㈠ 蚁群算法 蚂蚁的初始分布位置和最终分布位置由什么决定
概念:蚁群算法(antcolonyoptimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由MarcoDorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性2、正反馈多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.
㈡ 蚁群算法及其应用实例
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种对自然界蚂蚁的寻径方式进行模拟而得到的一种仿生算法,是一种用来在图中寻找优化路径的机率型算法。
蚂蚁在运动过程中,可以在行走的路径上留下信息素,后来的蚂蚁可以感知到信息素的存在,信息素浓度越高的路径越容易被后来的蚂蚁选择,从而形成一种正反馈现象。
它能够求出从原点出发,经过若干个给定的需求点,最终返回原点的最短路径。这也就是着名的旅行商问题(Traveling Saleman Problem,TSP)。
若蚂蚁从A点出发到D点觅食,它可以随机从ABD或ACD中选择一条路。假设初始时为每条路分配一只蚂蚁,每个时间单位行走一步,则经过8个时间单位后,情形如下图所示:ABD路线的蚂蚁到达D点,ACD路线的蚂蚁到达C点。
那么,再过8个时间单位,很容易可以得到下列情形:ABD路线的蚂蚁回到A点,ACD路线的蚂蚁到达D点。
α 代表信息素量对是否选择当前路径的影响程度,反映了蚁群在路径搜索中随机性因素作用的强度。
α 越大,蚂蚁选择以前走过的路径的可能性越大,搜索的随机性就会减弱。
α 过小,会导致蚁群搜索过早陷入局部最优,取值范围通常为[1,4]。
β 反映了启发式信息在指导蚁群搜索中的相对重要程度,蚁群寻优过程中先验性、确定性因素作用的强度。
β 过大,虽然收敛速度加快,但是易陷入局部最优。
β 过小,蚁群易陷入纯粹的随机搜索,很难找到最优解。通常取[0,5]。
ρ 反映了信息素的蒸发程度,相反,1-ρ 表示信息素的保留水平
ρ 过大,信息素会发过快,容易导致最优路径被排除。
ρ 过小,各路径上信息素含量差别过小,以前搜索过的路径被在此选择的可能性过大,会影响算法的随机性和全局搜索能力。通常取[0.2,0.5]。
m过大,每条路径上信息素趋于平均,正反馈作用减弱,从而导致收敛速度减慢。
m过小,可能导致一些从未搜索过的路径信息素浓度减小为0,导致过早收敛,解的全局最优性降低
总信息量Q对算法性能的影响有赖于αβρ的选取,以及算法模型的选择。
Q对ant-cycle模型蚁群算法的性能没有明显影响,不必特别考虑,可任意选取。
㈢ 蚁群算法及其应用的内容简介
蚁群算法是意大利学者Dorigo等人于1991年创立的,是继神经网络、遗传算法、免疫算法之后的又一种新兴的启发式搜索算法。蚂蚁群体是一种社会性昆虫,它们有组织、有分工,还有通讯系统,它们相互协作,能完成从蚁穴到食物源寻找最短路径的复杂任务。模拟蚂蚁群体智能的人工蚁群算法具有分布计算、信息正反馈和启发式搜索的特点,不仅在求解组合优化问题中获得广泛应用,而且也用于连续时间系统的优化。
本书是国内首部蚁群算法的专着,系统地阐述蚁群算法的基本原理、基本蚁群算法及改进算法,蚁群算法与遗传、免疫算法的融合,自适应蚁群算法,并行蚁群算法,蚁群算法的收敛性与理论模型及其在优化问题中的应用。
㈣ 蚁群算法原理及其应用的介绍
《蚁群算法原理及其应用》是科学出版社2005-02-01出版的图书,作者是段海滨。该书内容取材新颖,覆盖面较广,深入浅出,系统性强,注重理论联系实际,力求使读者能较快掌握和应用这一新兴的仿生优化算法。
㈤ 蚁群算法原理及其应用的内容简介
《蚁群算法原理及其应用(精装)》可作为计算机科学、控制科学、人工智能、管理科学等专业高年级本科生、研究生和教师的参考书,也可供理工科其他专业的师生参考,还可供利用计算机从事智能优化的科技人员阅读和参考。
㈥ 蚁群算法原理及其应用的图书目录
第1章 绪论
1.1 引言
1.2 蚂蚁的生物学特征
1.3 蚁群算法的思想起源
1.4 蚁群算法的研究进展
