上述过程中,出现了公钥(3233,17)和私钥(3233,2753),这两组数字是怎么找出来的呢?参考 RSA算法原理(二)
首字母缩写说明:E是加密(Encryption)D是解密(Decryption)N是数字(Number)。
1.随机选择两个不相等的质数p和q。
alice选择了61和53。(实际应用中,这两个质数越大,就越难破解。)
2.计算p和q的乘积n。
n = 61×53 = 3233
n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。
3.计算n的欧拉函数φ(n)。称作L
根据公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等于60×52,即3120。
4.随机选择一个整数e,也就是公钥当中用来加密的那个数字
条件是1< e < φ(n),且e与φ(n) 互质。
alice就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)
5.计算e对于φ(n)的模反元素d。也就是密钥当中用来解密的那个数字
所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1
6.将n和e封装成公钥,n和d封装成私钥。
在alice的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。
上述故事中,blob为了偷偷地传输移动位数6,使用了公钥做加密,即6^17 mode 3233 = 824。alice收到824之后,进行解密,即824^2753 mod 3233 = 6。也就是说,alice成功收到了blob使用的移动位数。
再来复习一下整个流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要满足以下两个条件:1<E<144,E和144互质)
D = 29(D要满足两个条件,1<D<144,D mode 144 = 1)
假设某个需要传递123,则加密后:123^5 mode 323 = 225
接收者收到225后,进行解密,225^ 29 mode 323 = 123
回顾上面的密钥生成步骤,一共出现六个数字:
p
q
n
L即φ(n)
e
d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。那么,有无可能在已知n和e的情况下,推导出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基网络这样写道:"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"
然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。此外,RSA的缺点还有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此, 使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法 。
加密和解密是自古就有技术了。经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫无意义的数字苦恼,忽然灵光一闪,翻出一本厚书,将第一个数字对应页码数,第二个数字对应行数,第三个数字对应那一行的某个词。数字变成了一串非常有意义的话:
Eat the beancurd with the peanut. Taste like the ham.
这种加密方法是将原来的某种信息按照某个规律打乱。某种打乱的方式就叫做密钥(cipher code)。发出信息的人根据密钥来给信息加密,而接收信息的人利用相同的密钥,来给信息解密。 就好像一个带锁的盒子。发送信息的人将信息放到盒子里,用钥匙锁上。而接受信息的人则用相同的钥匙打开。加密和解密用的是同一个密钥,这种加密称为对称加密(symmetric encryption)。
如果一对一的话,那么两人需要交换一个密钥。一对多的话,比如总部和多个特工的通信,依然可以使用同一套密钥。 但这种情况下,对手偷到一个密钥的话,就知道所有交流的信息了。 二战中盟军的情报战成果,很多都来自于破获这种对称加密的密钥。
为了更安全,总部需要给每个特工都设计一个不同的密钥。如果是FBI这样庞大的机构,恐怕很难维护这么多的密钥。在现代社会,每个人的信用卡信息都需要加密。一一设计密钥的话,银行怕是要跪了。
对称加密的薄弱之处在于给了太多人的钥匙。如果只给特工锁,而总部保有钥匙,那就容易了。特工将信息用锁锁到盒子里,谁也打不开,除非到总部用唯一的一把钥匙打开。只是这样的话,特工每次出门都要带上许多锁,太容易被识破身份了。总部老大想了想,干脆就把造锁的技术公开了。特工,或者任何其它人,可以就地取材,按照图纸造锁,但无法根据图纸造出钥匙。钥匙只有总部的那一把。
上面的关键是锁和钥匙工艺不同。知道了锁,并不能知道钥匙。这样,银行可以将“造锁”的方法公布给所有用户。 每个用户可以用锁来加密自己的信用卡信息。即使被别人窃听到,也不用担心:只有银行才有钥匙呢!这样一种加密算法叫做非对称加密(asymmetric encryption)。非对称加密的经典算法是RSA算法。它来自于数论与计算机计数的奇妙结合。
1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。这种新的加密模式被称为"非对称加密算法"。
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。
1.能“撞”上的保险箱(非对称/公钥加密体制,Asymmetric / Public Key Encryption)
数据加密解密和门锁很像。最开始的时候,人们只想到了那种只能用钥匙“锁”数据的锁。如果在自己的电脑上自己加密数据,当然可以用最开始这种门锁的形式啦,方便快捷,简单易用有木有。
但是我们现在是通信时代啊,双方都想做安全的通信怎么办呢?如果也用这种方法,通信就好像互相发送密码保险箱一样…而且双方必须都有钥匙才能进行加密和解密。也就是说,两个人都拿着保险箱的钥匙,你把数据放进去,用钥匙锁上发给我。我用同样的钥匙把保险箱打开,再把我的数据锁进保险箱,发送给你。
这样看起来好像没什么问题。但是,这里面 最大的问题是:我们两个怎么弄到同一个保险箱的同一个钥匙呢? 好像仅有的办法就是我们两个一起去买个保险箱,然后一人拿一把钥匙,以后就用这个保险箱了。可是,现代通信社会,绝大多数情况下别说一起去买保险箱了,连见个面都难,这怎么办啊?
