A. 出现特殊紧急情况,根据工程需要适当加密监测频率;有哪些情况
施工阶段的控制要点
施工阶段是项目实施的关键阶段,监理工程师应根据地质勘探资料和当地水文气候条件,结合当地深基坑工程施工的经验和条件,确定工程的关键项目,要求施工单位制定专项施工方案报监理审核,并强调要制定突发事件的应急预案。应急预案应根据现场及基坑实际情况有针对性、目的性的制定,充分考虑各项不利因素及突发事件的影响,且必须具有可操作性,切忌闭门造车和流于形式。
1.1 深基坑工程的施工
深基坑工程包括挖土、挡土、围护、防水等环节,是一项复杂的系统工程,任何一个环节的失误都有可能导致施工失败,甚至造成事故。施工单位要严格按照施工规程、经批准的施工组织设计及相关的技术规范组织施工,对各施工要点要制定施工方案, 并加强过程控制。例如,确定土方开挖方案时,应对地质勘测报告、周围建筑物及地下设施情况等信息进行分析,对特殊土质需精心组织施工,膨胀土地区不宜在雨季开挖,软土地区分层开挖的深度不宜太大。若挖土高差太大或挖土进度过快,极易改变土体原来的平衡状态,降低土体的抗剪强度,从而导致土体发生水平方向的滑移,造成坍塌事故。基坑开挖应配合支护结构综合考虑;同时在挖土施工中弃土的堆放应考虑边坡的稳定;土方可分层运送或递送,挖土机与运土车辆应设法深入基坑,并规划好自卸车运行的坡道和最后坡道
土方的运送,尽量不要采用栈桥方案,因其费用较高;若临近有建筑物基础时,基坑开挖时应保持一定的距离;在雨期施工前应检查现场的排水、降水系统,保证水流畅通,并应注意边坡的稳定,必要时应采取保证边坡稳定的措施。
1.2深基坑周围土体止水效果的控制
在基坑和基础施工时,深基坑多在地下水位以下开挖,施工时若地下水渗入造成基坑浸水,使地基土强度降低,压缩性增大,建筑物能产生过大沉降或是增加土的自重应力,造成基础附加沉降,从而直接影响到建筑物的安全。因此,在基槽施工时,必须采取有效的降水和排水措施使基坑处于干燥状态下施工。在地下水位较高的地区,地下水对深基坑工程施工带来的危险程度是相当高的。
地下水的来源一般为上层滞水、潜水、承压水、雨水及基坑周围的渗漏管道水,由于水的来源复杂,在制定止水方案时应从深基坑工程的防水、降水和排水3个方面考虑,根据地质勘察部门提供的地质资料,深入分析地下水的成因,了解深基坑周围环境,不能仅靠长时间不间断地抽水来降低地下水位,否则会导致基坑周围土体流失,周围建筑物不均匀沉陷,甚至发生坑底流沙、管涌等现象,增大了处理难度,拖延了工期。
止水帷幕是高水位地区深基坑支护工程中常用的止水措施,其施工方法主要有高压喷射注浆法、浆喷深层搅拌法、粉喷深层搅拌法和压力注浆法等。采用浆喷深层搅拌法进行止水帷幕止水施工时,如果止水帷幕的搅拌桩成桩质量不好,深基坑开挖后会出现渗水较多的现象。若此时再采用灌浆的方法进行处理,则延误工期、增加造价。因此,在该类止水帷幕施工时要注意以下几点:
(1)保证桩体质量。确定合理的水泥浆掺加量,保证桩体搅拌均匀、桩长达到设计深度,避免桩头出现搅而无浆的情况,特别是在土层情况变异较大的地区,因搅拌桩的桩径不易控制,容易导致止水失效。
(2)保证桩的搭接长度和密实度,杜绝空洞、蜂窝及桩头开叉的现象。
(3)不得随意在基坑支护结构上开口,否则会影响支护结构的安全,也破坏了止水帷幕,导致地下水的渗入。
1.3深基坑工程的信息化管理
基坑施工过程中,土体的受力状态发生变化,土体变形会造成挡土支护结构发生侧向位移,因此深基坑施工的质量问题实质上是基坑的整体刚度和稳定性,即基坑支护结构是否会发生变形、是否会产生影响基坑安全使用的沉降及水平方向的位移或倾斜、支护结构是否有裂缝以及基坑底是否产生隆起和变形,若发生这些问题将导致基坑工程的失败。
基坑支护结构信息化管理的主要手段,是安排专业施工监测人员对基坑现场及周围建筑物进行监测,根据基坑开挖期间监测到的基坑支护结构或岩土变位等
情况,比照勘察、设计的预期性状,动态分析监测资料,全面掌握位移变化的大小、方向、变化频率,对照报警标准,预测下一阶段工作的动态,及时对施工中可能出现的险情进行预报,超过位移设定的预警值时,应及时采取有效的应对措施,确保工程安全。深基坑支护结构工程监测的主要内容有:支护结构顶部水平位移;支护结构沉降和裂缝;临近建筑物、道路的沉降、倾斜和裂缝;基坑底隆起的观测等。以上监测除每天进行目测之外,一般每8~10m设一个监测点,关键部位适当加密,开挖后每3~5 d监测1次,位移大时应适当加密。
观测结果要真实反映所测目标的动态趋势,并绘出变化曲线图,以传递险情前兆信息,找出险情发生的必要条件,如地质特性、支护结构、临近建筑物、地下设施等,结合相关的诱发条件,如气象条件、开挖施工、地下水变化等,根据基坑支护结构的稳定性计算结果进行科学决策,以排除险情。开挖较深的基坑时,还应测试支撑的内应力,当应力值达到设计值的90% (或支撑变形达10 mm)时,要及时采取防范措施。另外,因现场施工情况复杂,监测点极易被破坏,要注意对监测点的保护。