1.5 本书的体系结构
1.6 本章 小结
参考文献
第2章 基本蚁群算法原理及其复杂度分析
2.1 引言
2.2 基本蚁群算法的原理
2.3 基本蚁群算法的系统学特征
2.4 基本蚁群算法的数学模型
2.5 基本蚁群算法的具体实现
2.6 基本蚁群算法的复杂度分析
2.7 基本蚁群算法的性能评价指标
2.8 本章 小结
参考文献
第3章 蚁群算法的收敛性研究
3.1 引言
3.2 图搜索蚂蚁系统(GBAS)的收敛性研究
3.3 一类改进蚁群算法的收敛性证明
3.4 GBAS/tdev和GBAS/tdlb的确定性收敛证明
3.5 基本蚁群算法的A.S.收敛性研究
3.6 一类分布式蚂蚁路由算法的收敛性研究
3.7 基于分支路由和Wiener过程的蚁群算法收敛性证明
3.8 一种简单蚁群算法及其收敛性分析
3.9 遗传一蚁群算法的Markov收敛性分析
3.1 0一类广义蚁群算法(GACA)的收敛性分析
3.1 1本章 小结
参考文献
第4章 蚁群算法的实验分析及参数选择原则
4.1 引言
4.2 蚁群行为和参数对算法性能影响的实验分析
4.3 蚁群算法参数最优组合的“三步走”方法
4.4 本章 小结
参考文献
第5章 离散域蚁群算法的改进研究
5.1 引言
5.2 自适应蚁群算法
5.3 基于去交叉局部优化策略的蚁群算法
5.4 基于信息素扩散的蚁群算法
5.5 多态蚁群算法
5.6 基于模式学习的小窗口蚁群算法
5.7 基于混合行为的蚁群算法
5.8 带聚类处理的蚁群算法
5.9 基于云模型理论的蚁群算法
5.1 0具有感觉和知觉特征的蚁群算法
5.1 1具有随机扰动特性的蚁群算法
5.1 2基于信息熵的改进蚁群算法
5.1 3本章 小结
参考文献
第6章 连续域蚁群算法的改进研究
6.1 引言
6.2 基于网格划分策略的连续域蚁群算法
6.3 基于信息量分布函数的连续域蚁群算法
6.4 连续域优化问题的自适应蚁群算法
6.5 基于交叉变异操作的连续域蚁群算法
6.6 嵌入确定性搜索的连续域蚁群算法
6.7 基于密集非递阶的连续交互式蚁群算法(cIACA)
6.8 多目标优化问题的连续域蚁群算法
6.9 复杂多阶段连续决策问题的动态窗口蚁群算法
6.1 0本章 小结
参考文献
第7章 蚁群算法的典型应用
7.1 引言
7.2 车间作业调度问题
7.3 网络路由问题
7.4 车辆路径问题
7.5 机器人领域
7.6 电力系统
7.7 故障诊断
7.8 控制参数优化
7.9 系统辨识
7.1 0聚类分析
7.1 1数据挖掘
7.1 2图像处理
7.1 3航迹规划
7.1 4空战决策
7.1 5岩土工程
7.1 6化学工业
7.1 7生命科学
7.1 8布局优化
7.1 9本章 小结
参考文献
第8章 蚁群算法的硬件实现
8.1 引言
8.2 仿生硬件概述
8.3 基于FPGA的蚁群算法硬件实现
8.4 基于蚁群算法和遗传算法动态融合的软硬件划分
8.5 本章 小结
参考文献
第9章 蚁群算法同其他仿生优化算法的比较与融合
9.1 引言
9.2 其他几种仿生优化算法的基本原理
9.3 蚁群算法与其他仿生优化算法的异同比较
9.4 蚁群算法与遗传算法的融合
9.5 蚁群算法与人工神经网络的融合
9.6 蚁群算法与微粒群算法的融合
9.7 蚁群算法与人工免疫算法的融合
9.8 本章 小结
参考文献
第10章 展望
10.1 引言
10.2 蚁群算法的模型改进
10.3 蚁群算法的理论分析
10.4 蚁群算法的并行实现
10.5 蚁群算法的应用领域
10.6 蚁群算法的硬件实现
10.7 蚁群算法的智能融合
10.8 本章 小结
参考文献
附录A基本蚁群算法程序
A.1 C语言版
A.2 Matlab语言版
A.3 VisualBasic语言版
附录B相关网站
附录C基本术语(中英文对照)及缩略语
附录D(词一首)鹧鸪天蚁群算法
㈦ 蚁群算法及其应用的介绍
蚁群算法及其应用可供人工智能、计算机科学、信息科学、控制工程、管理工程、交通工程、网络工程、智能优化算法及智能自动化等领域的广大师生和科技人员学习及参考。
㈧ 寻找配送商应注意哪些
