导航:首页 > 文档加密 > 因特网协议加密

因特网协议加密

发布时间:2022-09-14 06:36:03

❶ 如何给网络加密

现在这种安全保护措施是相当高的,既然已经加密了,就算你破解基本上也是不存在这个可能性的。

一、首先,打开Windows7系统,在开始菜单中选择“控制面板”,点击打开。

❷ 常见的网络协议有哪些

第一章 概述

电信网、计算机网和有线电视网 三网合一

TCP/IP是当前的因特网协议簇的总称,TCP和 IP是其中的两个最重要的协议。

RFC标准轨迹由3个成熟级构成:提案标准、草案标准和标准。

第二章 计算机网络与因特网体系结构

根据拓扑结构:计算机网络可以分为总线型网、环型网、星型网和格状网。

根据覆盖范围:计算机网络可以分为广域网、城域网、局域网和个域网。

网络可以划分成:资源子网和通信子网两个部分。

网络协议是通信双方共同遵守的规则和约定的集合。网络协议包括三个要素,即语法、语义和同步规则。

通信双方对等层中完成相同协议功能的实体称为对等实体 ,对等实体按协议进行通信。

有线接入技术分为铜线接入、光纤接入和混合光纤同轴接入技术。

无线接入技术主要有卫星接入技术、无线本地环路接入和本地多点分配业务。

网关实现不同网络协议之间的转换。

因特网采用了网络级互联技术,网络级的协议转换不仅增加了系统的灵活性,而且简化了网络互联设备。

因特网对用户隐藏了底层网络技术和结构,在用户看来,因特网是一个统一的网络。

因特网将任何一个能传输数据分组的通信系统都视为网络,这些网络受到网络协议的平等对待。

TCP/IP 协议分为 4 个协议层 :网络接口层、网络层、传输层和应用层。

IP 协议既是网络层的核心协议 ,也是 TCP/IP 协议簇中的核心协议。

第四章 地址解析

建立逻辑地址与物理地址之间 映射的方法 通常有静态映射和动态映射。动态映射是在需要获得地址映射关系时利用网络通信协议直接从其他主机上获得映射信息。 因特网采用了动态映射的方法进行地址映射。

获得逻辑地址与物理地址之间的映射关系称为地址解析 。

地址解析协议 ARP 是将逻辑地址( IP 地址)映射到物理地址的动态映射协议。

ARP 高速缓存中含有最近使用过的 IP 地址与物理地址的映射列表。

在 ARP 高速缓存中创建的静态表项是永不超时的地址映射表项。

反向地址解析协议 RARP 是将给定的物理地址映射到逻辑地址( IP地址)的动态映射。RARP需要有RARP 服务器帮助完成解析。

ARP请求和 RARP请求,都是采用本地物理网络广播实现的。

在代理ARP中,当主机请求对隐藏在路由器后面的子网中的某一主机 IP 地址进行解析时,代理 ARP路由器将用自己的物理地址作为解析结果进行响应。

第五章 IP协议

IP是不可靠的无连接数据报协议,提供尽力而为的传输服务。

TCP/IP 协议的网络层称为IP层.

IP数据报在经过路由器进行转发时一般要进行三个方面的处理:首部校验、路由选择、数据分片

IP层通过IP地址实现了物理地址的统一,通过IP数据报实现了物理数据帧的统一。 IP 层通过这两个方面的统一屏蔽了底层的差异,向上层提供了统一的服务。

IP 数据报由首部和数据两部分构成 。首部分为定长部分和变长部分。选项是数据报首部的变长部分。定长部分 20 字节,选项不超过40字节。

IP 数据报中首部长度以 32 位字为单位 ,数据报总长度以字节为单位,片偏移以 8 字节( 64 比特)为单位。数据报中的数据长度 =数据报总长度-首部长度× 4。

IP 协议支持动态分片 ,控制分片和重组的字段是标识、标志和片偏移, 影响分片的因素是网络的最大传输单元 MTU ,MTU 是物理网络帧可以封装的最大数据字节数。通常不同协议的物理网络具有不同的MTU 。分片的重组只能在信宿机进行。

