导航:首页 > 文档加密 > 声学理论pdf

声学理论pdf

发布时间:2022-10-15 12:19:44

‘壹’ 雷利资料

雷利勋爵(Lord Rayleigh)本名约翰·威廉·斯特拉特(1842—1919),后因继承了他祖父和父亲的爵位,所以他在三十二岁的时候,就根据英国的习惯,称为雷利勋爵第三,科学界一般则简称他为雷利勋爵。
他是十九世纪后期到二十世纪初期英国最出名的一位物理学家,他既在实验物理方面,又在理论物理方面,有过重大的贡献。尽管他的主要贡献是在经典物理学方面,可是他晚年对于近代物理学,如量子论和相对论,都发表过重大意见。因此,我们可以说,雷利勋爵是一位承前启后的大科学家。
他于1842年11月12日生在伦敦附近的埃塞克斯(Essex)。他从1865年在剑桥大学毕业起,到1919年6月30日病故为止,前后五十多年的科学活动,一共写了四百三十多篇科学论文,后来被集成六大卷,至今仍然有参考价值。他还写过一部巨着,两卷本《声学理论》,成了物理学史上一部不朽的名着。雷利虽不是数学家,却善于利用数学解决物理学上的重要问题。同时他对于实验工作十分仔细认真,所以一生取得了丰富的实验研究成果。
他在剑桥大学毕业后,26岁时按照当时的习惯,就到欧洲大陆去旅行,接着又去美国考察。他在1868年,购买一些实验设备带回来,设立了一座私人实验室,成为英国当时很有名的物理实验室。
他在1871年29岁时结婚了。结婚以后到埃及去旅行,同时就开始写他的《声学理论》一书。这部书一直经过六年的写作时间,到1877年才写完初次出版。
1873年31岁时,他继承了父亲的爵位。从这时候开始,就在自己家中的实验室里,进行声学和光学的实验研究,使他成为当时全世界最着名的声学专家。
他还引用光学理论来解释天空为什么是蓝色的。1871年,他提出:散射光的强度与散射的方向有关,并与波长的四次方成反比。这就是光学上着名的“雷利散射公式”。
在组成阳光的七种可见光中,红光波长最长,蓝光波长较短。而蓝光在空气的微小尘粒中的散射能力,却比红光强十倍以上。无云的天空之所以呈现蔚蓝色,就是因为阳光中的蓝光受到强烈的散射而造成的。
他在家庭实验室里,研究光学仪器的光栅,这项工作使他对前人发明的光谱仪大加改进。从1870年起,光谱仪就成了研究日光和很多化学元素光谱的重要仪器了。
在十九世纪七十年代后期,雷利本来想就在家里作一辈子的科学研究工作了。可是剑桥大学杰出物理学教授麦克斯韦尔(J·C·Maxwell)于1879年病故了,三十七岁的雷利被剑桥礼聘为教授。
他在剑桥大学做了一项很重要的工作,使学基础物理学的学生,都必须做实验。从此在欧美的大学里普遍实行起来。后来,由于他不愿意太多的外务,到1884年42岁为止,就不再担任剑桥大学教授了。
他在剑桥大学的时候,利用准确的仪器做了很重要的研究工作,就是对于电学的三个基本单位:欧姆、安培和伏特的精确数值,进行了仔细研究计算。他的研究成果,成为物理学界长期使用的基数。由于他感觉到基本单位准确的重要性,他建议英国政府成立国立物理实验室。这个实验室在1900年成立起来了,至今仍然是国际上的重要标准化机构。
在1884年,英国科学家公推雷利为英国科学促进会会长。就在这一年,这个促进会到加拿大去开年会。这使雷利又有机会和美国以及加拿大的一些物理学家,发生了更密切的友情。
他回到英国以后,仍然在自己家里,从事实验研究工作。尽管他从1887年到1905年还兼任过英国伦敦皇家学院教授,可是他每年只有很少时间在伦敦停留一下,做几次短小精干的讲演。
从1880年后期起,他把大部分时间放在自己的实验室工作上,而且方面很广,包括光学、流体力学、声学、电学以及热力学等等方面,因此,他在科学界地位就很高很高了。
他对于研究所得数字是十分认真负责的,这使他后来和威廉·拉姆塞共同合作,发现了氩气。这本来是化学方面的问题,所以他和化学家合作才彻底解决了这个稀有气体存在于空气中的问题。雷利从空气取得的氮气的密度,同从氨气里得到的氮气不完全相符,虽然数字相差只是在小数点第三位上。
气体密度就是1L气体的质量,以克数计算。气体的体积会随着温度和压力而变化,所以必须规定,气体的密度是在零摄氏度和一个大气压下,每升的质量。
空气中的氮气,经多次测量密度仍然是每升1.2572g。而从氨化合物分解出来的氮气,密度却都是每升1.2508 g。当时有人劝他,先找一找前人的着作。雷利就重新翻读了1795年卡文迪许手稿,卡文迪许曾经用静电仪放电来氧化氮气,发现尽管放电时间很长很长,总是留下一点点不能化合的气体。读了这个报告以后,雷利就相信空气里除了氧气和氮气以外,一定还有另外的一种气体。
雷利用三种不同的方法制取的氧,密度完全相等,但氮气的研究结果则使人不解。他由氨制得的氮总比从大气中除去氧、二氧化碳、水汽后所得的氮轻千分之五左右。于是他将这事实刊登在英国1892年9月29日的《自然》(Nature)周刊上,请读者解释,可是他没有收到任何答复。
雷利勋爵本人起初想到了四种可能的解释:(1)由大气中所制得的氮,或者还含有微量的氧;(2)由氨所制得的氮,可能稍微混杂了氢;(3)由大气中所得的氮,或许含有类似臭氧的N3分子;(4)由氨中所得的氮,可能有若干分子已经分解,因而把气体的密度降低了。
第一个假设是最不可能的,因为氧和氮的密度相差极微,必须杂有极大量的氧,才可以用来解释千分之五的差异。雷利又用实验证明了由氨所制得的氮,其中绝不含氢,第三个解释也是不足置信,因为他采用无声放电,使之通过这种气体,也未发现氮的密度有所增高。
雷利最初就使用感应线圈使氮气氧化,但是这个工作进行得相当缓慢。于是威廉·拉姆塞向雷利建议不再用放电的办法,改用化学方法。因为拉姆塞的方法得到成功,他们两个人在1895年就共同写成一篇论文,在英国科学促进大会上宣读。因为他们对这种新气体当时并没有命名,大会主席建议名为Argon,来自希腊文“懒惰”之意,中文音译成氩。
由于雷利知识十分渊博并且和其他科学家接触很多,所以他在19世纪后期,已经开始感觉到物理学上有好多实验,很难用经典理论去解释,例如光谱就是其中的一个例子。尽管他对于经典物理学感觉有问题,他却还没有放弃希望,总是使用经典物理学去试图解释新的现象。
他对量子理论并不太热心,他觉得这个理论提出得太突然了。由于他们共同发现了雷利——金斯定律(Raylejgh——Jears law),这个发现在普朗克(Planck)有名的理论发表前几个月,所以他对量子学更不大重视。
他也曾经想利用经典学说来解释原子光谱。例如:氢原子的发射光谱,他最后不得不承认,他的尝试是失败的。波尔提出解释氢原子光谱的理论时,他又觉得这种学说太激进。
雷利对于相对论虽是相当信服的,但同时还提倡以太学说。尽管这种学说在1881年经过迈克尔孙(Michelson)的实验证明,以太是不存在的。雷利对迈克尔孙的实验也表示怀疑,他认为以太如果不存在,那就不好解释许多现象了。由此可见,他对于经典光学理论一直是忠心的。他自己在1901年想用实验来证明以太的存在,可是也失败了。从此,他对相对论的正确性就十分佩服了。
雷利在晚年始终没有放弃物理学的实验工作。他在最后十五年中,还一共发表了九十篇论文之多。其中有一篇关于声波理论的论文,大大改进了前人的工作。
他的《声学理论》一书,经过多次的修订,达到了二十世纪的高水平。
他除了对于理论科学研究有浓厚的兴趣以外,还对于科学团体和政府提出的科学问题,都做了大量的工作。他一辈子在实验室里和图书馆里为科学而献身。
雷利在1873年被选进皇家学会,并且从1885年到1896年,他担任了皇家学会秘书。他在学会里很重视提拔青年科学家,例如:苏格兰有一位青年学者对于气体的分子理论,发表了很重要的见解,可是被很多人忽视了。雷利重新审查了被埋没的论文,很重视这位苏格兰科学家,特别把别人所轻视的论文送交皇家学会的刊物上发表。
在1905年,雷利当选为英国皇家学会主席,他认真地负责一直担任到1908年,他对学会做了好些被人不重视的工作。
在1896年,他担任了三育学会(Trinity House)的科学顾问,雷利在这里兼任了十五年的义务工作。在这里,他用光学理论,解决了被浓雾挡住光线的问题。雷利在其他公共事业方面,也有很多的贡献。例如,他担任过国防部一个重要小组的组长,又担任过伦敦煤气公司改进工作的顾问。
尽管他担任大学教授的时间不太长,却曾经担任国家的好几个教育机构的董事。从1908年到1919年逝世为止,他是剑桥大学的名誉校长。
他在1904年接受诺贝尔物理奖金时,把奖金全部捐给剑桥大学。他一生得过好多名誉学位,共计有十三次之多;在全世界的学会之中,他取得了五十多个名誉会员的称谓。
雷利和当时欧洲其他物理学家不大相同,并不热心于提新理论。他只是把所遇到的科学问题,用物理实验方法去设法解决。从他一生的行动,可以看出来,他一方面是一位造诣很高的物理学家,同时也是很和顺可亲的一位学者。