于是,人们想到了“撞门”的方法。我这有个可以“撞上”的保险箱,你那里自己也买一个这样的保险箱。通信最开始,我把保险箱打开,就这么开着把保险箱发给你。你把数据放进去以后,把保险箱“撞”上发给我。撞上以后,除了我以外,谁都打不开保险箱了。这就是RSA了,公开的保险箱就是公钥,但是我有私钥,我才能打开。
2.数字签名
这种锁看起来好像很不错,但是锁在运输的过程中有这么一个严重的问题:你怎么确定你收到的开着的保险箱就是我发来的呢?对于一个聪明人,他完全可以这么干:
(a)装作运输工人。我现在把我开着的保险箱运给对方。运输工人自己也弄这么一个保险箱,运输的时候把保险箱换成他做的。
(b)对方收到保险箱后,没法知道这个保险箱是我最初发过去的,还是运输工人替换的。对方把数据放进去,把保险箱撞上。
(c)运输工人往回运的时候,用自己的钥匙打开自己的保险箱,把数据拿走。然后复印也好,伪造也好,弄出一份数据,把这份数据放进我的保险箱,撞上,然后发给我。
从我的角度,从对方的角度,都会觉得这数据传输过程没问题。但是,运输工人成功拿到了数据,整个过程还是不安全的,大概的过程是这样:
这怎么办啊?这个问题的本质原因是,人们没办法获知,保险箱到底是“我”做的,还是运输工人做的。那干脆,我们都别做保险箱了,让权威机构做保险箱,然后在每个保险箱上用特殊的工具刻上一个编号。对方收到保险箱的时候,在权威机构的“公告栏”上查一下编号,要是和保险箱上的编号一样,我就知道这个保险箱是“我”的,就安心把数据放进去。大概过程是这样的:
如何做出刻上编号,而且编号没法修改的保险箱呢?这涉及到了公钥体制中的另一个问题:数字签名。
要知道,刻字这种事情吧,谁都能干,所以想做出只能自己刻字,还没法让别人修改的保险箱确实有点难度。那么怎么办呢?这其实困扰了人们很长的时间。直到有一天,人们发现:我们不一定非要在保险箱上刻规规矩矩的字,我们干脆在保险箱上刻手写名字好了。而且,刻字有点麻烦,干脆我们在上面弄张纸,让人直接在上面写,简单不费事。具体做法是,我们在保险箱上嵌进去一张纸,然后每个出产的保险箱都让权威机构的CEO签上自己的名字。然后,CEO把自己的签名公开在权威机构的“公告栏”上面。比如这个CEO就叫“学酥”,那么整个流程差不多是这个样子:
这个方法的本质原理是,每个人都能够通过笔迹看出保险箱上的字是不是学酥CEO签的。但是呢,这个字体是学酥CEO唯一的字体。别人很难模仿。如果模仿我们就能自己分辨出来了。要是实在分辨不出来呢,我们就请一个笔迹专家来分辨。这不是很好嘛。这个在密码学上就是数字签名。
上面这个签字的方法虽然好,但是还有一个比较蛋疼的问题。因为签字的样子是公开的,一个聪明人可以把公开的签字影印一份,自己造个保险箱,然后把这个影印的字也嵌进去。这样一来,这个聪明人也可以造一个相同签字的保险箱了。解决这个问题一个非常简单的方法就是在看保险箱上的签名时,不光看字体本身,还要看字体是不是和公开的字体完全一样。要是完全一样,就可以考虑这个签名可能是影印出来的。甚至,还要考察字体是不是和其他保险柜上的字体一模一样。因为聪明人为了欺骗大家,可能不影印公开的签名,而影印其他保险箱上的签名。这种解决方法虽然简单,但是验证签名的时候麻烦了一些。麻烦的地方在于我不仅需要对比保险箱上的签名是否与公开的笔迹一样,还需要对比得到的签名是否与公开的笔迹完全一样,乃至是否和所有发布的保险箱上的签名完全一样。有没有什么更好的方法呢?
当然有,人们想到了一个比较好的方法。那就是,学酥CEO签字的时候吧,不光把名字签上,还得带上签字得日期,或者带上这个保险箱的编号。这样一来,每一个保险箱上的签字就唯一了,这个签字是学酥CEO的签名+学酥CEO写上的时间或者编号。这样一来,就算有人伪造,也只能伪造用过的保险箱。这个问题就彻底解决了。这个过程大概是这么个样子:
3 造价问题(密钥封装机制,Key Encapsulation Mechanism)
解决了上面的各种问题,我们要考虑考虑成本了… 这种能“撞”门的保险箱虽然好,但是这种锁造价一般来说要比普通的锁要高,而且锁生产时间也会变长。在密码学中,对于同样“结实”的锁,能“撞”门的锁的造价一般来说是普通锁的上千倍。同时,能“撞”门的锁一般来说只能安装在小的保险柜里面。毕竟,这么复杂的锁,装起来很费事啊!而普通锁安装在多大的保险柜上面都可以呢。如果两个人想传输大量数据的话,用一个大的保险柜比用一堆小的保险柜慢慢传要好的多呀。怎么解决这个问题呢?人们又想出了一个非常棒的方法:我们把两种锁结合起来。能“撞”上的保险柜里面放一个普通锁的钥匙。然后造一个用普通的保险柜来锁大量的数据。这样一来,我们相当于用能“撞”上的保险柜发一个钥匙过去。对方收到两个保险柜后,先用自己的钥匙把小保险柜打开,取出钥匙。然后在用这个钥匙开大的保险柜。这样做更棒的一个地方在于,既然对方得到了一个钥匙,后续再通信的时候,我们就不再需要能“撞”上的保险柜了啊,在以后一定时间内就用普通保险柜就好了,方便快捷嘛。
以下参考 数字签名、数字证书、SSL、https是什么关系?