生存时间TTL是 IP 数据报在网络上传输时可以生存的最大时间,每经过一个路由器,数据报的TTL值减 1。

IP数据报只对首部进行校验 ,不对数据进行校验。

IP选项用于网络控制和测试 ,重要包括严格源路由、宽松源路由、记录路由和时间戳。

IP协议的主要功能 包括封装 IP 数据报,对数据报进行分片和重组,处理数据环回、IP选项、校验码和TTL值,进行路由选择等。

在IP 数据报中与分片相关的字段是标识字段、标志字段和片偏移字段。

数据报标识是分片所属数据报的关键信息,是分片重组的依据

分片必须满足两个条件: 分片尽可能大,但必须能为帧所封装 ;片中数据的大小必须为 8 字节的整数倍 ,否则 IP 无法表达其偏移量。

分片可以在信源机或传输路径上的任何一台路由器上进行,而分片的重组只能在信宿机上进行片重组的控制主要根据 数据报首部中的标识、标志和片偏移字段

IP选项是IP数据报首部中的变长部分,用于网络控制和测试目的 (如源路由、记录路由、时间戳等 ),IP选项的最大长度 不能超过40字节。

1、IP 层不对数据进行校验。

原因:上层传输层是端到端的协议,进行端到端的校验比进行点到点的校验开销小得多,在通信线路较好的情况下尤其如此。另外,上层协议可以根据对于数据可靠性的要求, 选择进行校验或不进行校验,甚至可以考虑采用不同的校验方法,这给系统带来很大的灵活性。

2、IP协议对IP数据报首部进行校验。

原因: IP 首部属于 IP 层协议的内容,不可能由上层协议处理。

IP 首部中的部分字段在点到点的传递过程中是不断变化的,只能在每个中间点重新形成校验数据,在相邻点之间完成校验。

3、分片必须满足两个条件:

分片尽可能大,但必须能为帧所封装 ;

片中数据的大小必须为8字节的整数倍,否则IP无法表达其偏移量。

第六章 差错与控制报文协议(ICMP)

ICMP 协议是 IP 协议的补充,用于IP层的差错报告、拥塞控制、路径控制以及路由器或主机信息的获取。

ICMP既不向信宿报告差错,也不向中间的路由器报告差错,而是 向信源报告差错 。

ICMP与 IP协议位于同一个层次,但 ICMP报文被封装在IP数据报的数据部分进行传输。

ICMP 报文可以分为三大类:差错报告、控制报文和请求 /应答报文。

ICMP 差错报告分为三种 :信宿不可达报告、数据报超时报告和数据报参数错报告。数据报超时报告包括 TTL 超时和分片重组超时。

数据报参数错包括数据报首部中的某个字段的值有错和数据报首部中缺少某一选项所必须具有的部分参数。

ICMP控制报文包括源抑制报文和重定向报文。

拥塞是无连接传输时缺乏流量控制机制而带来的问题。ICMP 利用源抑制的方法进行拥塞控制 ,通过源抑制减缓信源发出数据报的速率。

源抑制包括三个阶段 :发现拥塞阶段、解决拥塞阶段和恢复阶段。

ICMP 重定向报文由位于同一网络的路由器发送给主机,完成对主机的路由表的刷新。

ICMP 回应请求与应答不仅可以被用来测试主机或路由器的可达性,还可以被用来测试 IP 协议的工作情况。

ICMP时间戳请求与应答报文用于设备间进行时钟同步 。

主机利用 ICMP 路由器请求和通告报文不仅可以获得默认路由器的 IP 地址,还可以知道路由器是否处于活动状态。

第七章 IP 路由

数据传递分为直接传递和间接传递 ,直接传递是指直接传到最终信宿的传输过程。间接传递是指在信

源和信宿位于不同物理网络时,所经过的一些中间传递过程。

TCP/IP 采用 表驱动的方式 进行路由选择。在每台主机和路由器中都有一个反映网络拓扑结构的路由表,主机和路由器能够根据 路由表 所反映的拓扑信息找到去往信宿机的正确路径。

通常路由表中的 信宿地址采用网络地址 。路径信息采用去往信宿的路径中的下一跳路由器的地址表示。

路由表中的两个特殊表目是特定主机路由和默认路由表目。

路由表的建立和刷新可以采用两种不同 的方式:静态路由和动态路由。

自治系统 是由独立管理机构所管理的一组网络和路由器组成的系统。

路由器自动获取路径信息的两种基本方法是向量—距离算法和链路 —状态算法。

1、向量 — 距离 (Vector-Distance,简称 V—D)算法的基本思想 :路由器周期性地向与它相邻的路由器广播路径刷新报文,报文的主要内容是一组从本路由器出发去往信宿网络的最短距离,在报文中一般用(V,D)序偶表示,这里的 V 代表向量,标识从该路由器可以到达的信宿 (网络或主机 ),D 代表距离,指出从该路由器去往信宿 V 的距离, 距离 D 按照去往信宿的跳数计。 各个路由器根据收到的 (V ,D)报文,按照最短路径优先原则对各自的路由表进行刷新。