http://www.equn.com/forum/viewthread.php?tid=6768 近一百多篇文章,打包压缩后有 24.99MB ,基本上是从维普数据库中下载来的蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。引言 20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发,提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题.20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法—— 蚁群算法.用该方法求解TsP问题、分配问题、job-shop调度问题,取得了较好的试验结果.虽然研究时间不长,但是现在的研究显示出,蚁群算法在求解复杂优化问题 方面有一定优势,表明它是一种有发展前景的算法.蚁群算法的原理: 研究表明:蚂蚁在觅食途中会留下一种外激素.蚂蚁利用外激素与其他蚂蚁交流、合作,找到较短路径.经过某地的蚂蚁越多,外激素的强度越大.蚂蚁择路偏向选择外激素强度大的方向.这种跟随外激素强度前进的行为会随着经过蚂蚁的增多而加强,因为通过较短路径往返于食物和巢穴之间的蚂蚁能以更短的时间经过这条路径上的点,所以这些点上的外激素就会因蚂蚁经过的次数增多而增强.这样就会有更多的蚂蚁选择此路径,这条路径上的外激素就会越来越强,选择此路径的蚂蚁也越来越多.直到最后,几乎所有的蚂蚁都选择这条最短的路径.这是一种正反馈现象。 以下是文件列表,全是 PDF 格式的:基于蚁群优化算法递归神经网络的短期负荷预测 蚁群算法的小改进 基于蚁群算法的无人机任务规划 多态蚁群算法 MCM基板互连测试的单探针路径优化研究 改进的增强型蚁群算法 基于云模型理论的蚁群算法改进研究 基于禁忌搜索与蚁群最优结合算法的配电网规划 自适应蚁群算法在序列比对中的应用 基于蚁群算法的QoS多播路由优化算法 多目标优化问题的蚁群算法研究 多线程蚁群算法及其在最短路问题上的应用研究 改进的蚁群算法在2D HP模型中的应用 制造系统通用作业计划与蚁群算法优化 基于混合行为蚁群算法的研究 火力优化分配问题的小生境遗传蚂蚁算法 基于蚁群算法的对等网模拟器的设计与实现 基于粗粒度模型的蚁群优化并行算法 动态跃迁转移蚁群算法 基于人工免疫算法和蚁群算法求解旅行商问题 基于信息素异步更新的蚁群算法 用于连续函数优化的蚁群算法 求解复杂多阶段决策问题的动态窗口蚁群优化算法 蚁群算法在铸造生产配料优化中的应用 多阶段输电网络最优规划的并行蚁群算法 求解旅行商问题的混合粒子群优化算法 微粒群优化算法研究现状及其进展 随机摄动蚁群算法的收敛性及其数值特性分析 广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用 改进的蚁群算法及其在TSP中的应用研究 蚁群算法的全局收敛性研究及改进 房地产开发项目投资组合优化的改进蚁群算法 一种改进的蚁群算法用于灰色约束非线性规划问题求解 一种自适应蚁群算法及其仿真研究 一种动态自适应蚁群算法 蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用 用改进蚁群算法求解函数优化问题 连续优化问题的蚁群算法研究进展 蚁群算法概述 Ant colony system algorithm for the optimization of beer fermentation control 蚁群算法在K—TSP问题中的应用 Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain 基于遗传蚁群算法的机器人全局路径规划研究 改进的蚁群算法在矿山物流配送路径优化中的研究 基于蚁群算法的配电网络综合优化方法 基于蚁群算法的分类规则挖掘算法 蚁群算法在连续性空间优化问题中的应用 蚁群算法在矿井通风系统优化设计中的应用 基于蚁群算法的液压土锚钻机动力头优化设计 改进蚁群算法设计拉式膜片弹簧 计算机科学技术 基本蚁群算法及其改进 TSP改进算法及在PCB数控加工刀具轨迹中的应用 可靠性优化的蚁群算法 