4.数字签名(Digital Signature)
数据在浏览器和服务器之间传输时,有可能在传输过程中被冒充的盗贼把内容替换了,那么如何保证数据是真实服务器发送的而不被调包呢,同时如何保证传输的数据没有被人篡改呢,要解决这两个问题就必须用到数字签名,数字签名就如同日常生活的中的签名一样,一旦在合同书上落下了你的大名,从法律意义上就确定是你本人签的字儿,这是任何人都没法仿造的,因为这是你专有的手迹,任何人是造不出来的。那么在计算机中的数字签名怎么回事呢?数字签名就是用于验证传输的内容是不是真实服务器发送的数据,发送的数据有没有被篡改过,它就干这两件事,是非对称加密的一种应用场景。不过他是反过来用私钥来加密,通过与之配对的公钥来解密。
第一步:服务端把报文经过Hash处理后生成摘要信息Digest,摘要信息使用私钥private-key加密之后就生成签名,服务器把签名连同报文一起发送给客户端。
第二步:客户端接收到数据后,把签名提取出来用public-key解密,如果能正常的解密出来Digest2,那么就能确认是对方发的。
第三步:客户端把报文Text提取出来做同样的Hash处理,得到的摘要信息Digest1,再与之前解密出来的Digist2对比,如果两者相等,就表示内容没有被篡改,否则内容就是被人改过了。因为只要文本内容哪怕有任何一点点改动都会Hash出一个完全不一样的摘要信息出来。
5.数字证书(Certificate Authority)
数字证书简称CA,它由权威机构给某网站颁发的一种认可凭证,这个凭证是被大家(浏览器)所认可的,为什么需要用数字证书呢,难道有了数字签名还不够安全吗?有这样一种情况,就是浏览器无法确定所有的真实服务器是不是真的是真实的,举一个简单的例子:A厂家给你们家安装锁,同时把钥匙也交给你,只要钥匙能打开锁,你就可以确定钥匙和锁是配对的,如果有人把钥匙换了或者把锁换了,你是打不开门的,你就知道肯定被窃取了,但是如果有人把锁和钥匙替换成另一套表面看起来差不多的,但质量差很多的,虽然钥匙和锁配套,但是你却不能确定这是否真的是A厂家给你的,那么这时候,你可以找质检部门来检验一下,这套锁是不是真的来自于A厂家,质检部门是权威机构,他说的话是可以被公众认可的(呵呵)。
同样的, 因为如果有人(张三)用自己的公钥把真实服务器发送给浏览器的公钥替换了,于是张三用自己的私钥执行相同的步骤对文本Hash、数字签名,最后得到的结果都没什么问题,但事实上浏览器看到的东西却不是真实服务器给的,而是被张三从里到外(公钥到私钥)换了一通。那么如何保证你现在使用的公钥就是真实服务器发给你的呢?我们就用数字证书来解决这个问题。数字证书一般由数字证书认证机构(Certificate Authority)颁发,证书里面包含了真实服务器的公钥和网站的一些其他信息,数字证书机构用自己的私钥加密后发给浏览器,浏览器使用数字证书机构的公钥解密后得到真实服务器的公钥。这个过程是建立在被大家所认可的证书机构之上得到的公钥,所以这是一种安全的方式。
常见的对称加密算法有DES、3DES、AES、RC5、RC6。非对称加密算法应用非常广泛,如SSH,
HTTPS, TLS,电子证书,电子签名,电子身份证等等。
参考 DES/3DES/AES区别
❷ 电脑RSA是加密的那里怎么找到
1,电脑上的RSA加密是一种公开密钥密码体制。所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制。
2,在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然解密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。
3,正是基于这种理论,1978年出现了着名的RSA算法,它通常是先生成一对RSA 密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。
4,RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现今的三十多年里,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
5,平时使用的https中的ssl3.0和TSL1.0使用了RSA来加密密钥,还有就是数字证书、数字签名、数字签章、数字水印、数字信封等。如:银行的u盾、银行卡的刷卡机、淘宝的数字证书都使用了RSA进行加密。
❸ RSA中pkcs1的填充方法具体是什么
1)RSA_PKCS1_PADDING 填充模式,最常用的模式
要求:
输入 必须 比 RSA 钥模长(molus) 短至少11个字节, 也就是 RSA_size(rsa) – 11
如果输入的明文过长,必须切割, 然后填充
输出 和molus一样长
根据这个要求,对于512bit的密钥, block length = 512/8 – 11 = 53 字节
2) RSA_PKCS1_OAEP_PADDING
RSA_size(rsa) – 41
3)for RSA_NO_PADDING 不填充
RSA_size(rsa)
一般来说, 我们只用RSA来加密重要的数据,比如AES的key, 128bits = 16
加密的输出,总是等于key length
对同样的数据,用同样的key进行RSA加密, 每次的输出都会不一样; 但是这些加密的结果都能正确的解密
—————
预备知识
I2OSP – Integer-to-Octet-String primitive 大整数转换成字节串
I2OSP (x, xLen)
输入: x 待转换的非负整数
xLen 结果字节串的可能长度
————
加密原理 RSAEP ((n, e), m)
输入: (n,e) RSA公钥
m 值为0到n-1 之间一个大整数,代表消息
输出: c 值为0到n-1之间的一个大整数,代表密文
假定: RSA公钥(n,e)是有效的
步骤:
1. 如果m不满足 0 2. 让 c = m^e % n (m的e次幂 除以n ,余数为c)
3. 输出 c
解密原理 RSADP (K, c)