1.4突发事件的处理
建筑施工是一个大、周期长、参与人员多的过程,施工过程中会发生许多不可预见的事件。对于基坑工程,除必须周密设计、精心施工外,更要做好应对突发事件的技术及设备、设施准备。常见的突发事件有:基坑内管涌、流沙;基坑支护局部出现成因不明的裂缝、沉降;气象异常,出现持续多日的狂风暴雨;相邻工地施工的影响,如降水、打桩、开挖土方;地下障碍物妨碍基坑支护结构或止水帷幕的施工等等。事件发生后,应及时启动应急预案,并会同相关单位尽快研究出切实可行的解决办法
B. 地下水资源管理的技术措施
(一)对区域水资源进行统一规划、合理调度
地下水、地表水和大气水之间,有着不可分割的内在联系,在水循环中,它们之间不断地相互转化。为了正确评价区域各种水资源,制定出技术、经济上合理的水资源开发利用方案,必须对区内一切水资源进行统一的调查研究和评价。
要制定一个正确的水资源管理方案,必须首先查明区域水资源总量和各类水资源的互相转化关系;其次,必须了解构成区域水资源的各个水量均衡项目对今后持续供水的意义及其在开采前后可能产生的变化;最后,在开发利用中,必须有统筹兼顾、综合平衡的观点。
当前,世界各国水资源开发规划的一个共同特点,是对流域(或水盆地)水资源的全面管理,在水资源的开发规划中体现综合利用和联合开采的原则。未来地下水的开发、保护和管理主要是地表水和地下水的结合使用问题。地下水资源开发的最佳方案是必须依靠地表水、地下水的结合使用,以及采取人工补给、兴建地下水库、控制地下水的区域性过量开采、局部地下咸水的利用、调整现有抽水井布局等联合措施。
(二)调整供水水源结构,实行分质供水与水的循环使用
水资源缺乏,尤其优质水源有限。因此在水源利用上应根据工农业产业结构对水质的要求,实行分质供水、优质优用,这是综合利用有限水资源的有效措施。生活用水立足于地下水或优质地表水;工业用水大体上可分为锅炉、洗涤和冷却用水和市政用水,可利用回用水。对于有苦咸水分布的地段可适量开采部分苦咸水进行农田灌溉,以补充农业用水不足。同时,行业间用水应统筹安排,循环使用。为实现节水和综合利用,应打破行业用水界限,采用废水重复使用的综合利用模式,逐步推广一水多用。例如,火电用水尽量与农田灌溉相互重复使用,用火电热水发展冬季温室蔬菜栽培,火电排水进一步与供暖、渔业等用水相结合。
(三)调整产业结构,优化区域生产力布局
目前,水资源已成为生产建设规划布局的制约因素,为此,要根据水资源条件调整和优化产业结构,合理对区域生产力布局,形成节水型经济结构,实现水资源与国民经济合理布局,促使经济效益和环境效益最优。
在保证规划目标产值的条件下,通过产业结构的优化与调整,使有限的水资源在经济系统中合理分配,以发挥最大效益,把“以水定工业”作为产业结构调整与生产力布局的一个基本原则,这也是合理利用有限水资源的必要手段。在工业生产布局上,要充分考虑水资源条件,实行以源定供,以供定需,从更大的宏观范围来考虑和规划经济发展问题,充分发挥经济协作区的互补协调作用,把耗水大的工业放置在水资源较丰富的地段,做到就地开发、就地使用,这既可减轻城区供水的压力,还可以避免由于城市工业过渡集中,需水量不断增加,地下水的开采强度远远超过允许开采量而引起的环境负效应。同时也减少了长途输水的费用,可取得巨大的社会、经济和环境效益。
(四)“开源”与节流并重
据统计,目前,我国地表水的开发利用率只占河川年径流量的17%,浅层地下水的利用率也仅为24%,故寻找新水源地在某些地区尚有潜力。但在许多地区,更应重视其他开源措施(建造地下水库、地下水人工补给等),而节流则是刻不容缓的重要工作。
1.排供结合和跨流域调配水资源
用矿山排水作供水水源,是充分利用水资源,解决供、排水矛盾的最好措施之一,值得大力推广。目前,我国华北地区太行山麓的许多煤田的下部煤层,均因受其底部高压地下水的威胁而不能开采。估计其排水量,每年可达5亿m3左右。如能对该区疏干和供水进行综合规划,将排水用于城市或工农业供水,则可缓解当地的供、排水矛盾。目前,全国许多矿山的矿井排水,多因水质已被污染,不适于生活和工业用水,甚至不适于农田灌溉,都大量地白白流掉,并成为周围地表水与地下水的污染源;加之矿区排水漏斗的扩大,又减少了周围的供水水源,造成地质环境的恶化。如实行超前取水,以供减排,以供代排,上供下疏,先供后排,排供结合,还可采用帷幕截流,内疏外供等办法加以解决,此项内容将在第三篇中作进一步介绍。