向量 —距离算法的优点是简单,易于实现。

缺点是收敛速度慢和信息交换量较大。

2、链路 — 状态 (Link-Status,简称 L-S)算法的基本思想 :系统中的每个路由器通过从其他路由器获得的信息,构造出当前网络的拓扑结构,根据这一拓扑结构,并利用 Dijkstra 算法形成一棵以本路由器为根的最短路径优先树, 由于这棵树反映了从本节点出发去往各路由节点的最短路径, 所以本节点就可以根据这棵最短路径优先树形成路由表。

动态路由所使用的路由协议包括用于自治系统内部的 内部网关协 议和用于自治系统之间的外部网关协议。

RIP协议在基本的向量 —距离算法的基础上 ,增加了对路由环路、相同距离路径、失效路径以及慢收敛问题的处理。 RIP 协议以路径上的跳数作为该路径的距离。 RIP 规定,一条有效路径的距离不能超过

RIP不适合大型网络。

RIP报文被封装在 UDP 数据报中传输。RIP使用 UDP 的 520 端口号。

3、RIP 协议的三个要点

仅和相邻路由器交换信息。

交换的信息是当前本路由器所知道的全部信息,即自己的路由表。

按固定的时间间隔交换路由信息,例如,每隔30秒。

4、RIP 协议的优缺点

RIP 存在的一个问题是当网络出现故障时,要经过比较长的时间才能将此信息传送到所有的路由器。

RIP 协议最大的优点就是实现简单,开销较小。

RIP 限制了网络的规模,它能使用的最大距离为15(16表示不可达)。

路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。

5、为了防止计数到无穷问题,可以采用以下三种技术。

1)水平 分割 法(Split Horizon) 水平分割法的基本思想:路由器从某个接口接收到的更新信息不允许再从这个接口发回去。在图 7-9 所示的例子中, R2 向 R1 发送 V-D 报文时,不能包含经过 R1 去往 NET1的路径。因为这一信息本身就是 R1 所产生的。

2) 保持法 (Hold Down) 保持法要求路由器在得知某网络不可到达后的一段时间内,保持此信息不变,这段时间称为保持时间,路由器在保持时间内不接受关于此网络的任何可达性信息。

3) 毒性逆转法 (Poison Reverse)毒性逆转法是水平分割法的一种变化。当从某一接口发出信息时,凡是从这一接口进来的信息改变了路由表表项的, V-D 报文中对应这些表目的距离值都设为无穷 (16)。

OSPF 将自治系统进一步划分为区域,每个区域由位于同一自治系统中的一组网络、主机和路由器构成。区域的划分不仅使得广播得到了更好的管理,而且使 OSPF能够支持大规模的网络。

OSPF是一个链路 —状态协议。当网络处于收敛状态时, 每个 OSPF路由器利用 Dijkstra 算法为每个网络和路由器计算最短路径,形成一棵以本路由器为根的最短路径优先 (SPF)树,并根据最短路径优先树构造路由表。

OSPF直接使用 IP。在IP首部的协议字段, OSPF协议的值为 89。

BGP 是采用路径 —向量算法的外部网关协议 , BGP 支持基于策略的路由,路由选择策略与政治、经济或安全等因素有关。

BGP 报文分为打开、更新、保持活动和通告 4 类。BGP 报文被封装在 TCP 段中传输,使用TCP的179 号端口 。

第八章 传输层协议

传输层承上启下,屏蔽通信子网的细节,向上提供通用的进程通信服务。传输层是对网络层的加强与弥补。 TCP 和 UDP 是传输层 的两大协议。

端口分配有两种基本的方式:全局端口分配和本地端口分配。

在因特网中采用一个 三元组 (协议,主机地址,端口号)来全局惟一地标识一个进程。用一个五元组(协议 ,本地主机地址 ,本地端口号 ,远地主机地址 ,远地端口号)来描述两个进程的关联。

TCP 和 UDP 都是提供进程通信能力的传输层协议。它们各有一套端口号,两套端口号相互独立,都是从0到 65535。

TCP 和 UDP 在计算校验和时引入伪首部的目的是为了能够验证数据是否传送到了正确的信宿端。

为了实现数据的可靠传输, TCP 在应用进程间 建立传输连接 。TCP 在建立连接时采用 三次握手方法解决重复连接的问题。在拆除连接时采用 四次握手 方法解决数据丢失问题。