‘贰’ 声波的种类

发声体的振动在空气或其他物质中的传播叫做声波。声波借助各种介质向四面八方传播。声波一种纵波,是弹性介质中传播着的压力振动。但在固体中传播时,也可以同时有纵波及横波。

根据频率的高低,声波又分为以下三种:

1.次声波其频率小于16Hz,是人耳听不到的低频声波,对人体具有较强的杀伤力。

2.声波其频率在16-20000Hz之间,为人耳可以听见的声音。

3.超声波其频率大于20000Hz,是人耳听不到的高频声波。医用超声诊断仪常用的频率范围在1-10MHz(声的频率单位为Hz,每秒钟振动一次为1Hz。1MHz=106Hz,即每秒钟振动100万次)。 当波在介质某处传播时,该处原来静止的质点开始运动,因而具有动能,同时该处质点离开了原来的平衡位置,因而还具有势能,动能和势能构成了波的质点的总能量。波在传播时,介质由近及远地一 层层振动。其能量也就逐层传播出去。

‘叁’ 我想知道笛子的制作的详细的方法,就是每一个音孔的距离是多少

工具/原料

竹管一根,或者是别的管状物,长度30CM——40CM,内径以10MM——14MM,管壁厚大约2——3MM为佳。

电钻一把,6-8MM钻头一根

计算器,直尺,铅笔,手锯各一

方法/步骤

1.在制作笛子之前,首先我们要明确一个概念,那就是“内径”。内径的大小和测量的准确性,直接关系到笛子音域的准确与否,所以这一点非常重要。测量内径的数值要精确到毫米(MM).

总结如下

3.0588,1.52,1.75,0.57,1.077,1.30,0.286,0.921.

以上数据是固定不变的常数,只要知道一管状物的内径,就能依次推出笛子上的所有音孔,膜孔和吹孔的准确位置。但顺序千万不能搞乱了。

注意事项

1.所开孔壁的边缘要光滑平整,不能带毛刺。

2.计算结果最少要精确到小数点后两位。

‘肆’ 谁能提供一些对音乐厅建筑的声学分析..