在地下水位过高造成土壤盐渍化或沼泽化的地区,也可把抽水排涝与供水结合起来,实行井灌井排,以降低地下水位,加速土壤脱盐,提高防涝能力,改良浅层淡水,达到农业增产的目的。
当一个地区的水资源经过充分调配仍不能满足生活和生产需要时,可考虑从有水资源剩余的流域调入地表水。
2.节约用水
由于世界上普遍面临淡水资源不足的问题,所以各国都重视对节约用水技术的研究。国内,虽然许多地区供水紧张,但却存在着普遍而大量的各种浪费水资源的现象。对此,至今仍缺乏有效地管理。我国《水法》明确规定:“国家厉行节约用水,大力推行节约用水措施,推广节约用水新技术、新工艺,发展节水型工业、节水型农业和服务业,建立节水型社会经济结构体系,单位和个人有节约用水的义务”。大力推行节水措施,不仅是为了解决水资源的供需矛盾,也是减少排污量、改善环境、提高企业经济效益的有效措施。在某些水资源不足的地区,开源难以解决需与供的矛盾,只有从节约用水上求得缓解。节水是解决我国缺水问题的出路和重要途径。
(1)废(污)水水质处理回用,提高重复利用率。目前,一些发达国家的废水重复利用率已达85%~98%;国内,工业及城市的用水量虽大,但重复利用率很低。多数城市还停留在20%~50%,有很大潜力。
(2)推广先进的节水措施。首要的是建立生产管理体制;然后,在工农业和生活用水方面推广节水措施。在工业方面,应建设先进的节水型工业,降低工业用水定额;实行清洁生产,改进生产工艺,尽量采用用水少的生产工艺,降低单位产品用水量。农业方面,我国是用水大户,亩均用水量为448m3,但我国农业用水的利用率只有30%~40%,而国外则多达70%~80%,我国农田灌溉面积7.5亿亩,年灌溉用水量约4000多亿m3,如果灌溉水利用率提高10%,每年可节水400多亿m3。因此必须改进灌溉技术,完善田间工程配套,灌渠应防渗或采用明管(塑料软管)和暗管(地理管),改大水漫灌和畦灌为喷灌、滴灌、渗灌和微灌,这样既可节省用水,又可扩大灌溉面积。
(3)节约生活用水。日常生活中浪费水的现象普遍存在(跑、冒、滴、漏水与长流水等),种类之多和数量之大都是惊人的,尤以服务行业用水和生活用水更为突出。因此,应当大力宣传节水,提高人们对水的忧患意识和节水意识;实行“节奖超罚”制度。节约生活用水是多方面的,而推广节水型卫生洁具(包括厕用、洗淋用、厨房用、医疗用卫生洁具等),应作为重要的节水措施。另外,应大力扩大生活废水处理回用工作。
(4)开展一水多用。如前述的污水处理回用、将工业废水(或直接或经处理)用于灌溉或冷却、绿化、消防及娱乐观赏用水等,将节省的优质水用于生活用水。
(五)地下水监测工作
为掌握水资源管理方案的执行情况和预测未来地下水的天然和开采动态,以及环境条件的变化趋势,以便及时调整管理方案和采取防治措施,都必须全面、系统地进行地下水动态监测工作,尤其是在地下水库区和利用回收废水进行人工补给的地区。因此,地下水动态监测工作是水资源管理必不可少的组成部分。许多国家在水资源法中都明显规定,无地下水监测资料设计的水资源管理工作,在法律上是绝对不容许的,我国对此也作了明确规定。
地下水动态监测的内容,应根据管理方案来确定。其主要内容包括地下水的水位动态、水质变化、开采量与回灌量的统计三方面。当地下水系统内可能出现因水资源开发而引起的环境灾害时,也应对其变化进行监测。
地下水动态监测网布置的范围,原则上应包括整个水资源管理区,有时还应扩大到与本区水资源形成有关的毗邻地区。监测网、点的布置,须考虑对全区水资源动态变化规律的控制,并在对地下水水源地水质、水量产生最大影响的地段以及可能出现地质灾害的地段加密观测点,进行重点监视。监测网、点的布置还应与选定的计算水量和水质的数学模型相适应。选择观测点的具体原则,首先要有代表性,并尽可能利用现有井点,做到一井多用。代表性是指所采取的水质样品或所观测的水位和流量数据,在地点和时间上能符合水体的真实情况,并能控制一定空间和时间。例如,不致因井深不同或过滤器下置层位不同而出现水位、水质上的差异;不致因长期停用而影响水中微量元素和细菌的含量的真实情况。还应注意,观测点位置,尽可能不要轻易地变换,因为经常改换观测点,则可能使观测结果的使用价值大减。
关于地下水动态观测的一般要求,在第六章已经介绍,这里仅介绍某些特殊要求。
