导航:首页 > 文档加密 > 凯撒加密最常用的攻击方法

凯撒加密最常用的攻击方法

发布时间:2022-11-12 19:21:37

‘壹’ 凯撒密码对应表内容是什么

根据苏维托尼乌斯的记载,恺撒曾用此方法对重要的军事信息进行加密: 如果需要保密,信中便用暗号,也即是改变字母顺序,使局外人无法组成一个单词。如果想要读懂和理解它们的意思,得用第4个字母置换第一个字母,即以D代A,余此类推。

同样,奥古斯都也使用过类似方式,只不过他是把字母向右移动一位,而且末尾不折回。每当他用密语写作时,他都用B代表A,C代表B,其余的字母也依同样的规则;用A代表Z。

(1)凯撒加密最常用的攻击方法扩展阅读:

密码的使用最早可以追溯到古罗马时期,《高卢战记》有描述恺撒曾经使用密码来传递信息,即所谓的“恺撒密码”,它是一种替代密码,通过将字母按顺序推后起3位起到加密作用,如将字母A换作字母D,将字母B换作字母E。因据说恺撒是率先使用加密函的古代将领之一,因此这种加密方法被称为恺撒密码。这是一种简单的加密方法,这种密码的密度是很低的,只需简单地统计字频就可以破译。 现今又叫“移位密码”,只不过移动的为数不一定是3位而已。

‘贰’ 恺撒密码的凯撒密表

古罗马随笔作家修托尼厄斯在他的作品中披露,凯撒常用一种“密表”给他的朋友写信。这里所说的密表,在密码学上称为“凯撒密表”。用现代的眼光看,凯撒密表是一种相当简单的加密变换,就是把明文中的每一个字母用它在字母表上位置后面的第三个字母代替。古罗马文字就是现在所称的拉丁文,其字母就是我们从英语中熟知的那26个拉丁字母。因此,凯撒密表就是用D代a,用E代b,……,用z代w,(注意!)用A代x,用B代y,C代z。这些代替规则也可用一张表格来表示(所以叫“密表”)。
例如,有这样一个拉丁文例子
OmniaGalliaest
divisainPartestres
(高卢全境分为三部分)
用凯撒密表加密后,就成为密文
RPQLDJDOOLDHVW
GLYLVDLQSDUWHVWUHV
你看,不掌握其中奥妙,不知道凯撒密表,简直不如所云。那么,在公元前54年,凯撒就是用这种密码给西塞罗写信的吗?有趣的是,密码界对这—点却持否定态度,因为密码学历史上还记载着凯撒使用的另一种加密方法:把明文的拉丁字母逐个代之以相应的希腊字母,这种方法看来更贴近凯撒在《高卢战记》中的记叙。显然,哪一个拉丁字母应该代之以哪—个希腊字母,事先都有约定,凯撒知道,西塞罗也知道,不然的话,西塞罗收到密信后,也会不知所云。当阿里巴巴站在那四十一名大盗的山洞大门口,准备打开大门时,他必须知道一个咒语:“芝麻开门”。当我们站在密码学的大门,准备迈入时,必须要知道的则是—些基本概念。为此,让我们先把密码通信的几个要素总结如下。
在军事通信上,必须考虑要传送的秘密信息在传送的途中被除发信者和收信者以外的第三者(特别是敌人)截获的可能性使载送信息的载体(如文本、无线电被等)即使在被截获的情况下也不会让截获者得知其中信息内容的通信方法或技术,称为保密通信。密码通信就是一种保密通信,它是把表达信息的意思明确的文字符号,用通信双方事先所约定的变换规则,变换为另一串莫名其妙的符号,以此作为通信的文本发送给收信者,当这样的文本传送到收信者手中时,收信者—时也不能识别其中所代表的意思,这时就要根据事先约定的变换规则,把它恢复成原来的意思明确的文字,然后阅读。这样,如果这个文本在通信途中被第三者截获,由于第三者—般不知道那变换规则,因此他就不能得知在这一串符号背后所隐藏的信息。当然,为了战争的目的,他会千方百计地努力弄到这个变换规则。一种努力就是对已经截获的密文进行分析,有时结合从其他途径获得的有关信息,试图找出这个变换规则。
在密码学中,我们要传送的以通用语言明确表达的文字内容称为明文,由明文经变换而形成的用于密码通信的那一串符号称为密文,把明文按约定的变换规则变换为密文的过程称为加密,收信者用约定的变换规则把密文恢复为明文的过程称为解密。敌方主要围绕所截获密文进行分析以找出密码变换规则的过程,称为破译。
如在上一部分中,