1453年东罗马帝国灭亡之后,教会的威信下降,世俗的力量上升,思想自由的限制逐
渐地已力不从心,科学研究日渐盛行,理性的信仰开始取代对神明的膜拜.经过了一个多世
纪eQ难探索的岁月,欧洲终于迎来了奇伟壮丽的文艺复兴.这是一个在科学,哲学,文学,
艺术诸多领域中百花争妍,纷纷奏响"知识就是力量"的凯歌的时代.音乐也从教堂中走出
来,进入王公贵族的府邸和富人私宅的客厅中.
1古典时期
17世纪,音乐艺术发展迅猛,这时期已经有了以弦乐为主,并有木管乐器,铜管乐器
组成的室内乐队:到了17世纪末,己具有了早期的古典交响乐团;17世纪70年代末出现
了欧洲最早的专业音乐厅—伦敦约克大厦音乐厅(200座).这时期演奏音乐的音乐厅在
整体和局部关系上都是以天体和谐为根据,还从音乐中吸取比例和和谐,并承袭了16世纪
意大利帕拉第奥(1518-1580)设计的厅,室所常用的3:2长宽比:因此,这时期音乐厅
的体型是矩形的,其高:宽;长的比例常为]二2.3二3.7,符合"黄金率".
古典时期音乐厅的建筑风格仍沿袭宫廷客厅的特点,其空间形象容易辨认,尺度和比
例有节奏上的均衡性,合理和有人性,与安静的生活方式相贴切,由于容积小,比例符合"黄
金率",扩散好;混响时间短〔约1,G-1-3秒i;直达声强,各表面的反射能力强,所以清
晰度高,亲切感强.这时期以巴赫(16851750),亨德尔(1685-1759)作品风格为代表
对音节,明晰的要求也正是很重要,各部分不能有掩蔽.所以音乐厅的音质特性与音乐风格
是相适应的.
2巴洛克时期
18世纪初,管弦乐队的概念和模式己基木形成,阿尔坎杰洛 科雷利(-1713)的
室内奏鸣曲和大协奏曲是巴洛克器乐作品的典范.is世纪中,管弦乐队逐渐成型.到了18
世纪末,交响乐队己经具有包括一个力量平衡的弦乐器组,双管编制的木管乐器组,两支园
号,两支小号和一组铜鼓.
由于社会发展,音乐走向社会,在伦敦,巴黎,莱比锡,柏林,维也纳等地经常举行
公共性的音乐会,为此建造了不少的公共音乐厅.如英国牛津Holywell音乐厅(1748年)
约300座,满场混响时间约1.5秒:德国莱比锡Altes Gewandhaus (1780年)400座;满场
混响时间不会超过1.3秒:维也纳Redoutensaal 800座,该厅建于1631年,建成后又经过不
断地改建,最后完成于1700年,倒堵有浅挑台,高度增到16m,所以是最早的"鞋盒式"
的音乐厅,,K.响时间大约为1.4秒.
这时期的音乐厅的规模己大于17世纪的客厅式的音乐厅.由于容量增多,厅内侧墙和
后墙建有挑台,厅高度大约为15m左右,宽度约为16m左右,空间的比例大约为1:1:2
已是"鞋盒式"的体型.混响时间为1.5-1.7秒.厅内具有丰富的音调,声场扩散,具有明
晰和亲切感,适宜演出贝多芬早期(1820年以前)的作品.
厅内己从古典建筑风格渐渐演变为巴洛克风格;这种风格强调和用手法来制造特殊的
艺术效果,因此大大地吸引了那些讲究排场的王公贵族,那些宫廷客厅的布局是层次高低起
1
伏很大,墙面凹凸明暗,装饰丰富,珠光宝气.但是空间和谐,富丽.巴洛克音乐强调情感
表现,丰富多样,充满着美妙的内涵,但又往往不可避免地带上浮华,傲作和对纯形式的追
求,缺乏深度.所以这时期的音乐厅在声学特点上与巴洛克建筑和音乐的风格是相适应的,
具有很好的声誉.
3.浪漫时期
18世纪中叶以后是历史学家以英国资产阶级革命作为近代史的开端,当时在文学,艺
术,哲学的思潮更新迭起,法国革命的风暴和拿破仑时代过去之后,法国的浪漫主义开始了.
欧洲的音乐经历了巴洛克时期发展到了浪漫"'明,这时期的音乐人才辈出,群星璀璨,是音
乐的黄金时代.音乐成为新兴资产阶级市民`6文化生活所必须,欧洲开始出现了规模比以往
大得多的,主要供音乐演出的公共音乐厅:泛芝音乐厅大部分是模仿音质成功的音乐厅建造
的,因此在造型,空间,内部安排和建筑处理等甚至声学特性都是相似的,这类音乐厅有
Old Boston Sympheny Hall (1863年),2400座,混响时间为1.8秒;维也纳Grosser Musik
Vereinssaal(1870年),1680座,混响时间为2.0秒;巴塞尔Stadt-Casino (1876年),1400座,
a响时间为2.1秒;格拉斯哥Andeew's Music Hall (1877年),2130座,混响时间为1.9秒,
该厅在演奏台后布置了座席,可以吸收大声功率乐器的音量,如打击乐器,铜管乐器等,获
得了好的各声部之间的平衡.这也是后来围绕式音乐厅的雏形;莱比锡Nut c Gewandhaus
(1886年),1560座,混响时间为1.55秒:阿姆斯丹达音乐厅(1888年),22(,0座,混响时
间为2.0秒.其中佼佼者则以维也纳音乐厅,容积(V)约15000m3,总表面积(S)约4000护,
每座容积为9矿,宽(W)为21m,高(H)为17. 5 m,长(L)为40 m,空间比侧为1:1.2:
2. 3 (H:.:L).这座被称之为"金色大厅"的宏伟建筑由泰奥菲尔.汉森设计金碧辉煌的
建筑风格和华丽璀璨的声学效果使其无愧于"金色"的美称.着名指挥卡拉扬赞道:"大厅
的声音很丰满,低音很丰富,高音弦乐的音色也很美……,这是一个能唤起人C高度想象力
的大厅,它给指挥以美感".到现在仍为音乐厅建筑的典范.
这时期所建音乐厅的容积较大,为10000^-20000 m ,容量为2000座左右,空间较大,
每座容积为7.10护,其比例约为1:1-1.3:2.3-2.6扭:w:L)比例修长,纤巧,但仔
细分析一下其空间会发现:以指挥处为割点,听音区与演奏区的长度比例约为1.618二la
这类音乐厅的宽度约为20.左右,厅高为15-19.,长度在40.左右,因有侧向浅挑台,
所以高与宽的比例接近为1二1.容积(V)与总面积(S)之比约在3.7左;5,"鞋盒式"的空
间;沿侧墙有浅挑台和后墙有挑台,演奏区和听音区共处在同一空间中:厅内装修典雅华丽,
具有大量的雕塑以及大型水晶灯,声场扩散,混响时间为1.8-2.2秒,直达声与混响声的
声能比例较小,形成音调丰富而清晰度较低的音质特点,成为演赛浪没派音乐作品的典型环
境.这些音乐厅大都是古典复兴和巴洛克或罗可可风格的折中,但都具有端庄蔽华的艺术形
象,不同凡呐的声学效果.到现在还是音乐厅建筑的声学和建筑空间的典范;所以它们在室
内声学的发展史上具有相当大的贡献,同时也是建筑艺术中的珍品和瑰宝.
4.新建筑时期
19世纪末到20世纪初,人和物质世界之间的关系显示出对科技规律的遵从,主张理性
至上:"功能决定形式"的设计思想得到了广泛地接受,并认为设计建筑应有科学根据,该
时期的科学发展在观演建筑的功能,视线,照明,声学,舞台机械甚至空调技术等方面的成
就都适时地提供设计的根据.另外,荃于社会的发展,人们对音乐的需求,迫切要求建造大
47
ilwewe日月..,.,11
容量的音乐厅.以上种种促进了建筑师对设计音乐厅的变革和创新的思潮.但是,无论从建
筑艺术的表现形式,与功能结合的合理性上,还是对科学技术的运用上等都存在着很大的矛
盾和不成熟,这充分表明了该历史时期的时代特点.
这时期建造了不少的音乐厅,着名的有:
芝加哥Orchestra Hall(1891一1905),2582座,混响时间为1.3秒.为了解决视线问
题,取消了厅内的侧向浅挑台;为了增加容星,建造了两层大挑台:池座有不高的升起:厅
内处理手法明显地具有古典歌剧院的影响,但是演奏区和听音区仍处在同一空间中.演奏区
的顶棚和听音区的项棚都连在一起做成向上倾斜,有利于一次声反射.厅内音质千涩,但清
晰.纽约Casnegie HaI1(1891年).2760座,馄响时(a]为1.7秒.正厅平面近乎正方形(30m
X 34m) ,第二和第三层为围向演奏台口呈马蹄形的包佣,如同古典歌剧院:第四和第五层为
大桃台.厅高为24m.演奏区明显地形成镜框式台口:管风琴在台内的侧墙处.厅内音质一
般.伦敦Queen's Hall(1893年),2000座,混响时间为1.3秒.在演奏台两侧有凸形墙面,
可以将乐队的声音均匀地反射到听众席.该厅音质不很理想.爱丁堡Usher Hall(1914年),
2760座,混响时间为1. 7秒.听音区为马蹄形平面.具有两层挑台,它们围向演奏台,具
有现代剧场的特点,但又明显地具有古典歌剧院的影响.演奏区为尽端式,两侧墙的斜角小
于100,对声反射有利.乐队后有合唱队的座席.明显地把演奏区和听音区分为两个区域:
形成镜框式台口.由于演奏台上有谐振现象,对低频声有"染色"现象,厅内声扩敞不好,
音质粗糙.并且声场不均匀.
这类音乐厅的容里大约2500^2800座.大厅体型样式不同于传统音乐厅"鞋盒式"的
样式,与古典歌剧院的形式相仿,由于容量多,视线短,所以厅的宽度大;由于多层挑台.
高度为18-20m,所以容积很大,但是容积与总表面积((V/S)之比并不大,所以混响时间并
不长,丰满度较差,同时因宽度大,所以对反射声的理解是初步的,不全面和处理不成熟,
不系统,反射声的时序和方向也不好,因此音质并不好.但是,由哈佛大学着名声学教授赛
宾,根据他通过实验得出的室内混响时间的理论作为指导,进行设计建造的新波士顿音乐厅
(190.年),2631座,混响时间为1.8秒,则获得非凡的成功,并与维也纳音乐厅,阿姆斯
特月音乐厅同被誉为三大着名古典音乐厅.在建筑艺术上,该厅承袭了19世纪末以前古典
音乐厅的模式-—"鞋盒式"的体型,侧墙有两层浅挑台,后墙有两层挑台.演奏区为尽端
式,侧墙和顶棚具有V度,以利反射.厅的高度(H)为18.5m.宽度(W)为23m,长度(L)为39. 5m,
空间比例(H:W:L为1 : 1. 24 : 2. 14,符合"黄金率".赛宾在设计该厅时,坚持了声学科
学的原则,拒绝了业主提出容量为维也纳容量(1680座)两倍的要求,而为2631座,保持了该
厅的"鞋盒式"的空间比例,改进了演奏台上高而斜项拥,以利反射.
5现代主义(二次大战前)
欧战前夕,西方建筑界继承了"新建筑"运动的革新精神,力图挣脱学院派复古主义,
折衷主义的束缚,进行各种.新"建筑的探索,日渐形成了"现代建筑".战后以德国的格
罗披亚斯为首的"包系斯"派主张"技术,经济和功能",也就是要求建筑设计要以新技术
来经济地解决新功能.在理论和实践上最终地摧毁了被"新建筑"运动所动摇.而在学术界
仍是主导地位的学院派的统治.
在此期间声学研究也取得了很大成就,特别是在1925-1927年,努特生通过对不同厅