开采条件下地下水位动态观测的基本任务:①掌握某一时期整个渗流场的水动力状况,其任务主要是为了编绘不同时期的等水位线图(流场图),以便分析地下水的流向、运动规律、抽水或注水井(人工补给)的影响范围,以及海水入侵的情况等。同时,这种图件也是建立水资源计算数学模型的基础图件。为编制高质量的流场图,要求观测网点能控制住全区流场的变化,应有1~2条主要观测线穿过区内的水位降落漏斗、补给水丘及不同类型的边界。观测点应尽量布置在剖面线上的地下水面坡度变化点上。水面坡度无变化的地区,有少数观测点控制即可。②掌握可靠的水位随时间变化趋势及其变化速度。其任务主要是检查地下水的开采条件是否按照水资源管理方案预计的方向发展,如有偏离,则必须采取适当的措施来保护地下水资源。这种观测点必须设置在能够真正代表区域地下水变化趋势的水位降落漏斗的中心。因为漏斗中心的水位反应了所有抽水井的干扰影响,而漏斗边沿部位的水井水位则不一定具有代表性。其次是,为了消除因开采强度随时间变化而对水位观测值所产生的影响,要求选用非生产井作为水位动态观测井。
对于地下水的水质监测,应注意以下问题:①水质监测项目一般可分为“基本监测项目”和“选择性监测项目”两类。前者是指全区所有监测点水样都必须测定的项目;后者则是根据每个监测点所在的位置特征和不同目的而检测的某些指定项目。为了解整个地下水系统的水文地球化学条件的变化趋势,规定以少量常规化学组分作为基本监测项目是必要的,但是,应该把监测项目的重点放在可能对地下水质产生有害影响的化学成分上。此外,也可根据某一时期的水质情报,对所发现的某些水质异常现象,进行追索性的监测。②除常规的水质监测外,目前在国、内外的水资源管理工作中,特别强调对人类健康有危害的微量重金属离子、有机物和致病细菌以及病毒的监测。有机物的危害性已被认为远大于无机质或微生物的污染危害。因此,在地下水受有机污染的地区,应增加对微量有机物的监测项目。③微量重金属元素和有机污染物在地下水中的含量,一般都很低(常以每升微克或毫克计)。因此,如果不严格按要求取样,或由于在保存过程中水样自身发生化学或生物化学变化,将造成这些成分在实验室测定的结果与实际情况不符,使水质评价失真;或者出现同一水样的几组样品的结果不一致,无法作出评价结论。因此,首先要严格执行有关水样采取和保存的技术规程;其次应尽可能统一取样和分析样品的时间,进行集中取样和系统取样,以消除人为因素对分析结果造成的影响。④对环境地质的监测项目、位置和要求,应依据当地的地质、水文地质条件和预测的或已发生的环境地质问题来进行安排,一般要求监测它们的产生、变化和治理的全过程。
(六)运用地下水资源管理模型进行地下水资源的科学管理
地下水资源管理模型是为了达到某既定管理目标,利用运筹学中的最优化技术方法建立起的一组数学模拟模型。实质上,这里所说的地下水资源管理模型,是地下水流或溶质运移等数值模型和线性规划等管理模型耦合而成的复合模型。通过对此模型的运算,使该系统的特定目标达到最优,使地下水长期处于对人类生活、生产最有利的状态,以获得最大的经济、社会和环境效益。换言之,地下水管理模型就是运用运筹学方法,应用系统分析原理,为达到某即定管理目标所建立的求解地下水最优管理决策的数学模型。通常,它是由地下水系统的状态模拟模型(如地下水流模拟模型、地下水溶质模拟模型)和优化模型耦合而成。这样的地下水管理模型,可以在寻求最优决策的运转过程中严格服从地下水的运动规律,实现水文地质概念模型的仿真要求(林学钰,1995)。地下水管理模型是地下水管理研究的一个重要内容。运用地下水资源管理模型可更好地进行地下水资源的科学管理。从水资源管理发展的历史分析,水资源管理,最主要的技术管理手段之一,就是运用系统论与系统分析方法等现代科学技术,建立水资源或地下水资源系统管理模型,优化出地下水最合理的开发方案。这已成为当前国际上共同使用的重要管理措施。
我国从20世纪80年代以来,由于地下水系统理论、非稳定流理论及以数值解或解析解为代表的现代应用数学的引入,以及计算机技术、同位素技术等新技术的广泛应用,使地下水资源的研究发生了根本性的变化,即把从地下水资源评价到管理的全过程纳入系统工程的轨道,研究如何合理开发、利用、调控和保护地下水资源,使之处于对人类生活与生产最有利的状态。因此,它不仅涉及水文地质学的各个领域,而且还涉及与地下水开发活动有关的自然环境、社会环境和技术经济环境等的问题,最终通过教学模型和最优化技术,建立地下水管理模型,实现管理目标。
地下水管理模型的研究内容目前主要集中在地表水—地下水联合调度,地下水量—水质综合管理,地下水科学开采与和管理模型,地下水可持续利用管理模型等。
C. 地下水实际流速和流向的测定
地下水实际流速和流向的测定是密切相关的,在测定地下水实际流速前应先测定或确定地下水流向。
1.地下水流向的测定
地下水的流向是阐明区域地下水径流条件,确定地下水补给方向和流量计算断面的方向、正确布置地下水取水、排水、堵水截流工程设施以及示踪试验井组位置等必不可少的依据。地下水流向的测定(确定)方法主要有:①根据等水线图确定:即垂直等水位线由高到低的方向就是地下水流向;②物探方法:如用充电法确定地下水流向,详见有关物探书籍;③三角形井孔法确定地下水流向:大体按等边三角形布置三个钻孔(图5-15),并测定天然地下水位,用插值的方法作出等水位线,垂直等水位线由高到低的方向即为地下水流向(图5-15)。
