⑴ 加密方式有几种
加密方式的种类:
1、MD5
一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。
2、对称加密
对称加密采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
3、非对称加密
与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密。
如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
(1)广泛使用的两种加密技术扩展阅读
非对称加密工作过程
1、乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。
2、得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。
3、乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。
在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。
同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。
⑵ 目前常用的加密方法主要有两种是什么
目前常用的加密方法主要有两种,分别为:私有密钥加密和公开密钥加密。私有密钥加密法的特点信息发送方与信息接收方均需采用同样的密钥,具有对称性,也称对称加密。公开密钥加密,又称非对称加密,采用一对密钥,一个是私人密钥,另一个则是公开密钥。
私有密钥加密
私有密钥加密,指在计算机网络上甲、乙两用户之间进行通信时,发送方甲为了保护要传输的明文信息不被第三方窃取,采用密钥A对信息进行加密而形成密文M并发送给接收方乙,接收方乙用同样的一把密钥A对收到的密文M进行解密,得到明文信息,从而完成密文通信目的的方法。
这种信息加密传输方式,就称为私有密钥加密法。
私有密钥加密的特点:
私有密钥加密法的一个最大特点是:信息发送方与信息接收方均需采用同样的密钥,具有对称性,所以私有密钥加密又称为对称密钥加密。
私有密钥加密原理:
私有加密算法使用单个私钥来加密和解密数据。由于具有密钥的任意一方都可以使用该密钥解密数据,因此必须保证密钥未被授权的代理得到。
公开密钥加密
公开密钥加密(public-key cryptography),也称为非对称加密(asymmetric cryptography),一种密码学算法类型,在这种密码学方法中,需要一对密钥,一个是私人密钥,另一个则是公开密钥。
这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。
⑶ 电子商务中的主要安全技术有哪些
1、访问控制技术:这种技术主要采用防火墙,最初是针对Internet网络不安全因素所采取的一种保护措施。是用来阻挡外部不安全因素影响的内部网络屏障,其目的就是防止外部网络用户未经授权的访问。它是一种计算机硬件和软件的结合,使Internet与Intranet之间建立起一个安全网关,从而保护内部网免受非法用户的侵入,防火墙主要由服务访问政策、验证工具、包过滤和应用网关4个部分组成,防火墙就是一个位于计算机和它所连接的网络之间的软件或硬件。
2、加密技术:加密技术是一种主动的信息安全防范措施,其原理是利用一定的加密算法,将明文转换成为无意义的密文,阻止非法用户理解原始数据,从而确保数据的保密性。在加和解密的过程中,由加密者和解密者使用的加解密可变参数叫做密钥。目前,获得广泛应用的两种加密技术是对称密钥加密体制和非对称密钥加密体制。
3、数字签名:利用通过某种密码运算生成的一系列符号及代码组成电子密码进行“签名”,来代替书写签名或印章,这种数字化的签名在技术上还可进行算法验证,其验证的准确度是在物理世界中与手工签名和图章的验证是无法相比的。实现电子签名的技术手段目前有多种,比如基于公钥密码技术的数字签名;或用一个独一无二的以生物特征统计学为基础的识别标识。
4、安全认证协议:安全认证协议包括安全电子商务交易协议和安全套接层协议。 安全电子交易协议,是为了在互联网上进行在线交易时保证信用卡支付的安全而设立的一个开放的规范。由VISA和MasterCard两大信用卡公司于1997年5月联合推出的规范。SET主要是为了解决用户、商家和银行之间通过信用卡支付的交易而设计的,以保证支付信息的机密、支付过程的完整、商户及持卡人的合法身份、以及可操作性。
(3)广泛使用的两种加密技术扩展阅读:
电子商务是因特网爆炸式发展的直接产物,是网络技术应用的全新发展方向。因特网本身所具有的开放性、全球性、低成本、高效率的特点,也成为电子商务的内在特征,并使得电子商务大大超越了作为一种新的贸易形式所具有的价值,它不仅会改变企业本身的生产、经营、管理活动,而且将影响到整个社会的经济运行与结构。以互联网为依托的“电子”技术平台为传统商务活动提供了一个无比宽阔的发展空间,其突出的优越性是传统媒介手段根本无法比拟的。
⑷ wpa2-psk什么意思
wpa2-psk一种加密模式。
WPA-PSK(TKIP)+WPA2-PSK(AES),这是目前无线路由里最高的加密模式,目前这种加密模式因为兼容性的问题,还没有被很多用户所使用。
目前最广为使用的就是WPA-PSK(TKIP)和WPA2-PSK(AES)两种加密模式。相信在经过加密之后的无线网络,一定能够让我们的用户安心放心的上网冲浪。
WPA-PSK/WPA2-PSK是WPA与WPA2两种加密算法的混合体,是目前安全性最好的WiFi加密模式。WPA-PSK 也叫做 WPA-Personal(WPA个人)。
WPA-PSK使用TKIP加密方法把无线设备和接入点联系起来。WPA2-PSK使用AES加密方法把无线设备和接入点联系起来。使用AES加密算法不仅安全性能更高,而且由于其采用的是最新技术,因此,在无线网络传输速率上面也要比TKIP更快。
(4)广泛使用的两种加密技术扩展阅读:
其他路由加密方式:
WEP:
WEP,最基本的加密技术,全称为有线等效保密,是一种数据加密算法,它的安全技术源自于名为RC4的RSA数据加密技术,是无线局域网WLAN的必要的安全防护层。
运用了该技术的无线网络,所有客户端与无线接入点的数据都会以一个共享的密钥进行加密,常见的密钥长度有64 bits和128 bits两种。
WPA:
WPA(WiFi Protected Access),全称为WiFi网络安全存取。WPA协议是在前一代有线等效加密(WEP)的基础上产生的,解决了前任WEP的缺陷问题,它使用TKIP(临时密钥完整性)协议。
是IEEE 802.11i标准中的过渡方案。在安全的防护上比WEP更为周密,主要体现在身份认证、加密机制和数据包检查等方面,而且它还提升了无线网络的管理能力。
WPA2:
WPA2是WPA加密的升级版。它是WiFi联盟验证过的IEEE 802.11i标准的认证形式,WPA2实现了802.11i的强制性元素,特别是Michael算法被公认彻底安全的CCMP(计数器模式密码块链消息完整码协议)讯息认证码所取代、而RC4加密算法也被AES(高级加密)所取代。
参考资料来源:网络-wep加密
参考资料来源:网络-无线网安全技术
⑸ 加密技术分为哪两类
加密技术分为:
1、对称加密
对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难
2、非对称
1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。
加密技术的功能:
原有的单密钥加密技术采用特定加密密钥加密数据,而解密时用于解密的密钥与加密密钥相同,这称之为对称型加密算法。采用此加密技术的理论基础的加密方法如果用于网络传输数据加密,则不可避免地出现安全漏洞。
区别于原有的单密钥加密技术,PKI采用非对称的加密算法,即由原文加密成密文的密钥不同于由密文解密为原文的密钥,以避免第三方获取密钥后将密文解密。
以上内容参考:网络—加密技术
⑹ 加密技术有哪几种
采用密码技术对信息加密,是最常用的安全交易手段。在电子商务中获得广泛应用的加密技术有以下两种:
(1)公共密钥和私用密钥(public key and private key)
这一加密方法亦称为RSA编码法,是由Rivest、Shamir和Adlernan三人所研究发明的。它利用两个很大的质数相乘所产生的乘积来加密。这两个质数无论哪一个先与原文件编码相乘,对文件加密,均可由另一个质数再相乘来解密。但要用一个质数来求出另一个质数,则是十分困难的。因此将这一对质数称为密钥对(Key Pair)。在加密应用时,某个用户总是将一个密钥公开,让需发信的人员将信息用其公共密钥加密后发给该用户,而一旦信息加密后,只有用该用户一个人知道的私用密钥才能解密。具有数字凭证身份的人员的公共密钥可在网上查到,亦可在请对方发信息时主动将公共密钥传给对方,这样保证在Internet上传输信息的保密和安全。
(2)数字摘要(digital digest)
这一加密方法亦称安全Hash编码法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所设计。该编码法采用单向Hash函数将需加密的明文“摘要”成一串128bit的密文,这一串密文亦称为数字指纹(Finger Print),它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。这样这摘要便可成为验证明文是否是“真身”的“指纹”了。