堂的测量和评价,提出最佳混响时间与厅堂容积之间的关系:语言清晰度与房间的物理参量
—响度,噪声级,混响时间和体型之间的关系;实际上只做了响度,混响时间对语言清晰
度影响的实验,以及形成回声的最小声程差.所以出现了当时认为以最佳音质条件为出发点
所设计和建造的现代音乐厅,如:
巴黎Salle Pleyel (1927年),3000座,混响时间为1. 45秒.为了增加音量和改进
视线,采用了扇形平面和两层大挑台.按照流行于建筑师中的声学概念-—声线分析方法,
即均匀分布第一次反射声,必然采用抛物线的顶棚,可以把演奏台上声9均匀地反射到观众
席,并且使第一次反射声与直达声的声程差不大于22米,不会产生回声:但是观众席的噪
声也经顶棚反射,集中到演奏台,造成干扰并且分析了体型和确定了尺寸—长(L为51
米,宽度21-31米,平均高度为18米:因为建筑师不理解混响时间与容积和材料的关系,
所以容积过大.而声学家则关心根据赛宾的棍响概念来确定大厅的馄响时间,而对声线的分
析与体型的关系不关心,所以不能提出设计大厅的声学根据,因此,当声学家们还在讨论如
何选择混响时间时,建筑师己经根据声线概念确定了大厅的尺寸,构成了空间,因为尺寸是
构成空间的要素,而建筑师的主要任务是空间的设计.两者各行其是,配合不好,产生不少
问题.另外,当时声学界认为听音区应尽量得寂静,演奏台周围应是强反射,使演奏的声音
尽量反射到观众席,实质上这是当时刚兴起的电影院音质设计的做法,虽然这种做法对于电
影院来说也是不全面的.因此该音乐厅的音质对于语言清晰度很好,对于音乐则不好,所以
很少在此演奏交响乐.美国克里夫兰的Severance Hall(1930年),1890座,混响时间1.4
秒.该厅的设计思想如同上述,所以音质效果相同.英国利物浦的New Philhinmonic Hall
(1939年),1955座,混响时间1.5秒.美国的Buffalo的Klimhans Hall (1!41年),2839
座,混响时间为1.32秒.上述各音乐厅代表了自1900-195.年间所建造的音几厅的模式,
音质都不理想.
这时期的音乐厅容量多,一般为2000-3000座,在美国甚至达到4000-^6000座,为
了增加容量和缩短视距以及避免多层包厢视线不良的缺点,大厅后部被大大地扩大成为扇形
平面,同时又增加了大挑台,而其高深比一般都不大于1/2.根据当时在建筑师中流行的声
学设计概念,顶棚的纵剖面被设计成弧形或抛物线形,以取得最小的声程差,所以顶棚的高
度被大大地降低,这样音乐厅的高度与宽度之比由1:1-3:4变成为1:2^+1:3,成为扁形空
间.由于对电影的声学特点尚未正确理解.大盘使用吸声材料,甚至到了滥用的地步,因
此厅内的混响时间都很短(大约在1.5秒以下),清晰度高,音调很不丰满.由子以巴黎Salle
Pleyel为代表的声学设计方法曾被多数教科书和有关建筑杂志所推荐和介绍,在不同程度
上为大多数现代音乐厅或剧场设计中所采用.其影响很深远,直到50年代之后,声学科学
的发展,才逐渐地减少,但还有影响,特别是以声线法来替代声学设计的观念还很牢固,尤
其在我国的建筑界中.
丹麦哥本哈根广播电台音乐厅(1946年),1093座,混响时间为1.5秒,其模式同上述,
但是因为采用薄壳结构,因为壳顶高,所以演奏台的声音不能均匀的反射,大多数是反射到
第一层挑台的坐席,并有聚焦现象,所以在战后(1954-1955年)改建,其措施是在演赛台
上部悬吊水平的有机玻琦的声反射系列共5排,26块大小不等,离台面高为7-8米,保证
了均匀地分布第一次反射声,井在50毫秒之内,同时也给予演赛台内一定的反射声.这是
在现代音乐厅中首先出现了在高空间中悬吊声反射板,对以后的音乐厅棋式的变化形响很
大.
6现代主义(二次大战后)
>0年代,欢洲经济有了发展,所以各国开始新建以及恢复战争中被毁的文化建筑如:
伦教早家节日音乐厅(1951年),3000座,混响时间为1.45秒,该音乐厅的声学设计考虑比
较周到,在体型,反射面和声学材料布置上都经多次讨论和实验.音乐厅的平面是矩形的,
空间属于介鞋盒式"的,吸收了古典音乐厅的经验,由于3000座席,所以在演奏台两侧和
后而布置了座席1400座).形成了环绕式的特点.本厅的体型虽属古典音乐厅的模式,但仍
然只4战前现代r义设计的影响.以均匀分布第一次反射声为目的,对侧向反射的重要性还
没有认识,所以使演奏台和池座前区处在一个扇形平面中,但侧墙斜角较大.在演奏台上悬
吊三片大的弧1(%斜向的肖反射板,增加第一次反射声.侧墙上部有四层包厢,原来是希望增
加扩散,却相反,不仅没有扩散效果,反而产生大量吸声值,特别对于低颇的吸收.所以厅
内太寂静.丰满度不够,但很清晰.所以效果仍然与战前现代音乐厅相同.由于对于交响乐
作品风格与混响时间关系的研究,后期所建造的晋乐厅的混响时间日渐增长,如柏林音乐学
跪音乐厅(1954年),1360座,混响时间为1.95秒.矩形平面,楼座则向外扩张变成为长
六角形.设计中仍受战前现代主义的影响,顶棚是弧形的,使演奏台的声音直接反射到楼座,
厅内声场分布不均匀,扩散不好,因此对交响乐效果不好,室内乐和独奏效果较好.由于声
学研究对室内声能衰减过程中进行了微观的分析,探讨了前次反射声对室内音质的影响,并
且又发现了侧向反射的重要作用,但是混响理论仍然是基本的根据,所以声场的扩散应是音
乐厅音质好坏的基本条件.德国斯图加德的音乐厅(1965年〕,2000座,混响时间为1.9
妙为了获街好的扩散声场,克里迈尔教授提出不对称的原则.大厅的平面很特殊,形似三
角钢琴,演奏台处在厅内非对称的位置上,它的左侧墙是大片混凝土的凸面,保证辐射声能,
使右侧听众具有强的一次反射声.为了使听众尽呈接近声源.所以大盘听众席布置在左侧,
以便使大量听众更接近第一提琴.厅内具有大量的扩散体,保证声能衰减的混响过程具有好
的扩散程度.因此厅内不仅有强的反射声能,又有良好的扩散声能,这是该时期中突出的例
子这是在正确的声学科学指导下,创造了完全新颖的模式.
7王见代主义(近期)
由于"学理论和实践的发展,建筑理论的反思和创新,音乐厅设计的视野更为重视科
学与艺术的结合,柏林爱乐音乐厅(1963年),2218座,混响时间为2秒,这是由"现代建
筑"大师夏隆fir,署名声学家克里迈尔教授合作设计,他们把各方的主张和成就融合在一起,
着重考虑了人的因素,探索音乐厅的空间环境与人的关联,成功的解决了科学与艺术,内容
与形式的矛盾,创造了世界上第一个围绕式的音乐斤,这是世界范围内成功的作品之一:在
音乐厅的建筑史和声学史上都具有重大的意义.它是一个从平面上看来是对称的.但是空间
上是不对称的,实现了克里迈尔的非对称原则.新西兰克赖斯特丘奇音乐厅(1972年), 2650
座,混响时间为2. 3秒.悉尼歌剧院的音乐厅(1973年),2690座,混响时间为2.0秒.
新西兰惠灵顿音乐厅(1976年),2500座,混响时间为2.45秒.美国丹佛音乐厅(1978
年.,2750座,混响时间为2. 0抄.旧金山大卫音乐厅(1980年),混响时间为2.2秒.
日本三得利音乐厅(1986年),2690座,混响时间为2..秒.这些音乐厅都是在柏林爱乐
音乐片之后调动和综合发挥各种技术和艺术的手段,创造出类型各异,视听俱佳的坐席包围
演奏ry的A-乐厅,这种音乐厅的平面无论是鞋盒式的,还是圆形的,椭圆形的,不规则形的
等等,虽然空间形式各异,但是以演奏台为主和正面坐席所围合的空间比例都符合古典音乐
厅的空间比例,也就是遵循着"黄金率".
纵观兰百余年西方音乐厅的发展,它从矩形平面的厅室,发展到19世纪末的"鞋盒式"
的规模宏大的公共音乐厅,其模式的变化,主要是受社会的发展人们对音乐的需求,促使
容量的增多所致.但仍遵循着"黄金率"的比例.自本世纪以来,科技的发展,促便人们思维
方式发生变化,遵从科技的规律,因此,音乐厅的摸式的变化主要是从视线,舒适等要求考
虑,取消了侧向浅挑台,形成了镜框式舞台口的剧场式模式,但这模式在视觉上无论是科学
性,还是艺术性都并不高明,很快就被淘汰.本世纪初,赛宾教授创立混响时间概念,使音
乐厅的设计和建造建立在科学的基础上,但是在二次大战以前,由于认iR不够全面,声学界
着眼于声学理论和技术的研究,而对如何构成音乐厅空间的具体措施并不注意.建筑界则片
面从均匀分布第一次反射声,对混响概念与音乐厅空间尺寸和材料的关系并不理解,两者各
自进行设计,使声学理论和建筑艺术设计脱节,即使在构成空间的要素~一音乐厅的尺寸上
都不能相互配合,提出合乎声学和建筑科学的根据.以致大V角的扇形平面,大挑台,扁形
空间成为这一时期的主要空间模式,混响时间短,音质干涩,不丰满,但很清晰.现代人的
生活方式和思维方式的多元化,引起作为文化形态的建筑风格的多元化,并且因建筑,材料
和技术的发展,更促使建筑向着多元化和多样化发展.为了适应人们对文化娱乐和审美情趣
的多元化和多样化的要求,音乐厅的空间环境也有很大的变化,音质设计也从本世纪初的混
响理论,逐步地在实践中探索到在混响过程中具有不同阶段的特性,而进入到对室内声能衰
减过程进行了微观的研究,理解到早期反射声的时序和方向的特性,以及整个衰减过程中各
种特性对主观感觉的影响.目前更向着综合方向发展,确认混响理论为基础,并向微观方向
开拓,考虑早期反射声组成的合理性和适度的侧向反射,井促使室内的声能随r间的增长,
在室内混响过程的早期阶段就能达到扩散声场的条件,使人们能感受到强的混响感.因此,
声学理论和技术的发展,适应着人的思维的多元化和多样化.促使音乐厅的模式,随着时代
的发展,容量增多,其类型也多姿多采,风格多样;但因声学规律限制其对尺寸有要求,所
以音乐厅的空间必然是应充分利用自然声源的音量,使听众包国潜演奏台,形成围绕式高空
间的模式,而其所围绕的主要空间即演奏区与它正面的听众席所组合的空间,应遵循"黄金
率"的比率.但是其空间特征应是多样的,多元的;混响时间已从古典音乐厅的1.8-2.0
秒,延长到2.0-2.2秒,并有再延长的趋势,而容量则不大于2500座左右.
http://cache..com/c?word=%D2%F4%C0%D6%3B%CC%FC%3B%BD%A8%D6%FE%3B%B5%C4%3B%C9%F9%D1%A7%3B%B7%D6%CE%F6&url=http%3A//202%2E116%2E197%2E5%3A85/%7EHYLW/H043541/H043541%2Dbz/10233%2Epdf&b=0&a=40&user=