就是一段明文,凯撒密表就是—种变换规则。这段明文经凯撒密表加密后,
就变成了密文

收信者收到这段密文后,就要进行解密,解密也是用凯撒密表。在这个例子中,加密和解密都在用凯撒密表,但严格地说,加密时所用的变换与解密时所用的变换是两个变换。这两个变换间的关系是它们互为逆变换。也就是说,明文用其中一个变换进行加密产生密文后,若再用另一个变
换对这密文进行解密,就会得到原来的明文。这种互逆的关系就如同我们所熟知的加法和减法互为逆运算的关系一样:加上一个数后再减去同一个数,就等于不加也不减。
下面我们总结一下:
明密对照表:
明文:ABCDEFGHIJKLMNOPQRSTUVWXYZ
密文:TUVWXYZABCDEFGHIJKLMNOPQRS
注:广义上的凯撒是位移的。
凯撒是没有密匙的,即使没有密匙也能将它破解出来,因为凯撒移位密码只有25种密匙,最多就是将这25种可能性挨个检测一下可以了,这就是我们所说的暴力破解法。也可在用软件破解,不过我提倡用人工的。
推理的方法:
1,对于有空格的凯撒移位,单字母A和I是突破口,这无异相当于告诉了移动的位数,这样很容易就被破解了。所以,如果我们要用凯撒密码的话一定要去掉空格加大破解难度。
2,差数法。
有空格时,而又没有单字母A和I时,这种方法很,如果我们令A=1,B=2,C=3......就是每个字母是字母的第几个,经过移位后的单词,每两相邻的字母之间的差值不变的。如the的差值为12,3(在这里我是用后面的一个字母减前面的一个字母,当然你也可以用后面的一个字母减前面的一个字母),移动后两个相邻字母的差值也将会是12,3。
对于没有空格的恺撒破解起来就比有空格的难一些,对于没有空格的我们还要对密文进行分析,找出重复出现的字母串,然后对字母串进行猜测,例,如果有3个字母串,出现的次数比较高,我们就可以假设它为the因为3个字母串出现次最多的就是the,当然这不是一成不变的,这时应该就被破解了。
我们看到一个密码怎样判断是凯撒密码呢?这又要扯到频率分析去(在这里不介绍,在后面在说),没有经过移位的明文和移过的密文是有区别的,这样就可以区分凯撒密码和栅栏密码了(栅栏密码参照下一章)。
没有移位的栅栏密码元音比较多,这是语言本身的性质绝定,像英语和汉语拼音的元音出现频率就比较高。

‘叁’ 凯撒加密法

凯撒加密法的替换方法是通过排列明文和密文字母表,密文字母表示通过将明文字母表向左或向右移动一个固定数目的位置。例如,当偏移量是左移3的时候(解密时的密钥就是3):
明文字母表:ABCDEFGHIJKLMNOPQRSTUVWXYZ
密文字母表:DEFGHIJKLMNOPQRSTUVWXYZABC
使用时,加密者查找明文字母表中需要加密的消息中的每一个字母所在位置,并且写下密文字母表中对应的字母。需要解密的人则根据事先已知的密钥反过来操作,得到原来的明文。例如:
明文:THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
密文:WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ
凯撒加密法的加密、解密方法还能够通过同余的数学方法进行计算。首先将字母用数字代替,A=0,B=1,...,Z=25。此时偏移量为n的加密方法即为:
En(x)=(x+n)mod26{\displaystyle E_{n}(x)=(x+n)\mod 26}
解密就是:
Dn(x)=(x−n)mod26{\displaystyle D_{n}(x)=(x-n)\mod 26}