输入: K RSA私钥,K由下面形式:
一对(n,d)
一个五元组(p, q, dP, dQ, qInv)
一个可能为空的三元序列(ri, di, ti), i=3,...,u
c 密文
输出: m 明文
步骤:
1. 如果密文c不满足 0 < c < n-1, 输出 'ciphertext repersentative out of range'
2. 按照如下方法计算m:
a. 如果使用私钥K的第一种形式(n, d), 就让 m = c^d % n (c的d次幂,除以n,余数为m)
b. 如果使用私钥K的第二种像是(p,q, dP, dQ, qInv)和(ri, di, ti),
--------------
----------------
加密 RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M)
输入: (n, e) 接收者的公开钥匙, k表示n所占用的字节长度
M 要加密的消息, mLen表示消息的长度 mLen ≤ k – 11
输出: C 密文, 占用字节数 也为 k
步骤:
1.长度检查, 如果 mLen > k-11, 输出 逗message too long地
2. EME-PKCS1-v1_5 编码
a) 生成一个 伪随机非零串PS , 长度为 k – mLen – 3, 所以至少为8, 因为 k-mLen>11
b) 将PS, M,以及其他填充串 一起编码为 EM, 长度为 k, 即:
EM = 0×00 || 0×02 || PS || 0×00 || M
3.RSA 加密
a)将EM转换成一个大证书m
m = OS2IP(EM)
b)对公钥(n,e) 和 大整数 m, 使用RSAEP加密原理,产生一个整数密文c
c = RSAEP((n,e0, m)
c)将整数c转换成长度为k的密文串
C = I2OSP(c, k)
4.输出密文C
—————-
解密 RSAES-PKCS1-V1_5-DECRYPT (K, C)
输入: K 接收者的私钥
C 已经加密过的密文串,长度为k (与RSA molus n的长度一样)
输出: M 消息明文, 长度至多为 k-11
步骤:
1. 长度检查:如果密文C的长度不为k字节(或者 如果 k<11), 输出逗decryption error"
2. RSA解密
a. 转换密文C为一个大整数c
c = OS2IP(C)
b. 对RSA私钥(n,d)和密文整数c 实施解密, 产生一个 大整数m
m = RSADP((n,d), c)
如果RSADP输出'ciphertext representative out of range'(意味c>=n), 就输出’decryption error地
c. 转换 m 为长度为k的EM串
EM = I2OSP(m, k)
3. EME-PKCS1-v1_5 解码:将EM分为 非零的PS串 和 消息 M
EM = 0×00 || 0×02 || PS || 0×00 || M
如果EM不是上面给出的格式,或者PS的长度小于8个字节, 那么就输出’decryption error’
5. 输出明文消息M
——————–
签名 RSASSA-PSS-SIGN (K, M)
输入 K 签名者的RSA私钥
M 代签名的消息,一个字节串
输出 S 签名,长度为k的字节串,k是RSA molus n的字节长度
步骤:
1. EMSA-PSS encoding: 对消息M实施EMSA-PSS编码操作,产生一个长度为 [(modBits -1)/8]的编码消息EM。 整数 OS2IP(EM)的位长最多是 modBits-1, modBits是RSA molus n的位长度
EM = EMSA-PSS-ENCODE (M, modBits – 1)
注意:如果modBits-1 能被8整除,EM的字节长比k小1;否则EM字节长为k
2. RSA签名:
a. 将编码后的消息 EM 转换成一个大整数m
m = OS2IP(EM)
b. 对私钥K和消息m 实施 RSASP1 签名,产生一个 大整数s表示的签名
s = RSASP1 (K, m)
c. 把大整数s转换成 长度为k的字串签名S
S = I2OSP(s, k)
3.输出签名S
———–
验证签名 RSASSA-PSS-VERIFY ((n, e), M, S)
输入: (n,e) 签名者的公钥
M 签名者 发来的消息,一个字串
S 待验证的签名, 一个长度为k的字串。k是RSA Molus n的长度
输出: ’valid signature’ 或者 ‘invalid signature’
步骤:
1. 长度检查: 如果签名S的长度不是k, 输出’invalid signature’
2. RSA验证
a) 将签名S转换成一个大整数s
s = OS2IP (S)
b) 对公钥 (n,e) 和 s 实施 RSAVP1 验证, 产生一个 大整数m
m = RSAVP1 ((n, e), s)
c) 将m 转换成编码的消息EM,长度 emLen = [ (modBits -1)/8 ] 字节。 modBits是RSA molus n的位长
EM = I2OSP (m, emLen)
注意: 如果 modBits-1可以被8整除,那么emLen = k-1,否则 emLen = k
3. EMSA-PSS验证: 对消息M和编码的EM实施一个 EMSA-PSS验证操作,决定他们是否一致:
Result = EMSA-PSS-VERIFY (M, EM, modBits – 1)
4. 如果Result = 逗consistent逗,那么输出 地valid signature地
否则, 输出 地invalid signature地
———–
签名,还可以使用 EMSA-PKCS1-v1_5 encoding编码方法 来产生 EM:
EM = EMSA-PKCS1-V1_5-ENCODE (M, k)
验证签名是,使用 EMSA-PKCS1-v1_5对 M产生第2个编码消息EM’
EM’ = EMSA-PKCS1-V1_5-ENCODE (M, k) .