‘伍’ 雷利和《一个中国孩子的呼声》详细资料

雷利勋爵(Lord Rayleigh)本名约翰·威廉·斯特拉特(1842—1919),后因继承了他祖父和父亲的爵位,所以他在三十二岁的时候,就根据英国的习惯,称为雷利勋爵第三,科学界一般则简称他为雷利勋爵。
他是十九世纪后期到二十世纪初期英国最出名的一位物理学家,他既在实验物理方面,又在理论物理方面,有过重大的贡献。尽管他的主要贡献是在经典物理学方面,可是他晚年对于近代物理学,如量子论和相对论,都发表过重大意见。因此,我们可以说,雷利勋爵是一位承前启后的大科学家。
他于1842年11月12日生在伦敦附近的埃塞克斯(Essex)。他从1865年在剑桥大学毕业起,到1919年6月30日病故为止,前后五十多年的科学活动,一共写了四百三十多篇科学论文,后来被集成六大卷,至今仍然有参考价值。他还写过一部巨着,两卷本《声学理论》,成了物理学史上一部不朽的名着。雷利虽不是数学家,却善于利用数学解决物理学上的重要问题。同时他对于实验工作十分仔细认真,所以一生取得了丰富的实验研究成果。
他在剑桥大学毕业后,26岁时按照当时的习惯,就到欧洲大陆去旅行,接着又去美国考察。他在1868年,购买一些实验设备带回来,设立了一座私人实验室,成为英国当时很有名的物理实验室。
他在1871年29岁时结婚了。结婚以后到埃及去旅行,同时就开始写他的《声学理论》一书。这部书一直经过六年的写作时间,到1877年才写完初次出版。
1873年31岁时,他继承了父亲的爵位。从这时候开始,就在自己家中的实验室里,进行声学和光学的实验研究,使他成为当时全世界最着名的声学专家。
他还引用光学理论来解释天空为什么是蓝色的。1871年,他提出:散射光的强度与散射的方向有关,并与波长的四次方成反比。这就是光学上着名的“雷利散射公式”。
在组成阳光的七种可见光中,红光波长最长,蓝光波长较短。而蓝光在空气的微小尘粒中的散射能力,却比红光强十倍以上。无云的天空之所以呈现蔚蓝色,就是因为阳光中的蓝光受到强烈的散射而造成的。
他在家庭实验室里,研究光学仪器的光栅,这项工作使他对前人发明的光谱仪大加改进。从1870年起,光谱仪就成了研究日光和很多化学元素光谱的重要仪器了。
在十九世纪七十年代后期,雷利本来想就在家里作一辈子的科学研究工作了。可是剑桥大学杰出物理学教授麦克斯韦尔(J·C·Maxwell)于1879年病故了,三十七岁的雷利被剑桥礼聘为教授。
他在剑桥大学做了一项很重要的工作,使学基础物理学的学生,都必须做实验。从此在欧美的大学里普遍实行起来。后来,由于他不愿意太多的外务,到1884年42岁为止,就不再担任剑桥大学教授了。
他在剑桥大学的时候,利用准确的仪器做了很重要的研究工作,就是对于电学的三个基本单位:欧姆、安培和伏特的精确数值,进行了仔细研究计算。他的研究成果,成为物理学界长期使用的基数。由于他感觉到基本单位准确的重要性,他建议英国政府成立国立物理实验室。这个实验室在1900年成立起来了,至今仍然是国际上的重要标准化机构。
在1884年,英国科学家公推雷利为英国科学促进会会长。就在这一年,这个促进会到加拿大去开年会。这使雷利又有机会和美国以及加拿大的一些物理学家,发生了更密切的友情。
他回到英国以后,仍然在自己家里,从事实验研究工作。尽管他从1887年到1905年还兼任过英国伦敦皇家学院教授,可是他每年只有很少时间在伦敦停留一下,做几次短小精干的讲演。
从1880年后期起,他把大部分时间放在自己的实验室工作上,而且方面很广,包括光学、流体力学、声学、电学以及热力学等等方面,因此,他在科学界地位就很高很高了。
他对于研究所得数字是十分认真负责的,这使他后来和威廉·拉姆塞共同合作,发现了氩气。这本来是化学方面的问题,所以他和化学家合作才彻底解决了这个稀有气体存在于空气中的问题。雷利从空气取得的氮气的密度,同从氨气里得到的氮气不完全相符,虽然数字相差只是在小数点第三位上。
气体密度就是1L气体的质量,以克数计算。气体的体积会随着温度和压力而变化,所以必须规定,气体的密度是在零摄氏度和一个大气压下,每升的质量。
空气中的氮气,经多次测量密度仍然是每升1.2572g。而从氨化合物分解出来的氮气,密度却都是每升1.2508 g。当时有人劝他,先找一找前人的着作。雷利就重新翻读了1795年卡文迪许手稿,卡文迪许曾经用静电仪放电来氧化氮气,发现尽管放电时间很长很长,总是留下一点点不能化合的气体。读了这个报告以后,雷利就相信空气里除了氧气和氮气以外,一定还有另外的一种气体。
雷利用三种不同的方法制取的氧,密度完全相等,但氮气的研究结果则使人不解。他由氨制得的氮总比从大气中除去氧、二氧化碳、水汽后所得的氮轻千分之五左右。于是他将这事实刊登在英国1892年9月29日的《自然》(Nature)周刊上,请读者解释,可是他没有收到任何答复。
雷利勋爵本人起初想到了四种可能的解释:(1)由大气中所制得的氮,或者还含有微量的氧;(2)由氨所制得的氮,可能稍微混杂了氢;(3)由大气中所得的氮,或许含有类似臭氧的N3分子;(4)由氨中所得的氮,可能有若干分子已经分解,因而把气体的密度降低了。
第一个假设是最不可能的,因为氧和氮的密度相差极微,必须杂有极大量的氧,才可以用来解释千分之五的差异。雷利又用实验证明了由氨所制得的氮,其中绝不含氢,第三个解释也是不足置信,因为他采用无声放电,使之通过这种气体,也未发现氮的密度有所增高。
雷利最初就使用感应线圈使氮气氧化,但是这个工作进行得相当缓慢。于是威廉·拉姆塞向雷利建议不再用放电的办法,改用化学方法。因为拉姆塞的方法得到成功,他们两个人在1895年就共同写成一篇论文,在英国科学促进大会上宣读。因为他们对这种新气体当时并没有命名,大会主席建议名为Argon,来自希腊文“懒惰”之意,中文音译成氩。
由于雷利知识十分渊博并且和其他科学家接触很多,所以他在19世纪后期,已经开始感觉到物理学上有好多实验,很难用经典理论去解释,例如光谱就是其中的一个例子。尽管他对于经典物理学感觉有问题,他却还没有放弃希望,总是使用经典物理学去试图解释新的现象。
他对量子理论并不太热心,他觉得这个理论提出得太突然了。由于他们共同发现了雷利——金斯定律(Raylejgh——Jears law),这个发现在普朗克(Planck)有名的理论发表前几个月,所以他对量子学更不大重视。
他也曾经想利用经典学说来解释原子光谱。例如:氢原子的发射光谱,他最后不得不承认,他的尝试是失败的。波尔提出解释氢原子光谱的理论时,他又觉得这种学说太激进。
雷利对于相对论虽是相当信服的,但同时还提倡以太学说。尽管这种学说在1881年经过迈克尔孙(Michelson)的实验证明,以太是不存在的。雷利对迈克尔孙的实验也表示怀疑,他认为以太如果不存在,那就不好解释许多现象了。由此可见,他对于经典光学理论一直是忠心的。他自己在1901年想用实验来证明以太的存在,可是也失败了。从此,他对相对论的正确性就十分佩服了。
雷利在晚年始终没有放弃物理学的实验工作。他在最后十五年中,还一共发表了九十篇论文之多。其中有一篇关于声波理论的论文,大大改进了前人的工作。
他的《声学理论》一书,经过多次的修订,达到了二十世纪的高水平。
他除了对于理论科学研究有浓厚的兴趣以外,还对于科学团体和政府提出的科学问题,都做了大量的工作。他一辈子在实验室里和图书馆里为科学而献身。
雷利在1873年被选进皇家学会,并且从1885年到1896年,他担任了皇家学会秘书。他在学会里很重视提拔青年科学家,例如:苏格兰有一位青年学者对于气体的分子理论,发表了很重要的见解,可是被很多人忽视了。雷利重新审查了被埋没的论文,很重视这位苏格兰科学家,特别把别人所轻视的论文送交皇家学会的刊物上发表。
在1905年,雷利当选为英国皇家学会主席,他认真地负责一直担任到1908年,他对学会做了好些被人不重视的工作。
在1896年,他担任了三育学会(Trinity House)的科学顾问,雷利在这里兼任了十五年的义务工作。在这里,他用光学理论,解决了被浓雾挡住光线的问题。雷利在其他公共事业方面,也有很多的贡献。例如,他担任过国防部一个重要小组的组长,又担任过伦敦煤气公司改进工作的顾问。
尽管他担任大学教授的时间不太长,却曾经担任国家的好几个教育机构的董事。从1908年到1919年逝世为止,他是剑桥大学的名誉校长。
他在1904年接受诺贝尔物理奖金时,把奖金全部捐给剑桥大学。他一生得过好多名誉学位,共计有十三次之多;在全世界的学会之中,他取得了五十多个名誉会员的称谓。
雷利和当时欧洲其他物理学家不大相同,并不热心于提新理论。他只是把所遇到的科学问题,用物理实验方法去设法解决。从他一生的行动,可以看出来,他一方面是一位造诣很高的物理学家,同时也是很和顺可亲的一位学者。
一个中国孩子的呼声
联合国秘书长加利先生:
您好!
我们虽然没有见过面,我和妈妈却接到过您的问候。两年以前,我亲爱的爸爸做为罗汉果的一名军事考察员,在执行维护和平的行动中壮烈牺牲,您给予了他高度的评价赞扬他是“一名卓越的军事观察员,在执行联合国维和的行动中体现了人道与工整的素质。”对此,我和妈妈向您表示深深的谢意。
两年多来,我们全家沉浸在失去亲人的巨大悲痛中,我至尽都忘不了,爸爸临上飞机前对我那申请的目光,他说:“孩子,等爸爸回来,我一定送你一顶‘蓝盔’。”我们与爸爸相约,等爸爸凯旋的那一天,我们要带着最美的鲜花迎接他。
现在这顶蓝盔回来了,但它是钉在爸爸的灵柩上回来的。我们如约捧着鲜花,接到的却是爸爸那覆盖着国旗的遗体。鲜血染红了他的征衣,腕上的手表浸满了凝固的血。爸爸的嘴张着仿佛在呼唤着什么。啊!我听到了,妈妈听见了,在场的叔叔阿姨听见了,全世界都听见了,他呼唤的是“和平!和平!和平!”
我的爸爸精通四国语言,是一名出色的经济学硕士,本来他应该为人类做出更大的贡献,却被战争夺去了宝贵的生命。他的死是光荣的他是为和平而倒下的,他倒在了维护世界和平的圣坛上。今天我要向爸爸献上一束最美的鲜花,为他是保卫和平的光荣战士。
五十一年前,全世界人民用鲜血和生命赢得了反法西斯的胜利,但五十一年后的今天,和平之神还没有永驻人间。
今天,我们中国孩子虽然生活在和平环境中但是世界并不太平,不少地区还弥漫着战争的硝烟,罪恶的子弹还威胁着娇嫩的“和平之花”。我们一定要向爸爸那样热爱和平,勇敢的用自己的生命保卫和平。
敬爱的联合国秘书长加利先生,在此我代表我的家庭,我代表所有的中国孩子同过您向整个国际社会呼吁:“救救孩子们,要和平不要战争!”为了母亲不再失去丈夫,为了妻子不再失去丈夫,为孩子不再失去父亲,全世界一致行动起来,维护和平,制止战争!让二十一实际那已经能够听到脚步声为战争敲响丧钟,让明天的世界真正成为充满阳光、鲜花和爱的人类家园!
敬礼!