‘肆’ 恺撒密码表是什么

恺撒密码表是一种代换密码。据说凯撒是率先使用加密函的古代将领之一,因此这种加密方法被称为恺撒密码。凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加密和解密。明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文。

‘伍’ 恺撒密码的概念

在密码学中,凯撒密码(或称恺撒加密、恺撒变换、变换加密)是一种最简单且最广为人知的加密技术。它是一种替换加密的技术。这个加密方法是以恺撒的名字命名的,当年恺撒曾用此方法与其将军们进行联系。恺撒密码通常被作为其他更复杂的加密方法中的一个步骤,例如维吉尼亚密码。恺撒密码还在现代的ROT13系统中被应用。但是和所有的利用字母表进行替换的加密技术一样,恺撒密码非常容易被破解,而且在实际应用中也无法保证通信安全。

‘陆’ 什么是凯撒密码谢谢!

凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加密和解密。例如,如果密匙是把明文字母的位数向后移动三位,那么明文字母B就变成了密文的E,依次类推,X将变成A,Y变成B,Z变成C,由此可见,位数就是凯撒密码加密和解密的密钥。 它是一种代换密码。据说恺撒是率先使用加密函的古代将领之一,因此这种加密方法被称为恺撒密码。 在密码学中,恺撒密码(或称恺撒加密、恺撒变换、变换加密)是一种最简单且最广为人知的加密技术。它是一种替换加密的技术,明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文。例如,当偏移量是3的时候,所有的字母A将被替换成D,B变成E,以此类推。这个加密方法是以恺撒的名字命名的,当年恺撒曾用此方法与其将军们进行联系。恺撒密码通常被作为其他更复杂的加密方法中的一个步骤,例如维吉尼亚密码。恺撒密码还在现代的ROT13系统中被应用。但是和所有的利用字母表进行替换的加密技术一样,恺撒密码非常容易被破解,而且在实际应用中也无法保证通信安全。

‘柒’ 密码技术

密码算法的特性
1、是否需要事先配送私钥:对称密码需要考虑
2、是否会遭到中间人攻击:非对称密码分发公钥时需要考虑
3、不可抵赖(可被双方 和 第三方 用原理证明):非对称密码分发公钥时需要考虑
4、能否保证消息的机密性:即不可破译
5、能否保证消息的完整性(一致性):即不可篡改
6、不可冒充(伪造)

总结:对称密码(解决456)--非对称密码之单向通信--> 混合密码(解决1) --非对称密码之数字签名--> 公钥证书(解决23)

概念
密码算法:加密算法 + 密钥 + 解密算法,简称密码
密钥空间:密钥的所有取值
隐蔽式安全性:以密码算法不为人所知,来保证机密性
分组密码:对明文进行分组加密,而非以全文作为输入
流密码:不分组,整体加密

破解密文的方法
1、窃听 + 破译
2、社会工程学
破解密钥的方法
1、暴力破解(密钥穷举),例如破译凯撒密码
2、频率分析,例如破译简单替换密码
3、选择明文攻击(对分组进行明文穷举)

加密系统的可选技术
隐写术:将消息藏在更大的数据中,例如藏头诗
伪随机数生成器
散列值(摘要,哈希值,指纹):原文经过散列函数(摘要函数,哈希函数,杂凑函数,单向加密)计算出来的值
对称密码(共享密钥密码):加密和解密用同一个私钥
非对称密码(公钥密码):公钥加密,私钥解密
消息认证码
数字签名
公钥证书

碰撞:两个消息的散列值相同
弱抗碰撞性:给定一条消息,很难找到另一条消息与其散列值相同。防止以下情形,Bob持有一个消息A,计算其摘要;Alice找到与A散列值相同的另一条消息B,用B将A调包;由于摘要不变,不被Bob发觉
强抗碰撞性:很难找到两条散列值相同的消息。防止以下情形,Alice拿两个摘要相同的消息A和B,将A发给Bob;Bob计算其摘要;Alice再用B将A调包;由于摘要不变,不被Bob发觉
MD5(Message Digest 5)
历史:1991年Ronald Rivest 设计出MD5
现状:2004年王小云提出了MD5碰撞攻击算法
SHA
历史:1993年NIST发布SHA,1995年发布SHA-1,2002年发布SHA-2
现状:2004年王小云提出了SHA-0的碰撞攻击算法;2005年王小云提出了SHA-1的碰撞攻击算法
SHA-3
历史:2007年NIST发起选拔SHA-3,2012年Joan Daemen等人设计的Keccak算法被选定为SHA-3