2.地下水实际流速测定
地下水实际流速,可直接用于地下水断面流量的计算,判断水流属层流或紊流,可研究化学物质在水中的弥散,确定含水层的一些参数以及作为决定地下水灌浆中一些技术措施的依据等。测定地下水实际流速的方法有两种,其一为示踪试验法,其二为物探方法,这里仅说明前者的试验方法。
(1)测定流速前先测定地下水流向,方法同前。
(2)布置投剂孔(注入孔)和观测孔(接受孔)。在地下水流向已知的基础上,沿地下水流向至少布置两个井孔,上游孔为投示踪剂(或称指示剂)孔或注入水,下游孔为观测孔或接受孔(取样孔),为防止流向偏离,可在下游孔两侧按圆弧相距0.5~5.0m各布置一个辅助观测孔(图5-16)。上游孔与下游孔之间距离主要取决于岩石透水性。如为细砂,一般相距2~5m,透水性好的裂隙岩石一般为10~15m。
(3)选择示踪剂,并在注入孔中投放,在观测孔中进行接受监测。应根据试验条件和要求选择合适的示踪剂,目前我国测定实际流速主要采用的是化学试剂和染料,参见表5-2。进行试验时,首先将示踪剂以瞬时脉冲方式注入投剂孔(注入孔)中的含水层段,然后用定深取样分析方法或定深探头(如离子探针等)定时观测观测井(接受井)中示踪剂的出现,待示踪剂晕的前缘在观测中出现后,应加密观测(取样)次数,以准确的测定出示踪剂前缘和峰值到达观测井的时间。
表5-2 示踪剂类型、特点和应用条件
D. 地下水动态长期观测
(一)地下水动态长期观测孔(网)的布置
地下水动态观测孔网的位置,主要决定于水文地质调查的目的、任务,调查阶段和水文地质条件等。根据其目的、任务,可把地下水动态观测孔网分为区域性基本观测网和专门性观测网两种。前者的主要任务是研究地下水动态的一般变化规律,查明地下水动态的成因类型,积累区域内地下水动态多年观测资料;后者是为专门目的任务(如供水、地下水管理等)或特殊要求布置的。
区域性基本观测孔网的一般布置原则是:①以较少的观测点控制较大的面积,以最低的成本,获得系统、全面和高质量的长观资料;②地下水动态观测点一般应布置成观测(监测)线形式,主要的观测线应穿过地下水不同动态成因类型的地段,沿着区域水文地质条件变化最大的方向布置;③对不同成因类型的动态区、不同的含水层,地下水的补给、径流和排泄区,均应有动态观测点控制,每个观测点都应有代表性和起控制作用;④对次要的、有差异性的地段和特殊变化点上应设辅助观测孔;⑤观测孔网一般应与均衡研究结合起来。
为供水、水量、水质计算和地下水资源管理等专门目布置的长期观测孔,主要是为建立计算模型、水文地质参数分区及选择参数提供资料,其布置的一般原则是:①为满足地下水数值法计算的需要,地下水动态观测点应布置成网状形式,以求能控制区内地下水流场及水质的变化;②对渗流场中的地下水分水岭、汇水槽谷、开采水位降落漏斗中心、计算区的边界、不同水文地质参数分区及有害的环境地质作用已发生和可能发生的地段,均应有长期观测孔控制;③在多层含水层分布区,应布置分层观测孔组。
长观孔网的布置,还应考虑不同调查阶段的工作要求。一般,在普查阶段,可适当布设一些长期观测孔;在初勘阶段,应建立基本的观测线网和控制性观测井孔;详勘阶段,应增布专门性观测线网,健全地下水动态观测点,观测点、线、网应有机结合。
(二)主要技术要求
1.对观测点的要求
地下水动态观测点,主要是井、孔、泉,此外还有暗河出口、矿山井巷水点,地下开挖工程等地下水天然及人工水点。还应设立地表水、气象要素、环境地质现象等的观测点。要充分利用区内已有的水文地质条件有代表性、井孔结构、地层剖面清楚的井孔作观测点。选择泉水点时,要注意泉的典型性和代表性,还要考虑测流方便。
观测孔的结构取决于含水层性质、观测层数和内容,如松散层应设置过滤器,一孔观测多层则要求分层止水,孔径应保证能安装各层测水管,如观测井孔有测流量的要求,其孔径应满足下入抽水设备。同孔分层水位观测孔结构如图6-9、图6-10所示。观测孔的深度,根据要求可以是完整孔,或不完整孔。后者的孔深应保证观测到最低水位。通常观测孔孔口应高出地面,并在孔口加保护帽。孔口应有固定的观测水准(高程)。对每个观测点,均应建立技术档案资料。
2.观测项目和要求
地下水动态观测项目(内容)主要是地下水位、流量(主要是泉、地下河出口、自溢孔和生产井的流量)、水质、水温。必要时还需观测地表水、气象要素、环境地质现象等。
观测频率、次数和时间取决于观测项目(内容)及有关要素的变化快慢。通常,水位、流量、水温每5日观测1次。其中,对水位和流量的观测,在丰水期、水位上升及峰值时期应加密观测。地表水和地下河洪峰时期,可加密至每日两次,以保证能最逼真的反映其变化规律。水质每季度取样分析1次,或在一年的枯水期、丰水期分别采样分析。