‘陆’ 初中阶 段 物理题中 怎么判断超声波 次声波 电磁波

(1) 声波
人们把能引起听觉的机械波称为声波(音频)。频率在20~20000Hz之间。
(2) 次声波
频率低于20Hz的机械波称为次声波。
(3) 超声波
频率高于20000Hz的机械波称为超声波。

下面有详细资料,有时间可以看一看。
=======================
声波的类型
(1) 纵波
媒质中质点沿传播方向运动的波。
(2) 横波
媒质中的质点都垂直于传播方向而运动的波。
(3) 表面波
沿媒质表面层传播,幅值随深度迅速减弱的波。
频率、超声波、次声波

其他关于声波的参考资料:
声学是一门古老的学科,大约从17世纪初分析物体的振动开始,直到19世纪末,还只能用人耳接收声波。1877年出版了瑞利的《声学理论》,该书对经典声学的内容进行了总结。20世纪初,贝尔发明了用于电话机的碳粒传声器,人们首次把声波转换为电信号,从而使声学研究进入了一个新的阶段。电子学的发展,大大地促进了声学研究,从此,人们能够精确测量、观察和研究各种频率、波形和强度的声波,从而奠定了近代声学的基础。声学与人们日常生活密切相关。例如,改进厅堂的音质和放声系统的高保真度;测量并控制噪声水平,以改善人们的生活环境等。由于数字技术和大规模集成电路的发展,微处理机进入了声学研究与应用领域,使声学研究手段和方法的准确性和速度都得到提高。随之而出现一批新的声学测量技术和相应的仪器设备。例如,实时频率分析、声强测量、声源鉴别、快速傅里叶变换、相关分析等。
随着科学技术的发展,近代声学同时也得到了迅速发展,在工业、农业、国防、交通、卫生、教育、科学研究、文化生活以及社会等各个方面获得了广泛的应用,形成了许多新兴的边缘学科。
声学是研究各种媒质中声波的产生、传播、接收和作用等问题的一门学科。传播声波的媒质有三种不同状态,一般称为气体、液体和固体,因此形成相应的分支学科,分别称为空气声学、水声学和超声学,其中空气声学涉及人们的听觉,因此,与人们的文化生活和社会活动关系非常密切。由于声学在不同的媒质及其不同状态下传播时,有着不同的传播特性,利用这些特性可以研究和测量各种媒质的物理性质和状态。例如,弹性模量、硬度、粘度、温度、厚度、料位等。特别是频率较高的超声波与物质内部某些微观结构有相互作用,如超声波与金属、半导体、超导体中的电子等相互作用,故可用于物质结构的研究。
由于超声波在固体和液体中传播时衰减小,因此传播距离相应要远些,一般称为穿透性强;同时超声波频率高,波长短,因此固体中辐射的声场具有方向性强,并且传播过程中遇到障碍物时能够反射等特点,可以用于探测金属和非金属材料内部的缺陷位置、大小和性质。这就是应用相当广泛的无损检测技术之一——超声检测。同样原理推广应用于人体上,可以从体外来检查体内的某些疾病、器官动态或生理变化。
下面简单介绍声学中一般概念和传播特性。
1.次声波、声波和超声波
次声波、声波和超声波都是在弹性媒质中传播的机械波。它们的区别主要在于频率不同。
(1) 声波
人们把能引起听觉的机械波称为声波(音频)。频率在20~20000Hz之间。
(2) 次声波
频率低于20Hz的机械波称为次声波。
(3) 超声波
频率高于20000Hz的机械波称为超声波。
2.声波的类型
(1) 纵波
媒质中质点沿传播方向运动的波。
(2) 横波
媒质中的质点都垂直于传播方向而运动的波。
(3) 表面波
沿媒质表面层传播,幅值随深度迅速减弱的波。
3.平面波、柱面波、球面波
(1) 平面波
波阵面为平面且与传播方向垂直的波。
(2) 柱面波
波阵面为同轴柱面的波。
(3) 球面波
波阵面为同心球面的波。
定义
从科学的角度来说,电磁波是能量的一种,凡是高于绝对零度的物体,都会释出电磁波。 正像人们一直生活在空气中而眼睛却看不见空气一样,除光波外,人们也看不见无处不在的电磁波。电磁波就是这样一位人类素未谋面的“朋友”。
产生
电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变化的电场会产生磁场(即电流会产生磁场),变化的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。
性质
电磁波频率低时,主要借由有形的导电体才能传递。原因是在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有能量辐射出去;电磁波频率高时即可以在自由空间内传递,也可以束缚在有形的导电体内传递。在自由空间内传递的原因是在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和煦阳光的光与热,这就好比是“电磁辐射借由辐射现象传递能量”的原理一样。
电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。
其速度等于光速c(每秒3×10八次方)。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同,其量值最大两点之间的距离,就是电磁波的波长λ,电磁每秒钟变动的次数便是频率f。三者之间的关系可通过公式c=λf。
电磁波的传播不需要介质,同频率的电磁波,在不同介质中的速度不同。不同频率的电磁波,在同一种介质中传播时,频率越大折射率越大,速度越小。且电磁波只有在同种均匀介质中才能沿直线传播,若同一种介质是不均匀的,电磁波在其中的折射率是不一样的,在这样的介质中是沿曲线传播的。通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以及天波。波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。 机械波与电磁波都能发生折射、反射、衍射、干涉,因为所有的波都具有波粒两象性.折射、反射属于粒子性; 衍射、干涉为波动性。
能量
电磁波的能量大小由坡印廷矢量决定,即S=E×H,其中s为坡印庭矢量,E为电场强度,H为磁 场强度。E、H、S彼此垂直构成右手螺旋关系;即由S代表单位时间流过与之垂直的单位面积的电磁能,单位是W/m²。
电磁波具有能量,电磁波是一种物质。
编辑本段
电磁波的计算

c=λf
c:光速(这是一个常量,约等于3×10^8m/s) 单位:m/s
f:频率(单位:Hz,1MHz=1000kHz=1×10^6Hz)
λ:波长(单位:m)
编辑本段
电磁波的发现

1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。 1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,1898年, 马可尼又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。
编辑本段
电磁波谱

按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。以无线电的波长最长,宇宙射线的波长最短。
无线电波 3000米~0.3毫米。(微波 0.1~100厘米)
红外线 0.3毫米~0.75微米。(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米)
可见光 0.7微米~0.4微米。
紫外线 0.4微米~10毫微米
X射线 10毫微米~0.1毫微米
γ射线 0.1毫微米~0.001毫微米
高能射线 小于0.001毫微米
传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。
编辑本段
电磁辐射

广义的电磁辐射通常是指电磁波频谱而言。狭义的电磁辐射是指电器设备所产生的辐射波,通常是指红外线以下部分。
电磁辐射是传递能量的一种方式,辐射种类可分为三种:
游离辐射
有热效应的非游离辐射
无热效应的非游离辐射
基地台电磁波 绝非游离辐射波
编辑本段
电磁辐射对人体的伤害

电磁辐射危害人体的机理主要是热效应、非热效应和积累效应等。
热效应:人体内70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到身体其他器官的正常工作。
非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁波的干扰,处于平衡状态的微弱电磁场即遭到破坏,人体正常循环机能会遭受破坏。
累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态或危及生命。对于长期接触电磁波辐射的群体,即使功率很小,频率很低,也会诱发想不到的病变,应引起警惕!
各国科学家经过长期研究证明:长期接受电磁辐射会造成人体免疫力下降、新陈代谢紊乱、记忆力减退、提前衰老、心率失常、视力下降、听力下降、血压异常、皮肤产生斑痘、粗糙,甚至导致各类癌症等;男女生殖能力下降、妇女易患月经紊乱、流产、畸胎等症。但是暂时未经实验证明,也无大规模的数据统计证实存在必然联系
具有防电磁波辐射危害的食物有:绿茶、海带、海藻、裙菜、Va、Vc、Vb1、卵磷脂、猪血、牛奶、甲鱼、蟹等动物性优质蛋白等。
编辑本段
电磁波的降低

降低电磁波的不良影响,就必须养成自我防范的习惯。一般电器行都有贩售“电磁波测试笔”,可以轻易测出电磁波的强度,只要超过标准就会发出警讯,使用者就应远离被测物直至警讯消失为止。
要测知电气产品是否有辐射或电磁波,也可以采取比较简便的方式,就是利用家用、小型可接收AM(调幅)频道的收音机,打开后将频道调在没有广播的地方,并且靠近所要测量的 电视、冰箱、微波炉或电脑等家电用品,就会发现收音机所传出的> 噪音突然变大,走出一段距离后,才会恢复原来较小的噪音量;如此即可测出“安全”距离来。
不同的电器也有不同的防范办法,像电脑用过最好只关萤幕不关机,电脑萤幕改换成液晶萤幕;接听手机时,手机最好不要放在腰间或裤子口袋中,而应该用手持或放置于距离人体五十公分处;购买住宅则在远离变电设备及基地台设置地点。
1993 年瑞典北欧三国研究调查公布,受到2mG 以上电磁辐射影响,罹患白血病的机会是正常人的 2.1 倍,罹患脑肿疡的机会是正常人的1.5 倍,以上资料摘自日本1996.3 出版SAPIO 杂志。
(4-1), 专家建议:

防止电磁波的10 大对策 原 因 说 明
1.尽量远离电化制品 距离愈远,受电磁波的影响愈小。
2.无法远离时要尽量缩短使用时间 再强的电磁波,时间愈短,影响愈小。
3.选用电磁波小的制品 电灯泡比日光灯小,无线电话比行动电话小
4.与其选用大型,尽量选用小型 同种的家电制品,大型的不但耗电量高,电磁波也强。
5.年轻人要特别注意 细胞分裂正值旺盛的年轻人容易受影响,孕妇特别要注意。
6.要晓得测定出的安全距离 厂家的电磁波数字不准,要明确的测出才好。
7.注意后方及两侧 电视机与个人电脑的后方及两侧所释出的电磁波极强。
8.插头不用的时候要拔掉 插头插着的时候,大多数的电磁波即会释出。
9.睡觉时要特别注意 睡觉时间通常很长,即使微量的曝露其影响也会很大
10.改变非依赖电不可的心态 电化制品环绕着的生活,曝露于电磁波的机会乃大增。
编辑本段
电磁波的特性

与声波和水波相似,电磁波具有波的性质。可以发生折射等现象。它的速度,波长,频率之间满足关系式:
传播速度=波长×频率。
电磁波在空气中的传播速度为光速,波长λ=300/频率F(GHz)mm。从同步卫星到地球的传播时间大约1/8秒。
编辑本段
电磁波的应用

电磁波为横波,可用于探测、定位、通信等等。
电磁波谱(波长从长到短)是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线.
应用:
◆无线电波用于通信等
◆微波用于微波炉
◆红外线用于遥控、热成像仪、红外制导导弹等
◆可见光是所有生物用来观察事物的基础
◆紫外线用于医用消毒,验证假钞,测量距离,工程上的探伤等
◆X射线用于CT照相
◆伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等.
◆无线电波。无线电广播与电视都是利用电磁波来进行的。在无线电广播中,人们先将声音信号转变为电信号,然后将这些信号由高频振荡的电磁波带着向周围空间传播。而在另一地点,人们利用接收机接收到这些电磁波后,又将其中的电信号还原成声音信号,这就是无线广播的大致过程。而在电视中,除了要像无线广播中那样处理声音信号外,还要将图像的光信号转变为电信号,然后也将这两种信号一起由高频振荡的电磁波带着向周围空间传播,而电视接收机接收到这些电磁波后又将其中的电信号还原成声音信号和光信号,从而显示出电视的画面和喇叭里的声音。
电磁波的电场(或磁场)随时间变化,具有周期性。在一个振荡周期中传播的距离叫波长。振荡周期的倒数,即每秒钟振动(变化)的次数称频率。
很显然,波长与频率的乘积就是每秒钟传播的距离,即波速。令波长为λ,频率为f,速度为V,得: λ=V/f波长入的单位是米(m),速度的单位是米/秒(m/sec),频率的单位为赫兹(Hertz,Hz)。 整个电磁频谱,包含从电波到宇宙射线的各种波、光、和射线的集合。不同频率段落分别命名为无线电波(3KHz—3000GHz)、红外线、可见光、紫外线、X射线、γ射线(伽马射线)和宇宙射线。 在19世纪末,意大利人马可尼和俄国人波波夫同在1895年进行了无线电通信试验。在此后的100年间,从3KHz直到3000GHz频谱被认识、开发和 逐步利用。根据不同的持播特性,不同的使用业务,对整个无线电频谱进行划分,共分9段:甚低频(VLF)、低频(LF)、中频(MF),高频(HF)、甚 高频(VHF)\特高频(uHF)\超高频(sHF)\极高频(EHF)和至高频,对应的波段从甚(超)长波、长波、中波、短波、米波、分米波、厘米波、 毫米波和丝米波(后4种统称为微波)。见下表。无线电频谱和波段划分
段号 频段名称 频段范围(含上限不含下限) 波段名称 波长范围(含上限不含下限)
1 甚低频(VLF) 3~30千赫(KHz) 甚长波 100~10km
2 低频(LF) 30~300千赫(KHz) 长波 10~1km
3 中频(MF) 300~3000千赫(KHz) 中波 1000~100m
4 高频(HF) 3~30兆赫(MHz) 短波 100~10m
5 甚高频(VHF) 30~300兆赫(MHz) 米波 10~1m
6 特高频(UHF) 300~3000兆赫(MHz) 分米波 微波 100~10cm
7 超高频(SHF) 3~30吉赫(GHz) 厘米波 10~1cm
8 极高频(EHF) 30~300吉赫(GHz) 毫米波 10~1mm
9 至高频 300~3000吉赫(GHz) 丝米波 1~0.1mm
编辑本段
电磁波治疗应用

“特定电磁波谱”(TDP)是由特定的加热器对治疗板产生的波长范围在2-25μm,强度范围(28-35mw/cm²)内分布的特定电磁波,当人体匹配接收后与体内细胞所含相同物质产生谐振,因而可增强微循环作用,促进新陈代谢,产生对人体病变的修复,使病患者能迅速康复,非病患者能提高自身的抵抗能力。
例如国仁TDP,在经大量临床试验的基础上,确认特定电磁波谱的照射可应用于治疗颈椎病,腰椎间盘突出、腰痛,腰饥劳损,风湿关节炎,坐骨神经痛,面神经麻痹,术后伤口愈合,外伤感染,冻疮,胃炎、横隔膜痉挛、神经性皮炎、湿疹,偏头痛、头痛、痛经,痔疮等。被广泛应用到外科、内科、妇科、儿科、神经科及其它疾病。同时经过国家计量科学院等权威机构的精确测定,证实对人体无任何副作用。
编辑本段
电磁波的传导

电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。
其速度等于光速c(每秒3×10^8米)。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同,其量值最大两点之间的距离,就是电磁波的波长λ,电磁每秒钟变动的次数便是频率f。三者之间的关系可通过公式c=λf。
通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以及天波。波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。电磁波的应用。
电磁波为横波,可用于探测、定位、通信等等。
编辑本段
电磁波谱

电磁波谱是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线.首先,无线电波用于通信等,微波用于微波炉,红外线用于遥控,热成像仪,红外制导导弹等,可见光是所有生物用来观察事物的基础,紫外线用于医用消毒,验证假钞,测量距离,工程上的探伤等,X射线用于CT照相,伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等.
编辑本段
电磁波用途

无线电广播与电视都是利用电磁波来进行的。在无线电广播中,人们先将声音信号转变为电信号,然后将这些信号由高频振荡的电磁波带着向周围空间传播。而在另一地点,人们利用接收机接收到这些电磁波后,又将其中的电信号还原成声音信号,这就是无线广播的大致过程而在电视中,除了要像无线广播中那样处理声音信号外,还要将图象的光信号转变为电信号,然后也将这两种信号一起由高频振荡的电磁波带着向周围空间传播,而电视接收机接收到这些电磁波后又将其中的电信号还原成声音信号和光信号,从而显示出电视的画面和喇叭里的声音。
无线电广播利用的电磁波的频率很高,范围也非常大,而电视所利用的电磁波的频率则更高,范围也更大。
编辑本段
电磁波穿透力