弱伪随机数:随机性
强伪随机数:不可预测性
真随机数:不可重现性

随机数生成器:硬件可以通过热噪声实现真随机数
伪随机数生成器:软件只能生成伪随机数,需要一种子seed来初始化

伪随机数算法:线性同余法、散列法、密码法等

好的对称密码解决:不可破译
缺点:需要事先配送密钥
凯撒密码
加密算法:字母平移
密钥:平移位数
解密算法:逆向平移
破解密钥:穷举可能的密钥
简单替换密码
加密算法:一个字母替换成另一个字母
密钥:替换表
解密算法:逆向替换
破解密钥:对密文的字母 和 字母组合进行频率分析,与通用频率表对比;用破译出来的明文字母,代入密文,循环分析
Enigma密码
发明者:德国人Arthur Sherbius
加密算法:双重加密,每日密钥作为密钥1,想一个密钥2;用密钥1加密密钥2,得到密钥2密文;用密钥2加密消息;将密钥2密文和消息密文一起发出
密钥:密钥册子记录的每天不同的密钥
解密算法:用每日密钥解密密钥2密文,得到密钥2;用密钥2解密消息密文
破译者:Alan Turing 图灵

DES密码(Data Encryption Standard)
历史:1974年IBM公司的Horst Feistel开发出了Lucifer密码,1977年被美国国家标准学会(American National Standards Institute,ANSI)确定为DES标准
加密算法:以64比特为一组,进行16轮运算。在一轮中,把一组分为左侧和右侧,并从密钥中提取子密钥;轮函数用一侧和子密钥生成一个比特序列,用这个比特序列对另一侧进行异或运算(XOR)
密钥:长度56位
破译:可在现实时间内被暴力破解

三重DES密码(triple-DES,TDEA,3DES)
加密算法:将DES重复三次
密钥:长度 56 * 3

AES密码(Advanced Encryption Standard)
历史:1997年,美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)公开募集AES,2000年比利时密码学家Joan Daemen 和 Vincent Rijmen提交的Rijndael方案,被选为标准
加密算法:以128比特为一组,进行多轮的替换、平移、矩阵运算
密钥:有128,192,256三种长度

分组密码的迭代模式
ECB模式:Electronic CodeBook mode,电子密码本模式;明文分组 和 密文分组 顺序对应。主动攻击者可以改变密文分组的顺序,复制 或 删除密文分组,使得接受者解密后得到错误的明文
CBC模式:Cipher Block Chaining mode,密码分组链接模式;将本组明文 和 上组密文 进行异或运算后,在进行加密;如果被篡改,则不能正常解密
CFB模式:Cipher Feedback mode,密文反馈模式;将本组明文 和 上组密文 进行异或运算后,就得到本组的密文
OFB模式:Output Feedback mode,输出反馈模式;用随机比特序列作为初始化组(初始化向量);用初始化组的密文和 明文分组 异或运算,得到密文分组;再次对初始化组密文进行加密运算,得到新的初始化组密文,跟下组明文进行异或运算,以此类推
CTR模式:CounTeR mode,计数器模式;用随机比特序列作为计数器的初始值,加密后与明文分组进行异或操作,得到密文分组;计数器加一,对下组明文进行加密

对称密码中,发送方发送密文时,带上消息的MAC值A;接收方用相同方法计算出MAC值B;对比A和B,确保消息不被篡改
Encrypt-then-MAC:MAC值为消息密文的散列值
Encrypt-and-MAC:MAC值为消息明文的散列值
MAC-then-Encrypt:MAC值为明文散列值的密文