然后比较 EM和EM’ 是否相同
———————
RSA的加密机制有两种方案一个是RSAES-OAEP,另一个RSAES-PKCS1-v1_5。PKCS#1推荐在新的应用中使用RSAES- OAEP,保留RSAES-PKCS#1-v1_5跟老的应用兼容。它们两的区别仅仅在于加密前编码的方式不同。而加密前的编码是为了提供了抵抗各种活动的敌对攻击的安全机制。
PKCS#1的签名机制也有种方案:RSASSA-PSS和RSASSA-PKCS1-v1_5。同样,推荐RSASSA-PSS用于新的应用而RSASSA-PKCS1-v1_5用于兼容老的应用。
——————–
RSAES-OAEP-ENCRYPT ((n, e), M, L)
选项: Hash 散列函数(hLen 表示 散列函数的输出的字节串的长度)
MGF 掩码生成函数
输入: (n,e) 接收者的RSA公钥(k表示RSA molus n的字节长度)
M 待加密的消息,一个长度为mLen的字节串 mLen <= k - 2 hLen -2
L 同消息关联的可选的标签,如果不提供L,就采用空串
输出: C 密文,字节长度为k
步骤:
1.长度检查
a. 如果L的长度超过 hash函数的输入限制(对于SHA-1, 是2^61 -1),输出 label too long
b. mLen > k – 2hLen -2, 输出 message too long
2. EME-OAEP编码
说实话,我看了很久不太懂。。。。。。。
❹ 所谓的1024位RSA密钥长度,是指1个数还是2个数
这是二进制数字的计数单位,1024位(bit)中的位是二进制中最小的单元,比如“0001”这是四位,“0001 0010“这种就是8位了”,1字节(Byte)=8位(bit)。128字节等于1028位。
❺ DES的密钥长度是几位RSA的密钥长度是几位
RSA一般达到二进制512位,高的也有2048位的,要用到大数
❻ 有关C#中RSA加密方法的密钥生成长度
/// <summary> /// 字符串加密操作类
/// </summary>
public class EncryptionOperation
{
/// <summary>
/// MD5 加密静态方法
/// </summary>
/// <param name="EncryptString">待加密的密文</param>
/// <returns>returns</returns>
public static string MD5Encrypt(string EncryptString) {
if (string.IsNullOrEmpty(EncryptString)) { throw (new Exception("密文不得为空")); }
MD5 m_ClassMD5 = new MD5CryptoServiceProvider();
string m_strEncrypt = "";
try {
m_strEncrypt = BitConverter.ToString(m_ClassMD5.ComputeHash(Encoding.Default.GetBytes(EncryptString))).Replace("-", "");
}
catch (ArgumentException ex) { throw ex; }
catch (CryptographicException ex) { throw ex; }
catch (Exception ex) { throw ex; }
finally { m_ClassMD5.Clear(); }
return m_strEncrypt;
}
/// <summary>
/// DES 加密(数据加密标准,速度较快,适用于加密大量数据的场合)
/// </summary>
/// <param name="EncryptString">待加密的密文</param>
/// <param name="EncryptKey">加密的密钥</param>
/// <returns>returns</returns>
public static string DESEncrypt(string EncryptString, string EncryptKey) {
if (string.IsNullOrEmpty(EncryptString)) { throw (new Exception("密文不得为空")); }
if (string.IsNullOrEmpty(EncryptKey)) { throw (new Exception("密钥不得为空")); }
if (EncryptKey.Length != 8) { throw (new Exception("密钥必须为8位")); }
byte[] m_btIV = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
string m_strEncrypt = "";
DESCryptoServiceProvider m_DESProvider = new DESCryptoServiceProvider();
try {
byte[] m_btEncryptString = Encoding.Default.GetBytes(EncryptString);
MemoryStream m_stream = new MemoryStream();
CryptoStream m_cstream = new CryptoStream(m_stream, m_DESProvider.CreateEncryptor(Encoding.Default.GetBytes(EncryptKey), m_btIV), CryptoStreamMode.Write);
m_cstream.Write(m_btEncryptString, 0, m_btEncryptString.Length);
m_cstream.FlushFinalBlock();
m_strEncrypt = Convert.ToBase64String(m_stream.ToArray());
m_stream.Close(); m_stream.Dispose();
m_cstream.Close(); m_cstream.Dispose();
}
catch (IOException ex) { throw ex; }
catch (CryptographicException ex) { throw ex; }
catch (ArgumentException ex) { throw ex; }
catch (Exception ex) { throw ex; }
finally { m_DESProvider.Clear(); }
return m_strEncrypt;
}
/// <summary>
/// DES 解密(数据加密标准,速度较快,适用于加密大量数据的场合)
/// </summary>
/// <param name="DecryptString">待解密的密文</param>
/// <param name="DecryptKey">解密的密钥</param>
/// <returns>returns</returns>
public static string DESDecrypt(string DecryptString, string DecryptKey) {
if (string.IsNullOrEmpty(DecryptString)) { throw (new Exception("密文不得为空")); }
if (string.IsNullOrEmpty(DecryptKey)) { throw (new Exception("密钥不得为空")); }
if (DecryptKey.Length != 8) { throw (new Exception("密钥必须为8位")); }
byte[] m_btIV = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
string m_strDecrypt = "";
DESCryptoServiceProvider m_DESProvider = new DESCryptoServiceProvider();
try {