因为电磁波具有波粒二象性,波长与光子能量成反比关系,当波长越短光子能量越大,则穿透力越强。
编辑本段
电磁波对人体的副作用及防护

一、 电磁污染对人体的副作用
(1)电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因之一;
(2)电磁辐射会对人体生殖系统、神经系统和免疫系统造成直接伤害;
(3)电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素之一;
(4)过量的电磁辐射直接影响儿童身体组织、骨骼发育,导致视力、肝脏造血功能下降,严重者可导致视网膜脱落;
(5)电磁辐射可使男性性功能下降、女性内分泌紊乱。
二、电磁波的防护
1、电磁环境标准及相关规定。为控制现代生活中电磁波对环境的污染,保护人们身体健康,1989年12月22日我国卫生部颁布了《环境电磁波卫生标准》( GB9175-88),规定居住区环境电磁波强度限制值:长、中、短波应小于lOV/m,超短波应小于5V/m,微波应小于10μW/cm2。我国有关部门还制订了《电视塔辐射卫生防护距离标准》,国家环保局也颁布了《电磁辐射环境保护管理办法》。
针对移动通信发展状况,北京市环保局于2000年2月17日颁布了全国首例对电磁污染进行规范管理的《北京市移动通讯建设项目环境保护管理规定》(试行),以规范移动通信台(站)的建设和运行,防止其对环境造成电磁污染。该规定中明确了能够产生电磁辐射的移动通信台(站)在建设前均要履行环保审批手续,并要办理环保验收审批,经环保部门的监测,当地功率密度符合国家《电磁辐射防护规定》中的频率在20 MHz~3000 MHz范围内、照射导出限值的功率密度在40μW/cm2这一标准,才可正式投人使用,大于这一标准的必须停用或整改;建设蜂窝移动通讯基站前要预测用户密度分布,采用最佳频率复用方式,尽量减少基站个数;在居民楼上建设移动通信台(站),事前建筑物产权单位或物业管理单位必须征得所住居民意见;无线寻呼通信、集群通信天线最低允许高度不得低于40m,而蜂窝移动通信基站室外天线一般不得低于25m,发射天线主射方向50m范围内、非主射方向30m范围内,一般不得建高于天线的医院、幼儿园、学校、住宅等建筑;建设单位应在上述各类天线安装地点设置电磁辐射警示牌。
2、 电磁波防护措施。根据电磁波随距离衰减的特性,为减少电磁波对居民的危害,应使发射电磁功率较大、可能产生强电磁波的工作场所和设施,如电视台、广播电台、雷达通信台站、微波传送站等,尽量设在远离居住区的远郊区县或地势高的地区。必须设置在城市内、邻近居住区域和居民经常活动场所范围内的设施,如变电站等,应与居住区间保持一定安全防护距离,保证其边界符合环境电磁波卫生标准的要求。同时,对电磁波辐射源需选用能屏蔽、反射或吸收电磁波的铜、铝、钢等金属丝或高分子膜等材料制成的物品进行电磁屏蔽,将电磁辐射能量限制在规定的空间之内。
3、高压特别是超高压输电线路应远离住宅、学校、运动场等人群密集区。使用电脑时,应选用低辐射显示器,并保持人体与显示屏正面不少于75cm的距离,侧面和背面不少于90cm,最好加装屏蔽装置。
4、应严格控制移动通信基站的密度,确保设置在市区内的各种移动通信发射基站天线高于周围建筑,在幼儿园、学校校舍、医院等建筑周围一定范围内不得建立发射天线。
5、为减轻家庭居室内电磁污染及其有害作用,应经常对居室通风换气,保持室内空气畅通。科学使用家用电器:例如,观看电视或家庭影院、收听组合音响时,应保持较远距离,并避免各种电器同时开启;使用电脑或电子游戏机持续时间不宜过长等。
6、使用手机电话时,尽量减少通话时间;手机天线顶端要尽可能偏离头部,尽量把天线拉长;在手机电话上加装耳机等。
7、另外,可每天服用一定量的维生素C或者多吃些富含维生素C的新鲜蔬菜,如辣椒、柿子椒、香椿、菜花、菠菜等;多食用新鲜水果如柑橘、枣等。饮食中也注意多吃一些富含维生素A、C和蛋白质的食物,如西红柿、瘦肉、动物肝脏、豆芽等;经常喝绿茶。这些饮食措施,可在一定程度上起到积极预防和减轻电磁辐射对人体造成伤害的作用。
8、电磁波辐射是近三四十年才被人们认识的一种新的环境污染,现在人们对电磁辐射仍处于认识和研究阶段。由于它看不见、摸不着、不易察觉,所以容易引起人们的疑虑。另外,有些关于电磁辐射的报道不太客观、缺乏科学性,导致了不必要的误解和恐慌。一般地说,判定电磁辐射是否对居住环境造成污染,应从电磁波辐射强度、主辐射方向、与辐射源的距离、持续时间等几方面综合考虑。所以,在加强电磁防护同时,对电磁波污染问题也应采取科学的态度,客观分析、严肃对待,切不可人云亦云,不负责的盲目夸大,造成人们认识的混乱。当然,随着科学技术水平的发展,人们对电磁波污染及其危害的认识会逐渐深人,许多谜底终将被揭开。

‘柒’ 声学发展史(梗概)

声音是人类最早研究的物理现象之一。世界上最早的声学研究工作主要在音乐方面。《吕氏春秋》记载,黄帝令伶伦取竹作律,增损长短成十二律;伏羲作琴,三分损益成十三音。三分损益法就是把管(笛、箫)加长三分之一或减短三分之一,这样听起来都很和谐,这是最早的声学定律。传说在古希腊时代,毕达哥拉斯也提出了相似的自然律,只不过是用弦作基础。
古代对声本质的认识与今天的声学理论很接近。在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉。对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎同时代所有杰出的物理学家和数学家都对研究物体的振动和声的产生原理作过贡献。
声的传播问题很早就受到了注意,早在2000年前,中国和西方就都有人把声的传播与水面波纹相类比。1635年就有人用远地枪声测声速,以后方法又不断改进。1738年,巴黎科学院的科学家利用炮声进行测量,得到0℃时空气声速为332m/s。1827年瑞士物理学家丹尼尔和法国数学家斯特姆在日内瓦湖进行实验,得到声在水中的传播速度是1435m/s,这在当时“声学仪器”只有停表和人耳的情况下,是非常了不起的成绩。
人耳能听到的最低声强约为10-12W/m2,在1000Hz时相应的空气质点振动位移约是10-11m,可见人耳对声的接收本领确实惊人。19世纪中就有不少人耳解剖的工作和对人耳功能的探讨,1843年发现着名的电路定律的欧姆提出,人耳可把复杂的声音分解成谐波分量,并按分音大小判断音色的理论。在欧姆声学理论的启发下,人们开展了听觉的声学研究(以后称为生理声学和心理声学),并取得了重要的成果,其中最有名的是亥姆霍兹的《音的感知》。至今完整的听觉理论还未能形成,目前人们对声刺激通过听觉器官、神经系统到达大脑皮层的过程有所了解,但这过程以后大脑皮层如何进行分析、处理、判断还有待进一步研究。在语言和听觉范围内,理论的研究已导致了很多医疗设备的产生,如装在耳道内的助听器、人工喉、语言合成器、人工耳蜗等。
在封闭空间(如房间、教室、礼堂、剧院等)里面听语言、音乐,效果有的很好,有的很不好,这引起今天所谓建筑声学或室内音质的研究。但直到1900年赛宾得到他的混响公式,才使建筑声学成为真正的科学。
1877年,瑞利出版了两卷《声学原理》,书中集19世纪及以前两三百年的大量声学研究成果之大成,开创了现代声学的先河。至今,特别是在理论分析工作中,还常引用这两卷巨着。他开始讨论的电话理论,目前已发展为电声学。
20世纪,由于电子学的发展,使用电声换能器和电子仪器设备,可以产生接收和利用任何频率、任何波形、几乎任何强度的声波,已使声学研究的范围远非昔日可比。现代声学中最初发展的分支就是建筑声学和电声学以及相应的电声测量。以后,随着频率范围的扩展,又发展了超声学和次声学;由于手段的改善,进一步研究听觉,发展了生理声学和心理声学;由于对语言和通信广播的研究,发展了语言声学。
在第二次世界大战中,开始把超声广泛地用到水下探测,促使水声学得到很大的发展。20世纪初以来,特别是20世纪50年代以来,全世界由于工业、交通等事业的巨大发展,出现了噪声环境污染问题,而促进了噪声、噪声控制、机械振动和冲击研究的发展。高速大功率机械应用日益广泛,非线性声学受到普遍重视。此外还有音乐声学、生物声学。多个分支学科的发展逐渐形成了完整的现代声学体系。

‘捌’ 推荐几本声学方面的书谢谢

《理论声学》 张海澜

本书系统地介绍了声学的基本理论和研究方法,着重介绍了近几十年来的新发展。全书大致分为两部分。第一部分是与声学有关的振动理论;第二部分是声学理论,包括声传播、辐射、散射、声波导和房间声学等基本内容,还包括低频和高频近似、固体中的声波、换能器、非线性声学和数值计算等方面的内容。

本书可作为研究生的理论声学课的教材,也可供相关专业人员参考。

《声学基础》 杜功焕,朱哲民,龚秀芬

声学是一门既古老又迅速发展着的学科,近年来已渗透到几乎所有重要的自然科学和工程技术领域,并已融入于当代科学技术的前沿之中,本书系统地介绍了声学的基础理论,其中包括声的辐射、传播、接收与散射,并适当地介绍了近期活跃的非线性声学基础理论。

本书可作为高等院校的教材,也可供专业研究和工程技术人员参考。

‘玖’ 雷利的资料

沃尔特·雷利 沃尔特·雷利(约1552年~1618年)
沃尔特·雷利是一位英国船长。作为私掠船的船长,他度过了早期的职业生涯。但在听到有关埃尔多拉多的传说后,他便于1595年率领一支探险队前往南美洲寻找黄金。
雷利首先在特立尼达岛登陆,并声称该英国所有。然后,他航行到委内瑞拉的奥利诺科河河口。他溯河而上,历时15天,然后转回并考察了圭亚那和苏里南的海岸地带。
1617年,雷利率领另一支探险队前往奥诺科地区。当时他已60多岁,在特立尼达病倒了,只得留下。探险队的其他成员到达了奥利诺科河,但在那里与西班牙定居者发生了战斗,许多人被杀死。探险队灰溜溜地回到英国。过后不久,雷利被处死。
在雷利一生的早期,他曾策划试图在北美洲建立英国殖民地,其中之一便是北卡罗来纳州罗阿诺克岛上神秘的“失落的弗吉尼亚殖民地”。1587年,117名移居者在那里登陆。两年后,当雷利的船返回时,已找不到移居者的踪迹,他们已全部消失了。

阅读全文

与声学理论pdf相关的资料

热点内容
单片机程序员培训 浏览:990
PHP商城源代码csdn 浏览:634
怎么把电脑里文件夹挪出来 浏览:693
java流程处理 浏览:684
ftp创建本地文件夹 浏览:659
腰椎第一节压缩 浏览:738
xp去掉加密属性 浏览:117
2345怎么压缩文件 浏览:982
迷你夺宝新算法 浏览:407
服务器如何防止木马控制 浏览:715
压缩空气用电磁阀 浏览:742
微信为什么不能设置加密认证 浏览:672
邓伦参加密室逃脱视频 浏览:391
音频压缩编码标准 浏览:300
常提到的app是表示什么 浏览:261
天津程序员传销 浏览:349
下班之后的程序员 浏览:73
检测支持ssl加密算法 浏览:344
衢州发布新闻什么APP 浏览:85
中国移动长沙dns服务器地址 浏览:252