上述两种方法可结合起来使用,数字签名就是上述两法结合使用的实例。
3.2数字签名(digital signature)
在书面文件上签名是确认文件的一种手段,签名的作用有两点,一是因为自己的签名难以否认,从而确认了文件已签署这一事实;二是因为签名不易仿冒,从而确定了文件是真的这一事实。数字签名与书面文件签名有相同之处,采用数字签名,也能确认以下两点:
a. 信息是由签名者发送的。
b. 信息在传输过程中未曾作过任何修改。
这样数字签名就可用来防止电子信息因易被修改而有人作伪;或冒用别人名义发送信息;或发出(收到)信件后又加以否认等情况发生。
数字签名采用了双重加密的方法来实现防伪、防赖。其原理为:
(1) 被发送文件用SHA编码加密产生128bit的数字摘要(见上节)。
(2) 发送方用自己的私用密钥对摘要再加密,这就形成了数字签名。
(3) 将原文和加密的摘要同时传给对方。
(4) 对方用发送方的公共密钥对摘要解密,同时对收到的文件用SHA编码加密产生又一摘要。
(5) 将解密后的摘要和收到的文件在接收方重新加密产生的摘要相互对比。如两者一致,则说明传送过程中信息没有被破坏或篡改过。否则不然。
3.3数字时间戳(digital time-stamp)
交易文件中,时间是十分重要的信息。在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。
在电子交易中,同样需对交易文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。
数字时间戳服务(DTS)是网上安全服务项目,由专门的机构提供。时间戳(time-stamp)是一个经加密后形成的凭证文档,它包括三个部分:1)需加时间戳的文件的摘要(digest),2)DTS收到文件的日期和时间,3)DTS的数字签名。
时间戳产生的过程为:用户首先将需要加时间戳的文件用HASH编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入了收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。由Bellcore创造的DTS采用如下的过程:加密时将摘要信息归并到二叉树的数据结构;再将二叉树的根值发表在报纸上,这样更有效地为文件发表时间提供了佐证。注意,书面签署文件的时间是由签署人自己写上的,而数字时间戳则不然,它是由认证单位DTS来加的,以DTS收到文件的时间为依据。因此,时间戳也可作为科学家的科学发明文献的时间认证。
3.4数字凭证(digital certificate, digital ID)
数字凭证又称为数字证书,是用电子手段来证实一个用户的身份和对网络资源的访问的权限。在网上的电子交易中,如双方出示了各自的数字凭证,并用它来进行交易操作,那么双方都可不必为对方身份的真伪担心。数字凭证可用于电子邮件、电子商务、群件、电子基金转移等各种用途。
数字凭证的内部格式是由CCITT X.509国际标准所规定的,它包含了以下几点:
(1) 凭证拥有者的姓名,
(2) 凭证拥有者的公共密钥,
(3) 公共密钥的有效期,
(4) 颁发数字凭证的单位,
(5) 数字凭证的序列号(Serial number),
(6) 颁发数字凭证单位的数字签名。
数字凭证有三种类型:
(1) 个人凭证(Personal Digital ID):它仅仅为某一个用户提供凭证,以帮助其个人在网上进行安全交易操作。个人身份的数字凭证通常是安装在客户端的浏览器内的。并通过安全的电子邮件(S/MIME)来进行交易操作。
(2) 企业(服务器)凭证(Server ID):它通常为网上的某个Web服务器提供凭证,拥有Web服务器的企业就可以用具有凭证的万维网站点(Web Site)来进行安全电子交易。有凭证的Web服务器会自动地将其与客户端Web浏览器通信的信息加密。
(3) 软件(开发者)凭证(Developer ID):它通常为Internet中被下载的软件提供凭证,该凭证用于和微软公司Authenticode技术(合法化软件)结合的软件,以使用户在下载软件时能获得所需的信息。
上述三类凭证中前二类是常用的凭证,第三类则用于较特殊的场合,大部分认证中心提供前两类凭证,能提供各类凭证的认证中心并不普遍
⑺ 数据加密主要有哪些方式
主要有两种方式:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。
一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)