建立连接前,服务器端首先被动打开其熟知的端口,对端口进行监听。当客户端要和服务器建立连接时,发出一个主动打开端口的请求,客户端一般使用临时端口。

TCP 采用的最基本的可靠性技术 包括流量控制、拥塞控制和差错控制。

TCP 采用 滑动窗口协议 实现流量控制,滑动窗口协议通过发送方窗口和接收方窗口的配合来完成传输控制。

TCP 的 拥塞控制 利用发送方的窗口来控制注入网络的数据流的速度。发送窗口的大小取通告窗口和拥塞窗口中小的一个。

TCP通过差错控制解决 数据的毁坏、重复、失序和丢失等问题。

UDP 在 IP 协议上增加了进程通信能力。此外 UDP 通过可选的校验和提供简单的差错控制。但UDP不提供流量控制和数据报确认 。

1、传输层( Transport Layer)的任务 是向用户提供可靠的、透明的端到端的数据传输,以及差错控制和流量控制机制。

2 “传输层提供应用进程间的逻辑通信 ”。“逻辑通信 ”的意思是:传输层之间的通信好像是沿水平方向传送数据。但事实上这两个传输层之间并没有一条水平方向的物理连接。

TCP 提供的可靠传输服务有如下五个特征 :

面向数据流 ; 虚电路连接 ; 有缓冲的传输 ; 无结构的数据流 ; 全双工连接 .

3、TCP 采用一种名为 “带重传功能的肯定确认 ( positive acknowledge with retransmission ) ”的技术作为提供可靠数据传输服务的基础。

第九章 域名系统

字符型的名字系统为用户提供了非常直观、便于理解和记忆的方法,非常符合用户的命名习惯。

因特网采用层次型命名机制 ,层次型命名机制将名字空间分成若干子空间,每个机构负责一个子空间的管理。 授权管理机构可以将其管理的子名字空间进一步划分, 授权给下一级机构管理。名字空间呈一种树形结构。

域名由圆点 “.”分开的标号序列构成 。若域名包含从树叶到树根的完整标号串并以圆点结束,则称该域名为完全合格域名FQDN。

常用的三块顶级域名 为通用顶级域名、国家代码顶级域名和反向域的顶级域名。

TCP/IP 的域名系统是一个有效的、可靠的、通用的、分布式的名字 —地址映射系统。区域是 DNS 服务器的管理单元,通常是指一个 DNS 服务器所管理的名字空间 。区域和域是不同的概念,域是一个完整的子树,而区域可以是子树中的任何一部分。

名字服务器的三种主要类型是 主名字服务器、次名字服务器和惟高速缓存名字服务器。主名字服务器拥有一个区域文件的原始版本,次名字服务器从主名字服务器那里获得区域文件的拷贝,次名字服务器通过区域传输同主名字服务器保持同步。

DNS 服务器和客户端属于 TCP/IP 模型的应用层, DNS 既可以使用 UDP,也可以使用 TCP 来进行通信。 DNS 服务器使用 UDP 和 TCP 的 53 号熟知端口。

DNS 服务器能够使用两种类型的解析: 递归解析和反复解析 。

DNS 响应报文中的回答部分、授权部分和附加信息部分由资源记录构成,资源记录存放在名字服务器的数据库中。

顶级域 cn 次级域 e.cn 子域 njust.e.cn 主机 sery.njust.e.cn

TFTP :普通文件传送协议( Trivial File Transfer Protocol )

RIP: 路由信息协议 (Routing Information Protocol)

OSPF 开放最短路径优先 (Open Shortest Path First)协议。

EGP 外部网关协议 (Exterior Gateway Protocol)

BGP 边界网关协议 (Border Gateway Protocol)

DHCP 动态主机配置协议( Dynamic Host Configuration Protocol)

Telnet工作原理 : 远程主机连接服务

FTP 文件传输工作原理 File Transfer Protocol

SMTP 邮件传输模型 Simple Message Transfer Protocol

HTTP 工作原理

❸ 以下哪个协议负责用户面数据的加密功能

以下哪个协议负责用户面数据的加密功能()
A. PDCP B. MAC C. RRC D. RLC
分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层属于无线接口协议栈的第二层,处理控制平面上的无线资源管理(RRC)消息以及用户平面上的因特网协议(IP)包。在用户平面上,PDCP子层得到来自上层的IP数据分组后,可以对IP数据分组进行头压缩和加密,然后递交到RLC子层。PDCP子层还向上层提供按序提交和重复分组检测功能。在控制平面,PDCP子层为上层RRC提供信令传输服务,并实现RRC信令的加密和一致性保护,以及在反方向上实现RRC信令的解密和一致性检查。

❹ internet 协议版本4和internet协议版本6有什么差别谢谢!