同一水文地质单元应力求对各点同时观测,否则应在季节代表性日期内统一观测。为了能从动态变化规律中分析出不同动态要素(观测项目)间的相互联系,对各观测项目的观测时间,在一年中至少要有几次是统一的。
水样采集常用硬质玻璃瓶或聚乙烯塑料瓶作为取水容器。对取水容器要进行彻底地清洗,以去除污垢。取水样时再用所采集的水洗涤三次以上。水样采取后应及时封盖好,并用石蜡封闭,以防运输途中水溢出。水样采集量与分析项目和分析方法有关,简分析一般需取水样500~1000mL;全分析水样一般为1000~2000mL。当要测定水中不稳定成分时,取样时应同时加放稳定剂。例如,分析侵蚀性 CO2时,应在取样瓶中加入CaCO3粉末;分析挥发性酚、氰化物时,应在取样瓶中加入NaOH,使pH≥12;分析Al、Pb、Cd等微量金属,应在取样瓶中加入硝酸(H2NO3)酸化,使pH≤2,等等。对泉水可以直接从泉口取样,对开采井可以在出水口采集,对观测孔则需要专门的取样器采集水样。常用的采水器如图6-11所示。
图6-11 观测孔采水器装置图
1—绳子;2—带有绳子的橡皮擦;3—采样瓶;4—重锤;5—采水瓶架;6—挂钩
E. 地下水资源开发的科学管理
地下水资源开发的科学管理,就是人们按照生活、生产和水循环本身的客观规律,研究如何合理地规划、勘查、开发、利用、调控及保护地下水资源和防治地质环境恶化,使它们处于对人类社会生活与生产最有利的状态。地下水资源管理的目的,就是采用科学的措施,保证在地下水资源开发中做到最优规划、最优评价、最优设计和最优开采运行,把开采或排泄地下水可能或已经造成的危害降低到最小,使用水者在技术经济、社会和环境上获得最大的效益。
地下水资源开发科学管理的内容主要有三个方面:法制管理措施、行政组织措施和技术经济措施。
1.制定与完善相关法律,依法对水资源进行管理
目前我国已实施多种有关水资源的立法,其中《水法》最为重要。
《水法》的基本任务是:调节水体的使用,以保证居民和国民经济各部门的合理开发和利用;保护水体免遭污染和枯竭;防治因取水引起的各种环境灾害;改善水体状况;保护企业、团体、机关与公民的用水权利,加强水利关系方面的法制。
2.建立水资源管理的组织机构,统一管理水资源
1)水资源管理,如果没有强有力的组织机构来领导、监督与保证,是无法实现的。因此从中央到地方,建立统一的、既赋有规律和行政权力,又有专业职能的水资源管理机构,是进行水资源管理中不可缺少的组织保证。
2)各级水资源管理机构,应切实做到全面有效地管理。贯彻《水法》,统一规划和调配一切水资源。
a.对“三水”做统一技术管理,核定区内水资源总量,研究它们之间的相互转化,制定地表水与地下水联合开发方案;
b.对各种水资源进行科学研究与开发,进行统一规划与管理;
c.协调区内水资源,对供水、排水及人工补给进行水资源调配,不许各自为政;
d.对供水的开源、用水与节流,进行统一的规划与管理;
e.对水资源保护和环境地质灾害预测与防治进行管理;
f.建立地下水动态观测网,进行地下水位、水质、水量等水文地质要素的动态观测;做好观测资料的积累、分析与储存工作,对地下水开采动态作定期水情预报。
3.水资源管理的技术经济措施
(1)水资源管理应“开源”与“节流”并重
据统计,我国地表水的开发利用率只占河川年径流量的20%左右,浅层地下水的利用也仅为25%左右。所以寻找新的水源尚有潜力。但更应重视其他开源措施,而节流则是刻不容缓的重要工作。供水的开源措施:建造地下水库,扩大地表水向地下水转化;进行地下水资源的人工补给;矿山排水作为供水水源,解决供排矛盾。供水的节流措施:废(污)水处理回收,提高重复利用率;推广先进的节水措施;提倡节约生活用水;开展一水多用。
(2)水资源管理模型的管理
运用系统论与系统分析方法等现代科学技术建立水资源或地下水资源系统管理模型,优化出最合理的开发方案,是地下水资源最主要的技术管理手段。
依据管理区的水文地质条件、已取得的资料和管理目标的不同,应选用相应类型的管理模型。常用的地下水资源管理模型有:按模型中的变量性质可分为确定性系统管理模型、随机性系统管理模型;按参数分布状况可分为分布参数系统与集中参数系统两类管理模型;按解决问题的性质可分为水量管理模型、水质管理模型和政策评价及经济管理模型三类;按目标函数及约束条件的性质可分为线性规划与非线性规划管理模型;按目标函数多少又可分为单目标管理模型和多目标管理模型等。
地下水资源管理模型,主要由三个部分组成,即决策变量、目标函数和约束条件。
1)决策变量:为了优化开发地下水资源,人们通过控制与调配该地下水系统的开发与运行的决策来达到目的。这些人为可控变量称为决策变量。某些学者提出的主要决策变量如下:
a.抽水量在地域上和时间上的分布;
b.人工补给量在地域上和时间上的分布;
c.与含水层有水力联系的地表水体的水位;
d.开采地下水的水质;
e.人工补给用水的水质;
f.新增加的抽水井、人工补给设施的容量、地点和建造时间等。
2)目标函数:它是指经过系统管理后要达到的特定目标,以决策变量的数学表达式来表示。目标函数的内涵,随管理目的或管理模型的类型而异。根据实际开发地下水时采用的具体管理目的、措施或要求的不同,常选择管理区内地下水开采“各点水位降深的最小值”、“各点水位回升的最大值”,“获取的最大经济效益”、“耗能量最小”、“纯利润最大或投资量最小”、“供水量最大或水利用率最高”、“水中特定组分浓度与允许浓度之差最小”、“环境变化量最小”等中的一个或多个为目标函数。
3)约束条件:是指在地下水资源管理优化过程中,对地下水资源系统与自然环境系统、经济系统、人为活动及社会环境等的控制条件。主要有:
a.水力学约束,包括地下水流状态方程约束,地下水位约束(如为防止地面沉降或海水入侵而给定地下水位的上界或下界约束),地下水量约束(如控制回灌量、允许总用水量或泉水流量最小值等);
b.水质约束;
c.经济约束(产值或需求约束);
d.环境约束;
e.资源约束(如投资总量、地表水或地下水可供最大水量、河流保持最小流量值等);
f.取水或人工补给设备容量约束条件等。
(3)地下水动态监测
地下水动态监测工作是水资源管理不可缺少的组成部分,许多国家在水资源法中都明确规定,无地下水动态监测资料设计的水资源管理项目,在法律上绝对不允许。
地下水动态监测的主要内容包括:地下水的水位动态、水质变化、开采量与回灌量的统计等方面。当地下水系统内可能出现因水资源开发而引起的环境灾害时,也应对其变化进行监测。
地下水动态监测网布置的范围,原则上应包括整个水资源管理区,有时还应扩大到与本区水资源形成有关的毗邻地区。监测网点的布置,须考虑对全区水资源动态变化规律的控制,并在对地下水源地水质与水量产生最大影响的地段以及可能出现危害的地段加密观测点,进行重点监测。选择观测点的具体原则,首先要有代表性,并尽可能利用现有井点,做到一井多用。代表性是指所采取的水质样品或所观测的水位和流量数据,在地点和时间上能符合水体的真实情况,并能控制一定空间和时间的范围。而对于开采条件下的地下水位动态的观测,有两个基本任务:一是要掌握某一时期整个渗流场的水动力状况;二是要掌握可靠的水位随时间变化趋势及其变化速度。
对于地下水水质的监测,应注意下面几个问题:
1)水质监测项目一般可分为“基本监测项目”和“选择性监测项目”两类。前者是指全区所有监测点水样都必须测定的项目;后者则是根据每个监测点所在位置特征和不同目的而检测的某些指定项目。
2)除常规的水质监测外,目前特别强调对人类健康有危害的微量重金属离子、有机物和致病细菌,以及病毒的监测。有机物的危害性远大于无机物或微生物的污染危害。因此,在地下水受到有机污染的地区,应增加对微量有机物的监测项目。
3)微量重金属元素和有机污染物在地下水中的含量,一般都很低,如果不严格按要求取样,或由于在保存过程中水样自身发生化学或生物化学变化,将造成测定结果与实际情况不符,使水质评价失真,无法得出正确的评价结论或给出错误的评价结论。因此,首先要严格执行有关水样采取和保存的技术规程;其次应尽可能统一取样和分析样品的时间,并进行系统取样,以消除人为因素对分析结果造成的影响。
4.应用3S技术进行地下水资源的管理
全球定位系统(GPS)、遥感技术(RS)、地理信息系统(GIS),简称“3S”技术。“3S”技术是从20世纪60年代逐步发展起来,现在已经发展成熟的空间信息处理技术。
新中国成立以来,随着水文地质学的发展,至今不但积累了大量的高质量的数据和资料等信息,而且在一代又一代水文地质工作者的知识性、创造性的活动中,还积累了大量的、多样性的专业知识。从20世纪80年代后期开始,在我国各地普遍开展了水文地质数据库的计算机研制工作,这些成果从根本上改变了传统水文地质数据的收集和存储方法,实现了数据采集、编辑、存储、查询、分析、制图和表达的自动化,不但为资料共享创造了条件,也为“3S”技术在地下水资源的管理中奠定了基础。20世纪90年代后,我国的一些水文地质和相关专业的工作者开始开发国外已有的GIS软件,并在实际水文地质工作中加以应用。而后我国地质工作者和计算机专家又在引进和开发国外GIS软件的同时,开始自己制作GIS软件(如北京大学的Citystar,长地公司的MapGIS)等。这些软件的研制,大大推动了我国基于“3S”技术的地下水资源科学管理的发展。
复习思考题
1.解释地下水资源的概念。
2.地下水资源的基本特征是什么?