byte[] m_btDecryptString = Convert.FromBase64String(DecryptString);
MemoryStream m_stream = new MemoryStream();
CryptoStream m_cstream = new CryptoStream(m_stream, m_DESProvider.CreateDecryptor(Encoding.Default.GetBytes(DecryptKey), m_btIV), CryptoStreamMode.Write);
m_cstream.Write(m_btDecryptString, 0, m_btDecryptString.Length);
m_cstream.FlushFinalBlock();
m_strDecrypt = Encoding.Default.GetString(m_stream.ToArray());
m_stream.Close(); m_stream.Dispose();
m_cstream.Close(); m_cstream.Dispose();
}
catch (IOException ex) {
m_strDecrypt = "";
}
catch (CryptographicException ex) { m_strDecrypt = ""; }
catch (ArgumentException ex) { m_strDecrypt = ""; }
catch (Exception ex) { m_strDecrypt = ""; }
finally { m_DESProvider.Clear(); }
return m_strDecrypt;
}
/// <summary>
/// RC2 加密(用变长密钥对大量数据进行加密)
/// </summary>
/// <param name="EncryptString">待加密密文</param>
/// <param name="EncryptKey">加密密钥</param>
/// <returns>returns</returns>
public static string RC2Encrypt(string EncryptString, string EncryptKey) {
if (string.IsNullOrEmpty(EncryptString)) { throw (new Exception("密文不得为空")); }
if (string.IsNullOrEmpty(EncryptKey)) { throw (new Exception("密钥不得为空")); }
if (EncryptKey.Length < 5 || EncryptKey.Length > 16) { throw (new Exception("密钥必须为5-16位")); }
string m_strEncrypt = "";
byte[] m_btIV = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
RC2CryptoServiceProvider m_RC2Provider = new RC2CryptoServiceProvider();
try {
byte[] m_btEncryptString = Encoding.Default.GetBytes(EncryptString);
MemoryStream m_stream = new MemoryStream();
CryptoStream m_cstream = new CryptoStream(m_stream, m_RC2Provider.CreateEncryptor(Encoding.Default.GetBytes(EncryptKey), m_btIV), CryptoStreamMode.Write);
m_cstream.Write(m_btEncryptString, 0, m_btEncryptString.Length);
m_cstream.FlushFinalBlock();
m_strEncrypt = Convert.ToBase64String(m_stream.ToArray());
m_stream.Close(); m_stream.Dispose();
m_cstream.Close(); m_cstream.Dispose();
}
catch (IOException ex) { throw ex; }
catch (CryptographicException ex) { throw ex; }
catch (ArgumentException ex) { throw ex; }
catch (Exception ex) { throw ex; }
finally { m_RC2Provider.Clear(); }
return m_strEncrypt;
}
/// <summary>
/// RC2 解密(用变长密钥对大量数据进行加密)
/// </summary>
/// <param name="DecryptString">待解密密文</param>
/// <param name="DecryptKey">解密密钥</param>
/// <returns>returns</returns>
public static string RC2Decrypt(string DecryptString, string DecryptKey) {
if (string.IsNullOrEmpty(DecryptString)) { throw (new Exception("密文不得为空")); }
if (string.IsNullOrEmpty(DecryptKey)) { throw (new Exception("密钥不得为空")); }
if (DecryptKey.Length < 5 || DecryptKey.Length > 16) { throw (new Exception("密钥必须为5-16位")); }
byte[] m_btIV = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
string m_strDecrypt = "";
RC2CryptoServiceProvider m_RC2Provider = new RC2CryptoServiceProvider();
try {
byte[] m_btDecryptString = Convert.FromBase64String(DecryptString);
MemoryStream m_stream = new MemoryStream();
CryptoStream m_cstream = new CryptoStream(m_stream, m_RC2Provider.CreateDecryptor(Encoding.Default.GetBytes(DecryptKey), m_btIV), CryptoStreamMode.Write);
m_cstream.Write(m_btDecryptString, 0, m_btDecryptString.Length);
m_cstream.FlushFinalBlock();
m_strDecrypt = Encoding.Default.GetString(m_stream.ToArray());
m_stream.Close(); m_stream.Dispose();
m_cstream.Close(); m_cstream.Dispose();
}
catch (IOException ex) { throw ex; }
catch (CryptographicException ex) { throw ex; }
catch (ArgumentException ex) { throw ex; }
catch (Exception ex) { throw ex; }
finally { m_RC2Provider.Clear(); }
return m_strDecrypt;
}
/// <summary>
/// 3DES 加密(基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高)
/// </summary>