一、地址空间不同:

1、internet协议版本4中规定IP地址长度为32,即有2^32-1个地址。

2、internet协议版本6中IP地址的长度为128,即有2^128-1个地址。

二、服务质量不同:

1、internet协议版本4的路由器中路由表的长度较长,路由器转发数据包的速度较慢。

2、internet协议版本6的地址分配遵循聚类(Aggregation)的原则,这使得路由器能在路由表中用一条记录(Entry)表示一片子网,大大减小了路由器中路由表的长度,提高了路由器转发数据包的速度。

增强的组播(Multicast)支持以及对流的支持(Flow-control)。这使得网络上的多媒体应用有了长足发展的机会,为服务质量(QoS)控制提供了良好的网络平台。


三、自动配置不同:

1、internet协议版本4不支持自动配置(Auto-configuration)。

2、internet协议版本6加入了对自动配置的支持。这是对DHCP协议的改进和扩展,使得网络(尤其是局域网)的管理更加方便和快捷。

四、安全性不同:

1、internet协议版本4相较internet协议版本6来说技术较老,安全性相对较低。

2、internet协议版本6有着更高的安全性.使用internet协议版本6网络用户可以对网络层的数据进行加密并对IP报文进行校验,这极大的增强了网络安全。

❺ 什么是SSL加密

SSL是一个安全协议,它提供使用 TCP/IP 的通信应用程序间的隐私与完整性。因特网的 超文本传输协议(HTTP)使用 SSL 来实现安全的通信。

在客户端与服务器间传输的数据是通过使用对称算法(如 DES 或 RC4)进行加密的。公用密钥算法(通常为 RSA)是用来获得加密密钥交换和数字签名的,此算法使用服务器的SSL数字证书中的公用密钥。有了服务器的SSL数字证书,客户端也可以验证服务器的身份。SSL 协议的版本 1 和 2 只提供服务器认证。版本 3 添加了客户端认证,此认证同时需要客户端和服务器的数字证书。

非对称加密

那么什么是SSL使它对在线安全如此重要?应该探索的一个方面称为非对称加密。当您访问网站时,浏览器会与网站建立连接。目标是在站点和浏览器之间的任何数据流之前确定SSL证书是否有效。所有这一切发生得如此之快,以至于您没有发现延迟。

换句话说,连接的加密是在您看到任何内容之前确定的。如果出现问题,浏览器会阻止您进入您的轨道并让您有机会从网站迁移。

什么是非对称加密很重要?它使用私钥和公钥。公钥加密数据,而私有密钥解密数据。只有在两个键确定功能后才能继续。

对称加密

那么对称加密呢?这对验证SSL证书的过程也很重要。在安全会话建立后,一旦浏览器和站点相互通信,这就是保持连接的原因。

由于使用了这种类型的加密,会话密钥能够加密和解密数据。你看到的是来回的数据流畅,仍然是安全的。

他们如何共同合作形成SSL

将非对称加密视为检查,确认和验证浏览器和网站可以通信的手段。从某种意义上说,它会检查SSL证书并确保通信安全。从那里开始,对称加密接管并允许通信流动不减,直到一方或另一方结束对话。

深入挖掘:RSA和ECC

当您了解有关SSL和加密的更多信息时,您可能会听到两个术语。其中之一称为RSA加密。

这个名字基于提出这种加密理念的三个人:Rivest,Shamir和Adelman。它侧重于公钥加密,并且只要使用浏览器连接网站,就会使用特定的数学公式生成两个大的素数。素数在任何时候都是保密的,最终导致公钥和私钥的发展。一旦完成该过程,就不再需要两个素数。

这是浏览器和站点之间“握手”的另一层保护。与一般的加密一样,它发生得如此之快,以至于您没有时间看到它发生。它做的是保持连接安全。

您还将听到ECC加密。这代表Elliptic Curve Cryptography。它已经使用了十多年,通常被认为比SSL的其他方面更复杂。它是如何参与建立连接的验证过程的。