重放攻击:攻击者窃听到Alice给Bob发送的消息后,重复给Bob发送,Bob以为都是Alice发的
预防重放攻击:消息里带有一个id

比对称密码:不可篡改、不可伪造
缺点:需要实现配送私钥

基于口令的密码:Password Based Encryption,PBE
解决:密钥(会话密钥)保存问题
CEK:会话密钥
KEK:用来加密CEK的密钥
方案
1、随机数作为盐salt,口令 + 盐 的散列值作为KEK
2、用KEK加密CEK,得到CEK密文
3、只保存盐和CEK密文,人脑记住口令,丢弃KEK

字典攻击:如果没有盐参与生成KEK,那么口令决定了KEK,常用的口令对应一个常用KEK字典,攻击者直接拿常用KEK去解密CEK密文
盐的作用:KEK由盐参与形成,不可能有KEK字典包含这样的KEK

非对称密码单向通信,不能单独用于通信,只用在混合密码中
方案:Alice 给 Bob 分发加密密钥(公钥);Bob用公钥加密消息,发送给Alice;Alice用解密密钥(私钥)解密
总结:消息接收者是密钥对主人,即私钥持有人;公钥用于加密,私钥用于解密

RSA密码
历史:1978年,Ron Rivest、Adi Shamir、Reonard Adleman共同发表了RSA
加密算法:密文 = 明文 E mode N
公钥:E 和 N的组合
解密算法:明文 = 密文 D mode N
私钥:D 和 N的组合

生成密钥对
生成质数:用伪随机数生成随机数,通过Miller-Rabin测试法测试它是不是质数,直到得到质数
求最大公约数:欧几里得的辗转相除法
1、求N
生成两个512位的质数p和q,N = p * q
2、求L
L是p-1 和 q-1 的最小公倍数
3、求E
用伪随机数生成(1,L)范围内的随机数,直到满足E和L的最大公约数为1
4、求D
用伪随机数生成(1,L)范围内的随机数,直到满足(E * D) mod L = 1

破解:对N进行质因数分解,得到p和q,从而求出D。但是对大数的质因数分解,未有快速有效的方法

首次通信为混合密码,后续通信为对称密码
比消息认证码:无需事先配送私钥
总体思路:Bob 用会话密钥加密消息,用Alice的公钥加密会话密钥,一起发给Alice;Alice用私钥解密会话密钥,用会话密钥解密消息
会话密钥:用来加密消息的 对称密码的密钥
1、Alice 给 Bob 发送公钥
2、Bob随机生成会话密钥,用会话密钥加密消息,得到消息密文
3、Bob用公钥加密会话密钥,得到会话密钥密文
4、Bob将会话密钥密文和消息密文一起发给Alice
5、Alice用私钥解密会话密钥,再用会话密钥解密消息
6、双方都有了会话密钥,从此以后,可以用对称密码通信了,带上消息认证码

缺点:分发公钥时,可能遭受中间人攻击;Alice可能对给Bob发送公钥这件事进行抵赖
中间人攻击:中间人从一开始Alice向Bob发放公钥时,就拦截了消息,得到Alice的公钥;然后伪装成Alice,向Bob发送自己的公钥;从而Bob打算发给Alice的消息,能被中间人解密

不能单独用于通信,只用在公钥证书中
明文签名:Alice用签名密钥(私钥)加密消息的摘要,把摘要密文和消息明文一起发给Bob;Bob解密摘要密文,得到摘要A;算出明文摘要B,对比A和B
总结:私钥用于加密,公钥用于解密,与 非对称加密之单向通信,刚好反过来

公钥证书:Public-Key Certificate,PKC,简称证书
认证机构:Certification Authority,CA
证书标准:国际电信联盟ITU 和 国际标准化组织ISO指定的X.509标准
流程:
1、Alice在CA登记
2、CA生成Alice的证书明文,包含Alice登记的信息、Alice的公钥、CA信息
3、CA用自己的私钥加密证书明文部分,得到数字签名
4、证书明文部分 和 数字签名 组成PKC,颁发给Alice
5、Bob向Alice获取这个PKC,拿本地已有的CA公钥去验证证书,就得到了可信的Alice的公钥
6、从此Alice 和 Bob之间可以进行混合密码通信