/// <param name="EncryptString">待加密密文</param>
/// <param name="EncryptKey1">密钥一</param>
/// <param name="EncryptKey2">密钥二</param>
/// <param name="EncryptKey3">密钥三</param>
/// <returns>returns</returns>
public static string DES3Encrypt(string EncryptString, string EncryptKey1, string EncryptKey2, string EncryptKey3) {
string m_strEncrypt = "";
try {
m_strEncrypt = DESEncrypt(EncryptString, EncryptKey3);
m_strEncrypt = DESEncrypt(m_strEncrypt, EncryptKey2);
m_strEncrypt = DESEncrypt(m_strEncrypt, EncryptKey1);
}
catch (Exception ex) { throw ex; }
return m_strEncrypt;
}
/// <summary>
/// 3DES 解密(基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高)
/// </summary>
/// <param name="DecryptString">待解密密文</param>
/// <param name="DecryptKey1">密钥一</param>
/// <param name="DecryptKey2">密钥二</param>
/// <param name="DecryptKey3">密钥三</param>
/// <returns>returns</returns>
public static string DES3Decrypt(string DecryptString, string DecryptKey1, string DecryptKey2, string DecryptKey3) {
string m_strDecrypt = "";
try {
m_strDecrypt = DESDecrypt(DecryptString, DecryptKey1);
m_strDecrypt = DESDecrypt(m_strDecrypt, DecryptKey2);
m_strDecrypt = DESDecrypt(m_strDecrypt, DecryptKey3);
}
catch (Exception ex) { throw ex; }
return m_strDecrypt;
}
/// <summary>
/// AES 加密(高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前 AES 标准的一个实现是 Rijndael 算法)
/// </summary>
/// <param name="EncryptString">待加密密文</param>
/// <param name="EncryptKey">加密密钥</param>
/// <returns></returns>
public static string AESEncrypt(string EncryptString, string EncryptKey) {
if (string.IsNullOrEmpty(EncryptString)) { throw (new Exception("密文不得为空")); }
if (string.IsNullOrEmpty(EncryptKey)) { throw (new Exception("密钥不得为空")); }
string m_strEncrypt = "";
byte[] m_btIV = Convert.FromBase64String("Rkb4jvUy/ye7Cd7k89QQgQ==");
Rijndael m_AESProvider = Rijndael.Create();
try {
byte[] m_btEncryptString = Encoding.Default.GetBytes(EncryptString);
MemoryStream m_stream = new MemoryStream();
CryptoStream m_csstream = new CryptoStream(m_stream, m_AESProvider.CreateEncryptor(Encoding.Default.GetBytes(EncryptKey), m_btIV), CryptoStreamMode.Write);
m_csstream.Write(m_btEncryptString, 0, m_btEncryptString.Length); m_csstream.FlushFinalBlock();
m_strEncrypt = Convert.ToBase64String(m_stream.ToArray());
m_stream.Close(); m_stream.Dispose();
m_csstream.Close(); m_csstream.Dispose();
}
catch (IOException ex) { throw ex; }
catch (CryptographicException ex) { throw ex; }
catch (ArgumentException ex) { throw ex; }
catch (Exception ex) { throw ex; }
finally { m_AESProvider.Clear(); }
return m_strEncrypt;
}
/// <summary>
/// AES 解密(高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前 AES 标准的一个实现是 Rijndael 算法)
/// </summary>
/// <param name="DecryptString">待解密密文</param>
/// <param name="DecryptKey">解密密钥</param>
/// <returns></returns>
public static string AESDecrypt(string DecryptString, string DecryptKey) {
if (string.IsNullOrEmpty(DecryptString)) { throw (new Exception("密文不得为空")); }
if (string.IsNullOrEmpty(DecryptKey)) { throw (new Exception("密钥不得为空")); }
string m_strDecrypt = "";
byte[] m_btIV = Convert.FromBase64String("Rkb4jvUy/ye7Cd7k89QQgQ==");
Rijndael m_AESProvider = Rijndael.Create();
try {
byte[] m_btDecryptString = Convert.FromBase64String(DecryptString);
MemoryStream m_stream = new MemoryStream();
CryptoStream m_csstream = new CryptoStream(m_stream, m_AESProvider.CreateDecryptor(Encoding.Default.GetBytes(DecryptKey), m_btIV), CryptoStreamMode.Write);
m_csstream.Write(m_btDecryptString, 0, m_btDecryptString.Length); m_csstream.FlushFinalBlock();
m_strDecrypt = Encoding.Default.GetString(m_stream.ToArray());