与RSA一样,ECC也是关于评估和确定站点与浏览器之间的连接是安全可靠的。一旦验证,就会有来回沟通的基础。将其视为防止第三方闯入用户与您访问的网站之间的对话的另一种方式。

❻ sa网络专用体验流量包怎么用

sa网络专用体验流量包:这个流量包是给2G、3G套餐客户提供的体验4G网络的免费体验包,需要客户的手机支持4G网络。

专用流量通常限制包括:

1、流量使用网络,比如是3G流量还是4G流量。

2、时间限制,比如指定时间段时间使用。

3、区域限制,比如是省内流量还是全国流量。

4、范围限制,比如流量只能在某个特定应用里面才可以使用。

加密介绍:

网络加密经过因特网协议加密(IPsec)实现,它结合一套开放因特网工程任务组(IETF)标准生成一个跨IP网络的专用通信架构。IPSec透过网络结构实现意味着终端用户和程序不需要知道工作的过程。加密包就会像没有加密的包一样路由通过任何IP网络。

许多的公司都提供网络加密(network encryption)产品和服务,其中包括Cisco、摩托罗拉和Oracle。

其安全机制可对其上层的各种应用服务提供透明的覆盖式安全保护。因此,IP安全是整个TCP/IP安全的基础,是网络安全的核心。IPSec是唯一一种能为任何形式的Internet通信提供安全保障的协议。IPSec允许提供逐个数据流或者逐个连接的安全。



❼ 因特网的网络层安全协议族ipsec包括哪些主要协议

ipsec ipsec:ip层协议安全结构 (ipsec:security architecture for ip network) ipsec 在 ip 层提供安全服务,它使系统能按需选择安全协议,决定服务所使用的算法及放置需求服务所需密钥到相应位置。 ipsec 用来保护一条或多条主机与主机间、安全网关与安全网关间、安全网关与主机间的路径。 ipsec 能提供的安全服务集包括访问控制、无连接的完整性、数据源认证、拒绝重发包(部分序列完整性形式)、保密性和有限传输流保密性。因为这些服务均在 ip 层提供,所以任何高层协议均能使用它们,例如 tcp 、 udp 、icmp 、 bgp 等等。 这些目标是通过使用两大传输安全协议,头部认证(ah) 和封装安全负载 (esp),以及密钥管理程序和协议的使用来完成的。所需的 ipsec 协议集内容及其使用的方式是由用户、应用程序、和/或站点、组织对安全和系统的需求来决定。 当正确的实现、使用这些机制时,它们不应该对不使用这些安全机制保护传输的用户、主机和其他英特网部分产生负面的影响。这些机制也被设计成算法独立的。这种模块性允许选择不同的算法集而不影响其他部分的实现。例如:如果需要,不同的用户通讯可以采用不同的算法集。 定义一个标准的默认算法集可以使得全球因英特网更容易协同工作。这些算法辅以 ipsec 传输保护和密钥管理协议的使用为系统和应用开发者部署高质量的因特网层的加密的安全技术提供了途径。 ipsec 不是特殊的加密算法或认证算法,也没有在它的数据结构中指定一种特殊的加密算法或认证算法,它只是一个开放的结构,定义在ip数据包格式中,为各种的数据加密或认证的实现提供了数据结构,为这些算法的实现提供了统一的体系结构,因此,不同的加密算法都可以利用ipsec定义的体系结构在网络数据传输过程中实施 vista系统常用英文专业词语 互联网协议安全(internet protocol security),一个标准机制,用于在网络层面上为穿越ip网络的数据包提供认证,完整性,以及机密性。

❽ tcp协议的主要功能是什么

功能是完成对数据报的确认、流量控制和网络拥塞。

1、在数据正确性与合法性上,TCP用一个校验和函数来检验数据是否有错误,在发送和接收时都要计算校验和;同时可以使用md5认证对数据进行加密。

2、在保证可靠性上,采用超时重传和捎带确认机制。

3、在流量控制上,采用滑动窗口协议,协议中规定,对于窗口内未经确认的分组需要重传。

TCP是一种面向广域网的通信协议,目的是在跨越多个网络通信时,为两个通信端点之间提供一条具有下列特点的通信方式:

1、基于流的方式。

2、面向连接。

3、可靠通信方式。

4、在网络状况不佳的时候尽量降低系统由于重传带来的带宽开销。

5、通信连接维护是面向通信的两个端点的,而不考虑中间网段和节点。

❾ 因特网采用的协议是什么,写出该协议的中英文全称

7层
物理层:

物理层(physical layer)的主要功能是完成相邻结点之间原始比特流传输。物理层协议关心的典型问题是使用什么样的物理信号来表示数据0和1。1位持续的时间多长。数据传输是否可同时在两个方向上进行。最初的廉洁如何建立以及完成通信后连接如何终止。物理接口(插头和插座)有多少针以及各针的作用。物理层的设计主要涉及物理层接口的机械、电气、功能和过电特性,以及物理层接口连接的传输介质等问题。物理层的实际还涉及到通信工程领域内的一些问题。

数据链路层:

数据链路层(data link layer)的主要功能是如何在不可靠的物理线路上进行数据的可靠传输。数据链路层完成的是网络中相邻结点之间可靠的数据通信。为了保证书觉得可靠传输,发送出的数据针,并按顺序传送个针。由于物理线路不可靠,因此发送方发出的数据针有可能在线路上出错或丢失,从而导致接受方无法正确接收数据。为了保证能让接收方对接收到的数据进行正确的判断,发送方位每个数据块计算出CRC(循环冗余检验)并加入到针中,这样接收方就可以通过重新计算CRC来判断接收到的数据是否正确。一旦接收方发现接收到的数据有错误,则发送方必须重新传送这一数据。然而,相同的数据多次传送也可能是接收方收到重复的数据。
数据链路层要解决的另一个问题是防止高速发送方的数据把低速接收方“淹没”。因此需要某种信息流量控制机制使发送方得知接收方当前还有多少缓存空间。为了控制的方便,流量控制常常和差错处理一同实现。
在广域网中,数据链路层负责主机IMP、IMP-IMP之间数据的可靠传送。在局域网中,数据链路层负责制及之间数据的可靠传输。

网络层:

网络层(network layer)的主要功能是完成网络中主机间的报文传输,其关键问题之一是使用数据链路层的服务将每个报文从源端传输到目的端。在广域网中,这包括产生从源端到目的端的路由,并要求这条路径经过尽可能少的IMP。如果在子网中同时出现过多的报文,子网就可能形成拥塞,因为必须加以避免这种情况的出现。
当报文不得不跨越两个或多个网络时,又会带来很多新问题。比
在单个局域网中,网络层是冗余的,因为报文是直接从一台计算机传送到另一台计算机的,因此网络层所要做的工作很少。

传输层:

传输层(transport layer)的主要功能是实现网络中不同主机上的用户进程之间可靠的数据通信。
传输层要决定会话层用户(最终对网络用户)提供什么样的服务。最好的传输连接是一条无差错的、按顺序传送数据的管道,即传输层连接时真正的点到点。
由于绝大多数的主机都支持多用户操作,因而机器上有多道程序就意味着将有多条连接进出于这些主机,因此需要以某种方式区别报文属于哪条连接。识别这些连接的信息可以放入传输层的报文头中除了将几个报文流多路复用到一条通道上,传输层还必须管理跨网连接的建立和取消。这就需要某种命名机制,使机器内的进程能够讲明它希望交谈的对象。另外,还需要有一种机制来调节信息流,使高速主机不会过快的向低速主机传送数据。尽管主机之间的流量控制与IMP之间的流量控制不尽相同。

会话层:

会话层(SESSION LAYER)允许不同机器上的用户之间建立会话关系。会话层循序进行类似的传输层的普通数据的传送,在某某些场合还提供了一些有用的增强型服务。允许用户利用一次会话在远端的分时系统上登陆,或者在两台机器间传递文件。
会话层提供的服务之一是管理对话控制。会话层允许信息同时双向传输,或任一时刻只能单向传输。如果属于后者,类似于物理信道上的半双工模式,会话层将记录此时该轮到哪一方。一种与对话控制有关的服务是令牌管理(token management)。有些协议会保证双方不能同时进行同样的操作,这一点很重要。为了管理这些活动,会话层提供了令牌,令牌可以在会话双方之间移动,只有持有令牌的一方可以执行某种关键性操作。另一种会话层服务是同步。如果在平均每小时出现一次大故障的网络上,两台机器简要进行一次两小时的文件传输,试想会出现什么样的情况呢?每一次传输中途失败后,都不得不重新传送这个文件。当网络再次出现大故障时,可能又会半途而废。为解决这个问题,会话层提供了一种方法,即在数据中插入同步点。每次网络出现故障后,仅仅重传最后一个同步点以后的数据(这个其实就是断点下载的原理)。