对一类带聚类特征TSP问题的蚁群算法求解 蚁群算法理论及应用研究的进展 基于二进制编码的蚁群优化算法及其收敛性分析 蚁群算法的理论及其应用 基于蚁群行为仿真的影像纹理分类 启发式蚁群算法及其在高填石路堤稳定性分析中的应用 蚁群算法的研究现状 一种快速全局优化的改进蚁群算法及仿真 聚类问题的蚁群算法 蚁群最优化——模型、算法及应用综述 基于信息熵的改进蚁群算法及其应用 机载公共设备综合管理系统任务分配算法研究 基于改进蚁群算法的飞机低空突防航路规划 利用信息量留存的蚁群遗传算法 An Improved Heuristic Ant-Clustering Algorithm 改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用 基于蚁群算法的PID参数优化 基于蚁群算法的复杂系统多故障状态的决策 蚁群算法在数据挖掘中的应用研究 基于蚁群算法的基因联接学习遗传算法 基于细粒度模型的并行蚁群优化算法 Binary-Coding-Based Ant Colony Optimization and Its Convergence 运载火箭控制系统漏电故障诊断研究 混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用 蚁群算法原理的仿真研究 Hopfield neural network based on ant system 蚁群算法及其实现方法研究 分层实体制造激光头切割路径的建模与优化 配送网络规划蚁群算法 基于蚁群算法的城域交通控制实时滚动优化 基于蚁群算法的复合形法及其在边坡稳定分析中的应用 Ant Colony Algorithm for Solving QoS Routing Problem 多产品间歇过程调度问题的建模与优化 基于蚁群算法的两地之间的最佳路径选择 蚁群算法求解问题时易产生的误区及对策 用双向收敛蚁群算法解作业车间调度问题 物流配送路径安排问题的混合蚁群算法 求解TSP问题的模式学习并行蚁群算法 基于蚁群算法的三维空间机器人路径规划 蚁群优化算法及其应用 蚁群算法不确定性分析 一种求解TSP问题的相遇蚁群算法 基于蚁群优化算法的彩色图像颜色聚类的研究 钣金件数控激光切割割嘴路径的优化 基于蚁群算法的图像分割方法 一种基于蚁群算法的聚类组合方法 圆排列问题的蚁群模拟退火算法 智能混合优化策略及其在流水作业调度中的应用 蚁群算法在QoS网络路由中的应用 一种改进的自适应路由算法 基于蚁群算法的煤炭运输优化方法 基于蚁群智能和支持向量机的人脸性别分类方法 蚁群算法在啤酒发酵控制优化中的应用 一种基于时延信息的多QoS快速自适应路由算法 蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例 基于人工蚁群优化的矢量量化码书设计算法 具有自适应杂交特征的蚁群算法 蚁群算法在原料矿粉混匀优化中的应用 基于多Agent的蚁群算法在车间动态调度中的应用研究 用蚁群优化算法求解中国旅行商问题 蚁群算法在婴儿营养米粉配方中的应用 蚁群算法在机械优化设计中的应用 蚁群优化算法的研究现状及研究展望 蚁群优化算法及其应用研究进展 蚁群算法的理论与应用 简单蚁群算法的仿真分析 一种改进的蚁群算法求解最短路径问题 基于模式求解旅行商问题的蚁群算法 一种求解TSP的混合型蚁群算法 基于MATLAB的改进型基本蚁群算法 动态蚁群算法求解TSP问题 用蚁群算法求解类TSP问题的研究 蚁群算法求解连续空间优化问题的一种方法 用混合型蚂蚁群算法求解TSP问题 求解复杂TSP问题的随机扰动蚁群算法 基于蚁群算法的中国旅行商问题满意解 蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现 蚁群算法概述 蚁群算法的研究现状及其展望 基于蚁群算法的配电网网架优化规划方法 用于一般函数优化的蚁群算法 协同模型与遗传算法的集成 基于蚁群最优的输电网络扩展规划 自适应蚁群算法 凸整数规划问题的混合蚁群算法 一种新的进化算法—蛟群算法 基于协同工作方式的一种蚁群布线系统
㈨ 蚁群优化算法的使用-编码的问题!