链路加密
对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。
由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。
尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。
在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。
在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。
在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。
节点加密
尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。
然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。
节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。
端到端加密
端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。
端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。
端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。
⑻ 当前主流的加密技术有哪些
信息安全的重要性我们就不需再继续强调了,无论企业还是个人,都对加密软件的稳定性和安全性提出了更高的要求。可迎面而来更让很多人困惑的是当加密软件遍布市场令人应接不暇时,我们该如何去选择。下面让我们先来看一下目前主流的加密技术都有哪些。
1、 透明加密
透明加密技术是近年来针对企业文件保密需求应运而生的一种文件加密技术。所谓透明,是指对使用者来说是未知的。当使用者在打开或编辑指定文件时,系统将自动对未加密的文件进行加密,对已加密的文件自动解密。文件在硬盘上是密文,在内存中是明文。一旦离开使用环境,由于应用程序无法得到自动解密的服务而无法打开,从而起来保护文件内容的效果。
2、 驱动透明加密
驱动加密技术基于windows的文件系统(过滤)驱动(IFS)技术,工作在windows的内核层。我们在安装计算机硬件时,经常要安装其驱动,如打印机、U盘驱动。文件系统驱动就是把文件作为一种设备来处理的一种虚拟驱动。当应用程序对某种后缀文件进行操作时,文件驱动会监控到程序的操作,改变其操作方式,从而达到透明加密的效果。
3、 磁盘加密技术
磁盘加密技术相对于文档加密技术,是在磁盘扇区级采用的加密技术,一般来说,该技术与上层应用无关,只针对特点的磁盘区域进行数据加密或者解密。
选择加密软件首先要考虑哪种加密技术更适合自己。其考核的标准是在进行各种大量文件操作后,文件是否会出现异常而无法打开,企业可以使用各种常规和非常规的方法来仔细测试;此外透明加密产品是否支持在网络文件系统下各种应用程序的正常工作也可以作为一个考核的要点。目前受关注度比较高的是透明加密技术,主要针对文档信息安全,这也是因为办公自动化的普及,企业内部的信息往来及重要机密都是以文档的方式来存储,因此透明加密方式更适合这种以文件安全防护为主的用户,加密方式也更安全可靠。
我们知道office文档可以通过设置密码来进行加密,因此有些认为这样便能很好地保护信息安全,但是他们没有意识到现在黑客技术也在不断的成熟,而且密码加密有有机可乘的漏洞,并不能让企业机密高枕无忧。因此安全度更高的透明加密更符合人们的需要,脱离使用环境时文件得不到解密服务而以密文的形式呈现,即使盗窃者拿到文件资料也是没有办法破解的,也就没有任何利用价值。
加密技术是信息安全的核心技术,已经渗透到大部分安全产品之中。鹏宇成的免费加密软件核心文件保护工具采用的是透明加密技术,通过服务器端验证来对文件进行正常的加密解密过程,并且集成外发文件控制系统保证对外发文件随时可控,欢迎广大用户免费下载使用。
⑼ 对称加密算法与非对称加密算法的特点及用途
对称加密算法
对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。
对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有des、idea和aes。
不对称加密算法
不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有rsa算法和美国国家标准局提出的dsa。以不对称加密算法为基础的加密技术应用非常广泛。