m_stream.Close(); m_stream.Dispose();
m_csstream.Close(); m_csstream.Dispose();
}
catch (IOException ex) { throw ex; }
catch (CryptographicException ex) { throw ex; }
catch (ArgumentException ex) { throw ex; }
catch (Exception ex) { throw ex; }
finally { m_AESProvider.Clear(); }
return m_strDecrypt;
} }
❼ 摘抄与理解--RSA加密和ssl
结论:
加密和解密使用同样规则(简称"密钥"),这被称为 "对称加密算法"
RSA是一种非对称加密的算法,为什么会有这个,先说对成加密,对称就是同一个密钥加密解密,不安全,
SSL是基于非对称加密的原理,在这之上还进行了对称加密的数据传输
对成加密的话:
(1)甲方选择某一种加密规则,对信息进行加密;
(2)乙方使用同一种规则,对信息进行解密。
因为加密规则是相同的,所以最好是一份数据,或者一个客户一个密钥,每个人密钥不能不能随便公开
非对称加密的话:
(1)乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。
(2)甲方获取乙方的公钥,然后用它对信息加密。
(3)乙方得到加密后的信息,用私钥解密。
虽然大家都是用的同一个公钥加密的,但是只有有密钥才解得开,随便你的公钥怎么传播
互质关系
如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是 互质关系 (coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。
关于互质关系,不难得到以下结论:
1. 任意两个质数构成互质关系,比如13和61。
2. 一个数是质数,另一个数只要不是前者的倍数,两者就构成互质关系,比如3和10。
3. 如果两个数之中,较大的那个数是质数,则两者构成互质关系,比如97和57。
4. 1和任意一个自然数是都是互质关系,比如1和99。
5. p是大于1的整数,则p和p-1构成互质关系,比如57和56。
6. p是大于1的奇数,则p和p-2构成互质关系,比如17和15。
欧拉函数
请思考以下问题:
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)
计算这个值的方法就叫做 欧拉函数 ,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4,
我有个蠢的办法先说说,互质的本质是,两个数的所有公因子,出了1没有交集,所以我们可以先求8的所有公因子(1-8除个遍,余数为零的就是他的公因子),然后剩下的1-8,循环一遍,把他们的所有公因子也求出来,对比两者的公因子除了1以外还有没有交集,没有的话,说明两者互质。
或者就是按照文章里的1-6条规则L一一算一遍
欧拉定理
欧拉函数的用处,在于 欧拉定理 。"欧拉定理"指的是:
如果两个正整数a和n互质,则n的欧拉函数 φ(n) 可以让下面的等式成立:
(3(φ(7)) - 1)= 7*104
欧拉定理的证明比较复杂,这里就省略了。我们只要记住它的结论就行了。
欧拉定理可以大大简化某些运算。比如,7和10互质,根据欧拉定理,
已知 φ(10) 等于4,所以马上得到7的4倍数次方的个位数肯定是1。
因此,7的任意次方的个位数(例如7的222次方),心算就可以算出来
模反元素
还剩下最后一个概念:
如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。
这时,b就叫做a的 "模反元素" 。
3 * 5 - 1 = 7 * 2
5就是3的模反元素
密钥生成的步骤
第一步,随机选择两个不相等的质数p和q。互质
爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)
第二步,计算p和q的乘积n。
爱丽丝就把61和53相乘。
n = 61×53 = 3233
n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。
第三步,计算n的欧拉函数φ(n)。
根据公式:
φ(n) = (p-1)(q-1)
爱丽丝算出φ(3233)等于60×52,即3120。
第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。
爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)
第五步,计算e对于φ(n)的模反元素d。
所谓 "模反元素" 就是指有一个整数d,可以使得ed被φ(n)除的余数为1。
ed ≡ 1 (mod φ(n))
这个式子等价于
ed - 1 = kφ(n)
于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。
ex + φ(n)y = 1
已知 e=17, φ(n)=3120,
17x + 3120y = 1
这个方程可以用 "扩展欧几里得算法" 求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。
至此所有计算完成。
第六步,将n和e封装成公钥,n和d封装成私钥。
在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。
实际应用中,公钥和私钥的数据都采用 ASN.1 格式表达( 实例 )。
七、RSA算法的可靠性
回顾上面的密钥生成步骤,一共出现六个数字:
p
q
n
φ(n)
e
d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。
那么,有无可能在已知n和e的情况下,推导出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解
加密和解密
有了公钥和密钥,就能进行加密和解密了。
(1)加密要用公钥 (n,e)
假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。
所谓"加密",就是算出下式的c:
me ≡ c (mod n)
爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:
6517 ≡ 2790 (mod 3233)
于是,c等于2790,鲍勃就把2790发给了爱丽丝。
(2)解密要用私钥(n,d)
爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:
cd ≡ m (mod n)
也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出
27902753 ≡ 65 (mod 3233)
因此,爱丽丝知道了鲍勃加密前的原文就是65。
至此,"加密--解密"的整个过程全部完成
原文1: http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html
原文2: http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html
❽ RSA密码体制抗破解的原理是什么
RSA密码体制抗破解的原理是:利用Euclid 算法计算解密密钥d, 满足de≡1(mod φ(n))。其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。
现在常规的密码破解方式有两种,分别是暴力破解和字典破解。通常的破解软件你还可以设置字符集(比如选择是否算上符号,大小写字母和数字等)。用这种方式只要密码不超过能破译的长度范围,在一定时间下是一定能破解出来的,唯一缺点就是速度太慢。
为提高保密强度
RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要。
❾ RSA加密算法最多支持多少位,最少多少位,较合理的又是多少位,求解
最少几位都可以,最多几位都可以,根据安全性,现在通用的是512以上,1024位和2048位比较安全。少了比较容易破解掉,多了计算非常慢