首次通信为从CA获取PKC,后续通信为混合密码
比混合密码:防止了中间人攻击;CA不能抵赖自己的证书

历史:1994年网景公司设计出SSL,2014年SSL 3.0被发现安全漏洞,1999年IEIF发布TLS
TLS(Transport Layer Security)是SSL(Secure Socket Layer)的后续版本,在tcp和http之间加一层TLS,就是https
OpenSSL:OpenSSL是实现SSL/TLS协议的工具包
以https为例
0、浏览器安装时,存有几个CA公钥;服务器在CA登记,拿到证书
1、浏览器访问一个https地址,服务器返回自己的证书
2、浏览器根据证书上的CA信息,拿对应的CA公钥验证证书,得到可信的服务器公钥
3、浏览器生成对称密码的密钥(会话密钥),用服务器公钥加密后发给服务器
4、服务器解密后得到会话密钥,从此用对称密码通信,带上消息认证码

1、生成JKS证书:keytool -genkeypair -alias "别名" -keyalg "RSA" -keystore "D:app.jks"
2、将JKS转换成PKCS12:keytool -importkeystore -srckeystore D:app.jks -destkeystore D:app.p12 -deststoretype pkcs12
3、将PKCS12转成pem:openssl pkcs12 -in ./app.p12 -out app.pem
4、提取加密后的私钥:将pem中 “—–BEGIN ENCRYPTED PRIVATE KEY—–” 至 “—–END ENCRYPTED PRIVATE KEY—–” 的内容拷贝出来,保存为ciphertext.key
5、将密文私钥转成明文私钥:openssl rsa -in ciphertext.key -out plaintext.key

.jks(Java Key Storage):二进制格式,包含证书和私钥,有密码保护
.pfx 或 .p12(Predecessor of PKCS#12):二进制格式,包含证书和私钥,有密码保护
.pem(Privacy Enhanced Mail):文本格式,包含证书,可包含私钥,私钥有密码保护
.der 或 .cer:二进制格式,只包含证书
.crt(Certificate):可以是der格式,也可以是pem格式,只包含证书

SSL证书:SSL证书必须绑定域名,不能绑定IP
加密服务、密钥管理服务

‘捌’ 凯撒密码 是什么

恺撒移位密码
密码的使用最早可以追溯到古罗马时期,《高卢战记》有描述恺撒曾经使用密码来传递信息,即所谓的“恺撒密码”,它是一种替代密码,通过将字母按顺序推后起3位起到加密作用,如将字母A换作字母D,将字母B换作字母E。因据说恺撒是率先使用加密函的古代将领之一,因此这种加密方法被称为恺撒密码。这是一种简单的加密方法,这种密码的密度是很低的,只需简单地统计字频就可以破译。 现今又叫“移位密码”,只不过移动的为数不一定是3位而已。
密码术可以大致别分为两种,即易位和替换,当然也有两者结合的更复杂的方法。在易位中字母不变,位置改变;替换中字母改变,位置不变。
将替换密码用于军事用途的第一个文件记载是恺撒着的《高卢记》。恺撒描述了他如何将密信送到正处在被围困、濒临投降的西塞罗。其中罗马字母被替换成希腊字母使得敌人根本无法看懂信息。

‘玖’ 什么是凯撒加密法

简单的说,就是位移加密。
比如你的密码是ABCDE
然后设置凯撒密码的偏移量为3的话
那加密之后的密码就是DEFGH

‘拾’ 凯撒密码怎么解

它是一种代换密码。据说恺撒是率先使用加密函的古代将领之一,因此这种加密方法被称为恺撒密码。

凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加密和解密。明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文。例如,当偏移量是3的时候,所有的字母A将被替换成D,B变成E,以此类推X将变成A,Y变成B,Z变成C。由此可见,位数就是凯撒密码加密和解密的密钥。

阅读全文

与凯撒加密最常用的攻击方法相关的资料

热点内容
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163