“蚁群算法”学习包下载
下载地址: http://board.verycd.com/t196436.html (请使用 eMule 下载)
近一百多篇文章,打包压缩后有 24.99MB ,基本上是从维普数据库中下载来的,仅供学习和研究之用,请务用于商业活动或其他非法活动中,各文章版权归原作者所有。
如果您觉得本人这样做侵犯了您的版权,请在本帖后回复,本人会马上删除相应的文章。
以下是文件列表,全是 PDF 格式的:
基于蚁群优化算法递归神经网络的短期负荷预测
蚁群算法的小改进
基于蚁群算法的无人机任务规划
多态蚁群算法
MCM基板互连测试的单探针路径优化研究
改进的增强型蚁群算法
基于云模型理论的蚁群算法改进研究
基于禁忌搜索与蚁群最优结合算法的配电网规划
自适应蚁群算法在序列比对中的应用
基于蚁群算法的QoS多播路由优化算法
多目标优化问题的蚁群算法研究
多线程蚁群算法及其在最短路问题上的应用研究
改进的蚁群算法在2D HP模型中的应用
制造系统通用作业计划与蚁群算法优化
基于混合行为蚁群算法的研究
火力优化分配问题的小生境遗传蚂蚁算法
基于蚁群算法的对等网模拟器的设计与实现
基于粗粒度模型的蚁群优化并行算法
动态跃迁转移蚁群算法
基于人工免疫算法和蚁群算法求解旅行商问题
基于信息素异步更新的蚁群算法
用于连续函数优化的蚁群算法
求解复杂多阶段决策问题的动态窗口蚁群优化算法
蚁群算法在铸造生产配料优化中的应用
多阶段输电网络最优规划的并行蚁群算法
求解旅行商问题的混合粒子群优化算法
微粒群优化算法研究现状及其进展
随机摄动蚁群算法的收敛性及其数值特性分析
广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用
改进的蚁群算法及其在TSP中的应用研究
蚁群算法的全局收敛性研究及改进
房地产开发项目投资组合优化的改进蚁群算法
一种改进的蚁群算法用于灰色约束非线性规划问题求解
一种自适应蚁群算法及其仿真研究
一种动态自适应蚁群算法
蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用
用改进蚁群算法求解函数优化问题
连续优化问题的蚁群算法研究进展
蚁群算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蚁群算法在K—TSP问题中的应用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基于遗传蚁群算法的机器人全局路径规划研究
改进的蚁群算法在矿山物流配送路径优化中的研究
基于蚁群算法的配电网络综合优化方法
基于蚁群算法的分类规则挖掘算法
蚁群算法在连续性空间优化问题中的应用
蚁群算法在矿井通风系统优化设计中的应用
基于蚁群算法的液压土锚钻机动力头优化设计
改进蚁群算法设计拉式膜片弹簧
计算机科学技术
基本蚁群算法及其改进
TSP改进算法及在PCB数控加工刀具轨迹中的应用
可靠性优化的蚁群算法
对一类带聚类特征TSP问题的蚁群算法求解
蚁群算法理论及应用研究的进展
基于二进制编码的蚁群优化算法及其收敛性分析
蚁群算法的理论及其应用
基于蚁群行为仿真的影像纹理分类
启发式蚁群算法及其在高填石路堤稳定性分析中的应用
蚁群算法的研究现状
一种快速全局优化的改进蚁群算法及仿真
聚类问题的蚁群算法
蚁群最优化——模型、算法及应用综述
基于信息熵的改进蚁群算法及其应用
机载公共设备综合管理系统任务分配算法研究
基于改进蚁群算法的飞机低空突防航路规划
利用信息量留存的蚁群遗传算法