表示层:

表示层(presentation layer)用于完成某些特定功能,对这些功能人们常常希望找到普遍的解决办法,而不必由每个用户自己来实现。表示层以下各层只关心从源端机到目标机到目标机可靠的传送比特流,而表示层关心的是所传送的信息的语法和语义。表示层服务的一个典型例子就是大家一致选定的标准方法对数据进行编码。大多数用户程序之间并非交换随机比特,而是交换诸如人名、日期、货币数量和发票之类的信息。这些对象使用字符串、整型数、浮点数的形式,以及由几种简单类型组成的数据结构来表示的。
在网络上计算机可能采用不同的数据表示,所以需要在数据传输时进行数据格式转换。为了让采用不同数据表示法的计算机之间能够相互通信而且交换数据,就要在通信过程中使用抽象的数据结构来表示所传送的数据。而在机器内部仍然采用各自的标准编码。管理这些抽象数据结构,并在发送方将机器的内部编码转换为适合网上传输的传送语法以及在接收方做相反的转换等噢年工作都是由表示层来完成的。
另外,表示层还涉及数据压缩和解压、数据加密和解米等工作(winrar的那一套)。

应用层:

连网的目的在于支持运行于不同计算机的进程彼此之间的通信,而这些进程则是为用户完成不同人物而设计的。可能的应用是多方面的,不受网络结构的限制。应用层(app;ocation layer)包括大量人们普遍需要的协议。虽然,对于需要通信的不同应用来说,应用层的协议都是必须的。例如:http、ftp、TCP/IP。
由于每个应用有不同的要求,应用层的协议集在OSI模型中并没有定义。但是,有些确定的应用层协议,包括虚拟终端、文件传输、电子邮件等都可以作为标准化的候选

❿ 常用的加密协议是什么,SMTP、POP3、IMAP4、SNMP协议各是什么意思什么情况上使用,各自的套接字口是什么

SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。SMTP协议属于TCP/IP协议族,它帮助每台计算机在发送或中转信件时找到下一个目的地。通过SMTP协议所指定的服务器,就可以把E-mail寄到收信人的服务器上了,整个过程只要几分钟。SMTP服务器则是遵循SMTP协议的发送邮件服务器,用来发送或中转发出的电子邮件。

POP3(Post Office Protocol 3)即邮局协议的第3个版本,它是规定个人计算机如何连接到互联网上的邮件服务器进行收发邮件的协议。它是因特网电子邮件的第一个离线协议标准,POP3协议允许用户从服务器上把邮件存储到本地主机。

IMAP4协议与POP3协议一样也是规定个人计算机如何访问互联网上的邮件服务器进行收发邮件的协议,但是IMAP4协议同POP3协议相比更高级。IMAP4协议支持客户机在线或者离线访问并阅读服务器上的邮件,还能交互式的操作服务器上的邮件。IMAP4协议更人性化的地方是不需要像POP3协议那样把邮件下载到本地,用户可以通过客户端直接对服务器上的邮件进行操作(这里的操作是指:在线阅读邮件 在线查看邮件主题 大小 发件地址等信息)。用户还可以在服务器上维护自己邮件目录(维护是指移动 新建 删除 重命名 共享 抓取文本 等操作)。IMAP4协议弥补了POP3协议的很多缺陷,,由RFC3501定义。本协议是用于客户机远程访问服务器上电子邮件,它是邮件传输协议新的标准。

IMAP4协议的默认端口:143,SMTP端口号是25,POP3端口110。

阅读全文

与因特网协议加密相关的资料

热点内容
android二维码生成代码 浏览:567
焦炉气压缩机 浏览:400
imap接收邮件服务器地址 浏览:291
小乔肖恩解压密码 浏览:643
php网页网盘源码 浏览:181
签到任务源码 浏览:814
母亲节的文案怎么写app 浏览:984
加密协议aes找不到 浏览:250
java服务器端开发源码 浏览:551
编译器编译运行快捷键 浏览:333
住房app怎么快速选房 浏览:174
怎么在电脑上编译成功 浏览:214
单片机可调时钟设计方案 浏览:192
qq文件夹密码忘记怎么找回 浏览:683
php扩展插件 浏览:608
解压视频厕所抽纸 浏览:952
app减脂怎么用 浏览:452
pythonwebpdf 浏览:640
单片机的功能模块 浏览:771
安卓手机如何录制视频长时间 浏览:285