么时候开始和结束调用函数,对于排查函数的调用链非常方便。
二、带参数的装饰器
上面的例子无论什么时候调用sum都会输出信息,如果我们需要按需输出信息怎么实现呢,这时就要用到带参数的装饰器了,如下代码:
对sum使用装饰器时没有参数,这时debug为0,所以调用sum时不会输出函数调用相关信息。
对multi使用装饰器时有参数,这时debug为1,所以调用multi时会输出函数调用相关信息。
三、函数名字问题
当我们打印被装饰后的函数名字时,不知道大家有没发现输出的不是函数本身的名字,如下代码会输出‘wrap’而不是‘sum’:
有时这种表现并不是我们想要的,我们希望被装饰后的函数名字还是函数本身,那要怎么实现呢?很简单,只需要引入functools.wraps即可,如下代码就会输出‘sum’了:
看完后是不是觉得python装饰器很简单,只要了解它的本质,怎么写都行,有好多种玩法呢。
⑥ Python进阶精华-编写装饰器为被包装的函数添加参数
注意:这种发方法并不是装饰器最常用的功能,但是在降低代码重复上可谓是首屈一指。比如:如果不使用装饰器,上述代码可能会很多:
当然,这里也有一个潜在的风险,就是当装饰器包裹的函数已经用了debug作为参数名,那么装饰器这里将会报错,所以要添加额外的一些判断来完善代码:
最后还剩下一部分比较难理解的地方,我将理解的注释在每行代码上方,这个问题就是,在打印被修饰函数的参数签名时,其实并不能正确显示参数签名,原因是因为被wrapper修饰过后的函数实际上应该使用的是wrapper的参数签名表,例如:
所以,接下来,完成最后最难的一步:
⑦ 两个很实用的Python装饰器详解
这个函数的作用在于可以给任意可能会hang住的函数添加超时功能,这个功能在编写外部API调用 、网络爬虫、数据库查询的时候特别有用
timeout装饰器的代码如下
使用:
## 输出
---------------------------------------------------------------------------
TimeoutError Traceback (most recent call last)
有时候出于演示目的或者调试目的,我们需要程序运行的时候打印出每一步的运行顺序 和调用逻辑。类似写bash的时候的bash -x调试功能,然后Python解释器并没有 内置这个时分有用的功能,那么我们就“自己动手,丰衣足食”。
Trace装饰器的代码如下:
使用:
## 输出
(3): print 1 # @trace 的输出
1
(4): print 22 # @trace 的输出
22
(5): print 333 # @trace 的输出
333
⑧ python装饰器有什么用
先来个形象比方
内裤可以用来遮羞,但是到了冬天它没法为我们防风御寒,聪明的人们发明了长裤,有了长裤后宝宝再也不冷了,装饰器就像我们这里说的长裤,在不影响内裤作用的前提下,给我们的身子提供了保暖的功效。
再回到我们的主题
装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
先来看一个简单例子:
def foo():
print('i am foo')
现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码:
def foo():
print('i am foo')
logging.info("foo is running")
bar()、bar2()也有类似的需求,怎么做?再写一个logging在bar函数里?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门处理日志 ,日志处理完之后再执行真正的业务代码
def use_logging(func):
logging.warn("%s is running" % func.__name__)
func()def bar():
print('i am bar')use_logging(bar)
逻辑上不难理解,
但是这样的话,我们每次都要将一个函数作为参数传递给use_logging函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行bar(),但是现在不得不改成use_logging(bar)。那么有没有更好的方式的呢?当然有,答案就是装饰器。
简单装饰器
def use_logging(func):
def wrapper(*args, **kwargs):
logging.warn("%s is running" % func.__name__)
return func(*args, **kwargs)
return wrapperdef bar():
print('i am bar')bar = use_logging(bar)bar()
函数use_logging就是装饰器,它把执行真正业务方法的func包裹在函数里面,看起来像bar被use_logging装饰了。在这个例子中,函数进入和退出时
,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。
@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作
def use_logging(func):
def wrapper(*args, **kwargs):
logging.warn("%s is running" % func.__name__)
return func(*args)
return wrapper@use_loggingdef foo():
print("i am foo")@use_loggingdef bar():
print("i am bar")bar()
如上所示,这样我们就可以省去bar =
use_logging(bar)这一句了,直接调用bar()即可得到想要的结果。如果我们有其他的类似函数,我们可以继续调用装饰器来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。
装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。
带参数的装饰器
装饰器还有更大的灵活性,例如带参数的装饰器:在上面的装饰器调用中,比如@use_logging,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。
def use_logging(level):
def decorator(func):
def wrapper(*args, **kwargs):
if level == "warn":
logging.warn("%s is running" % func.__name__)
return func(*args)
return wrapper
return decorator@use_logging(level="warn")def foo(name='foo'):
print("i am %s" % name)foo()
上面的use_logging是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当我
们使用@use_logging(level="warn")调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。
类装饰器
再来看看类装饰器,相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的\_\_call\_\_方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。
class Foo(object):
def __init__(self, func):
self._func = func
def __call__(self):
print ('class decorator runing')
self._func()
print ('class decorator ending')
@Foo
def bar():
print ('bar')
bar()
functools.wraps
使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:
装饰器
def logged(func):
def with_logging(*args, **kwargs):
print func.__name__ + " was called"
return func(*args, **kwargs)
return with_logging
函数
@loggeddef f(x):
"""does some math"""
return x + x * x
该函数完成等价于:
def f(x):
"""does some math"""
return x + x * xf = logged(f)
不难发现,函数f被with_logging取代了,当然它的docstring,__name__就是变成了with_logging函数的信息了。
print f.__name__ # prints 'with_logging'print f.__doc__ # prints None
这个问题就比较严重的,好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。
from functools import wrapsdef logged(func):
@wraps(func)
def with_logging(*args, **kwargs):
print func.__name__ + " was called"
return func(*args, **kwargs)
return with_logging@loggeddef f(x):
"""does some math"""
return x + x * xprint f.__name__ # prints 'f'print f.__doc__ # prints 'does some math'
内置装饰器
@staticmathod、@classmethod、@property
装饰器的顺序
@a@b@cdef f ():
等效于
f = a(b(c(f)))
⑨ Python课程内容都学习什么啊
贺圣军Python轻松入门到项目实战(经典完整版)(超清视频)网络网盘
链接: https://pan..com/s/1C9k1o65FuQKNe68L3xEx3w
若资源有问题欢迎追问~