An Improved Heuristic Ant-Clustering Algorithm
改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用
基于蚁群算法的PID参数优化
基于蚁群算法的复杂系统多故障状态的决策
蚁群算法在数据挖掘中的应用研究
基于蚁群算法的基因联接学习遗传算法
基于细粒度模型的并行蚁群优化算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
运载火箭控制系统漏电故障诊断研究
混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用
蚁群算法原理的仿真研究
Hopfield neural network based on ant system
蚁群算法及其实现方法研究
分层实体制造激光头切割路径的建模与优化
配送网络规划蚁群算法
基于蚁群算法的城域交通控制实时滚动优化
基于蚁群算法的复合形法及其在边坡稳定分析中的应用
Ant Colony Algorithm for Solving QoS Routing Problem
多产品间歇过程调度问题的建模与优化
基于蚁群算法的两地之间的最佳路径选择
蚁群算法求解问题时易产生的误区及对策
用双向收敛蚁群算法解作业车间调度问题
物流配送路径安排问题的混合蚁群算法
求解TSP问题的模式学习并行蚁群算法
基于蚁群算法的三维空间机器人路径规划
蚁群优化算法及其应用
蚁群算法不确定性分析
一种求解TSP问题的相遇蚁群算法
基于蚁群优化算法的彩色图像颜色聚类的研究
钣金件数控激光切割割嘴路径的优化
基于蚁群算法的图像分割方法
一种基于蚁群算法的聚类组合方法
圆排列问题的蚁群模拟退火算法
智能混合优化策略及其在流水作业调度中的应用
蚁群算法在QoS网络路由中的应用
一种改进的自适应路由算法
基于蚁群算法的煤炭运输优化方法
基于蚁群智能和支持向量机的人脸性别分类方法
蚁群算法在啤酒发酵控制优化中的应用
一种基于时延信息的多QoS快速自适应路由算法
蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例
基于人工蚁群优化的矢量量化码书设计算法
具有自适应杂交特征的蚁群算法
蚁群算法在原料矿粉混匀优化中的应用
基于多Agent的蚁群算法在车间动态调度中的应用研究
用蚁群优化算法求解中国旅行商问题
蚁群算法在婴儿营养米粉配方中的应用
蚁群算法在机械优化设计中的应用
蚁群优化算法的研究现状及研究展望
蚁群优化算法及其应用研究进展
蚁群算法的理论与应用
简单蚁群算法的仿真分析
一种改进的蚁群算法求解最短路径问题
基于模式求解旅行商问题的蚁群算法
一种求解TSP的混合型蚁群算法
基于MATLAB的改进型基本蚁群算法
动态蚁群算法求解TSP问题
用蚁群算法求解类TSP问题的研究
蚁群算法求解连续空间优化问题的一种方法
用混合型蚂蚁群算法求解TSP问题
求解复杂TSP问题的随机扰动蚁群算法
基于蚁群算法的中国旅行商问题满意解
蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现
蚁群算法概述
蚁群算法的研究现状及其展望
基于蚁群算法的配电网网架优化规划方法
用于一般函数优化的蚁群算法
协同模型与遗传算法的集成
基于蚁群最优的输电网络扩展规划
自适应蚁群算法
凸整数规划问题的混合蚁群算法
一种新的进化算法—蛟群算法
基于协同工作方式的一种蚁群布线系统
㈩ 论文《蚁群算法及其应用研究》作者林海波,万方里只有导出,请问怎么下载
可以在知网或维普看看。