3.简述地下水资源评价的方法。
4.试述地下水资源量的分类方法。
5.解释允许开采量(可开采量)的概念。
6.什么是补给增量?补给增量的来源有哪些?
7.地下水资源开发的科学管理内容有哪些?
F. 地下水监测一般包括哪些项目去哪里检测
(1)感官性质化学指标:色度、浑浊度、臭和味、肉眼可见物、PH、铝、铁、锰、铜、锌、氯化物、硫酸盐、溶解性总固体、总硬度、耗氧量、挥发酚类、阴离子合成洗涤剂
毒理指标:砷、镉、铬、汞、硒氰化物、氟化物、硝酸盐、三氯甲烷、四氯化碳、溴酸盐、甲醛、亚氯酸盐、氯酸盐
(2)微生物指标:总大肠菌群、耐热大肠菌群、大肠埃希氏菌、致病菌、菌落总数
(3)放射性指标:总α放射性、总β放射性
具体可以找有相关资质的第三方检测机构咨询一下。
G. 地下水要检测哪些项目
地下水检测项目包括:色度;浑浊度;臭和味;余氯;化学需氧量,化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物腐烂分解后流入水体产生的。
地下水(ground water),是指赋存于地面以下岩石空隙中的水,狭义上是指地下水面以下饱和含水层中的水。在国家标准《水文地质术语》(GB/T 14157-93)中,地下水是指埋藏在地表以下各种形式的重力水。
国外学者认为地下水的定义有三种:一是指与地表水有显着区别的所有埋藏在地下水的水,特指含水层中饱水带的那部分水;二是向下流动或渗透,使土壤和岩石饱和,并补给泉和井的水;三是在地下的岩石空洞里、在组成地壳物质的空隙中储存的水。
地下水是水资源的重要组成部分,由于水量稳定,水质好,是农业灌溉、工矿和城市的重要水源之一。但在一定条件下,地下水的变化也会引起沼泽化、盐渍化、滑坡、地面沉降等不利自然现象。
地下水主要检测的项目有:1、色度:饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。2、浑浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。3、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。4、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。5、化学需氧量:是指化学氧化剂氧化水中有机污染物时所需氧量。化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物腐烂分解后流入水体产生的。
H. 地下水污染源监测满足什么条件时停止监测
正常生产条件下的一个生产周期内进行加密监测,即周期在8h以内的,每小时采样1次,周期大于8h的,每2h采样1次,但每个生产周期的采样次数不得少于3次。水污染监测系统是对公共水域或污染源水污染状况进行监视的装置系统。它一般由取样、测试和信号处理三部分组成。由取样、测试和信号处理三部分组成。取样可通过采样器采集水样送测试或将传感器与采样器一起直接安装在水体中完成。水污染监测系统监测参数通常有水温、流速、流量、pH值、电导率、溶解氧、铵离子、氰离子、硝酸根、COD、TOC等。传感器随测试的参数不同而不同。如溶解氧采用隔膜式原电池或极谱式传感器;pH采用玻璃电极传感器;氨和氰离子采用电极传感器等。信号处理部分主要完成数据采集、传输、显示、记录、贮存等功能。水污染监测系统分人工监测和自动监测两类。自动监测系统可连续自动进行监测、信号处理和传输。它一般安装在人群生产、生活有重要影响的水体,其运转和维护费用亦较高。
I. 地下水动态的监测频率
A.地下水水质监测时间和频率,对评价等级为一、二级的建设项目,宜分别在枯、丰水期和采样一次。若评价工作时间不足一个水文年时,应在枯水期进行一次采样。对评价等级为三级的建设项目,可只在枯水期进行一次采样。对固体废弃物堆积场的地下水水质监测,主要应在雨季进行,同时选有代表性监测井,进行水质、水位动态监测。对于建设项目投产后的动态监测工作,可作为建设单位环保监测的正常工作内容,按有关规定进行长期监测工作。
B. 地下水水位、水量统测工作,宜选择在当地的枯水期或地下水开采高峰期短时间(一般为3天)内一次完成。地下水开采高峰期可按当地机井集中农灌的时期确定。
C.地下水水位长期动态监测,一般每5—10天观测一次。当遇特殊原因(如降雨或事故性排放)水位发生明显变化时,应加密观测次数。
D. 若不专门进行地下水水温预测评价时,可只在水样采集时测定一次水温,若进行专门水温预测评价,可酌情加密水温观测次数。
J. 地下水监测方法有哪些
地下水监测方法有哪些?
测方法
1、地下水位动态监测:宜采用已有的水井、地下水的天然露头或工程中的钻孔、探井等进行。当钻孔易堵塞时,可在钻孔中安装过滤器进行监测。
2、水质监测:应定时取水试样,按监测的目的、要求进行水的物理化学成分分析。
当地下水可能被污染时,应在不同范围、不同深度取水试样进行化验分析,查明污染水的空间分布和污染程度。