Panama, Salsa20, Sosemanuk
AES and AES candidates AES (Rijndael), RC6, MARS, Twofish, Serpent, CAST-256
IDEA, Triple-DES (DES-EDE2 and DES-EDE3), Camellia, RC5, Blowfish, TEA, XTEA, Skipjack, SHACAL-2
VMAC, HMAC, CBC-MAC, DMAC, Two-Track-MAC
SHA-1, SHA-2 (SHA-224, SHA-256, SHA-384, and SHA-512), Tiger, WHIRLPOOL, RIPEMD-128, RIPEMD-256, RIPEMD-160, RIPEMD-320
RSA, DSA, ElGamal, Nyberg-Rueppel (NR), Rabin, Rabin-Williams (RW), LUC, LUCELG, DLIES (variants of DHAES), ESIGN
PKCS#1 v2.0, OAEP, PSS, PSSR, IEEE P1363 EMSA2 and EMSA5
Diffie-Hellman (DH), Unified Diffie-Hellman (DH2), Menezes-Qu-Vanstone (MQV), LUCDIF, XTR-DH
ECDSA, ECNR, ECIES, ECDH, ECMQV
MD2, MD4, MD5, Panama Hash, DES, ARC4, SEAL 3.0, WAKE, WAKE-OFB, DESX (DES-XEX3), RC2, SAFER, 3-WAY, GOST, SHARK, CAST-128, Square
Ⅱ 常用的加密算法有哪些
对称密钥加密
对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。
分组密码
分组密码 Block Cipher 又称为“分块加密”或“块加密”,将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。这也就意味着分组密码的一个优点在于可以实现同步加密,因为各分组间可以相对独立。
与此相对应的是流密码:利用密钥由密钥流发生器产生密钥流,对明文串进行加密。与分组密码的不同之处在于加密输出的结果不仅与单独明文相关,而是与一组明文相关。
DES、3DES
数据加密标准 DES Data Encryption Standard 是由IBM在美国国家安全局NSA授权下研制的一种使用56位密钥的分组密码算法,并于1977年被美国国家标准局NBS公布成为美国商用加密标准。但是因为DES固定的密钥长度,渐渐不再符合在开放式网络中的安全要求,已经于1998年被移出商用加密标准,被更安全的AES标准替代。
DES使用的Feistel Network网络属于对称的密码结构,对信息的加密和解密的过程极为相似或趋同,使得相应的编码量和线路传输的要求也减半。
DES是块加密算法,将消息分成64位,即16个十六进制数为一组进行加密,加密后返回相同大小的密码块,这样,从数学上来说,64位0或1组合,就有2^64种可能排列。DES密钥的长度同样为64位,但在加密算法中,每逢第8位,相应位会被用于奇偶校验而被算法丢弃,所以DES的密钥强度实为56位。
3DES Triple DES,使用不同Key重复三次DES加密,加密强度更高,当然速度也就相应的降低。
AES
高级加密标准 AES Advanced Encryption Standard 为新一代数据加密标准,速度快,安全级别高。由美国国家标准技术研究所NIST选取Rijndael于2000年成为新一代的数据加密标准。
AES的区块长度固定为128位,密钥长度可以是128位、192位或256位。AES算法基于Substitution Permutation Network代换置列网络,将明文块和密钥块作为输入,并通过交错的若干轮代换"Substitution"和置换"Permutation"操作产生密文块。
AES加密过程是在一个4*4的字节矩阵(或称为体State)上运作,初始值为一个明文区块,其中一个元素大小就是明文区块中的一个Byte,加密时,基本上各轮加密循环均包含这四个步骤:
ECC
ECC即 Elliptic Curve Cryptography 椭圆曲线密码学,是基于椭圆曲线数学建立公开密钥加密的算法。ECC的主要优势是在提供相当的安全等级情况下,密钥长度更小。
ECC的原理是根据有限域上的椭圆曲线上的点群中的离散对数问题ECDLP,而ECDLP是比因式分解问题更难的问题,是指数级的难度。而ECDLP定义为:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。
数字签名
数字签名 Digital Signature 又称公钥数字签名是一种用来确保数字消息或文档真实性的数学方案。一个有效的数字签名需要给接收者充足的理由来信任消息的可靠来源,而发送者也无法否认这个签名,并且这个消息在传输过程中确保没有发生变动。
数字签名的原理在于利用公钥加密技术,签名者将消息用私钥加密,然后公布公钥,验证者就使用这个公钥将加密信息解密并对比消息。一般而言,会使用消息的散列值来作为签名对象。
Ⅲ 有没有加密算法提供,最好是复杂的
RSA加密算法
该算法于1977年由美国麻省理工学院MIT(Massachusetts Institute of Technology)的Ronal Rivest,Adi Shamir和Len Adleman三位年轻教授提出,并以三人的姓氏Rivest,Shamir和Adlernan命名为RSA算法。该算法利用了数论领域的一个事实,那就是虽然把两个大质数相乘生成一个合数是件十分容易的事情,但要把一个合数分解为两个质数却十分困难。合数分解问题目前仍然是数学领域尚未解决的一大难题,至今没有任何高效的分解方法。与Diffie-Hellman算法相比,RSA算法具有明显的优越性,因为它无须收发双方同时参与加密过程,且非常适合于电子函件系统的加密。
RSA算法可以表述如下:
(1) 密钥配制。假设m是想要传送的报文,现任选两个很大的质数p与q,使得:
(12-1);
选择正整数e,使得e与(p-1)(q-1)互质;这里(p-1)(q-1)表示二者相乘。再利用辗转相除法,求得d,使得:
(12-2);
其中x mod y是整数求余运算,其结果是x整除以y后剩余的余数,如5 mod 3 = 2。
这样得:
(e,n),是用于加密的公共密钥,可以公开出去;以及
(d,n),是用于解密的专用钥匙,必须保密。
(2) 加密过程。使用(e,n)对明文m进行加密,算法为:
(12-3);
这里的c即是m加密后的密文。
(3) 解密过程。使用(d,n)对密文c进行解密,算法为:
(12-4);
求得的m即为对应于密文c的明文。
RSA算法实现起来十分简捷,据说英国的一位程序员只用了3行Perl程序便实现了加密和解密运算。
RSA算法建立在正整数求余运算基础之上,同时还保持了指数运算的性质,这一点我们不难证明。例如:
(12-5);
(12-6)。
RSA公共密钥加密算法的核心是欧拉(Euler)函数ψ。对于正整数n,ψ(n)定义为小于n且与n互质的正整数的个数。例如ψ(6) = 2,这是因为小于6且与6互质的数有1和5共两个数;再如ψ(7) = 6,这是因为互质数有1,2,3,5,6共6个。
欧拉在公元前300多年就发现了ψ函数的一个十分有趣的性质,那就是对于任意小于n且与n互质的正整数m,总有mψ(n) mod n = 1。例如,5ψ(6) mod 6 = 52 mod 6= 25 mod 6 =1。也就是说,在对n求余的运算下,ψ(n)指数具有周期性。
当n很小时,计算ψ(n)并不难,使用穷举法即可求出;但当n很大时,计算ψ(n)就十分困难了,其运算量与判断n是否为质数的情况相当。不过在特殊情况下,利用ψ函数的两个性质,可以极大地减少运算量。
性质1:如果p是质数,则ψ(p) = (p-1)。
性质2:如果p与q均为质数,则ψ(p·q) = ψ(p)·ψ(q) = (p-1)(q-1)。
RSA算法正是注意到这两条性质来设计公共密钥加密系统的,p与q的乘积n可以作为公共密钥公布出来,而n的因子p和q则包含在专用密钥中,可以用来解密。如果解密需要用到ψ(n),收信方由于知道因子p和q,可以方便地算出ψ(n) = (p-1)(q-1)。如果窃听者窃得了n,但由于不知道它的因子p与q,则很难求出ψ(n)。这时,窃听者要么强行算出ψ(n),要么对n进行因数分解求得p与q。然而,我们知道,在大数范围内作合数分解是十分困难的,因此窃密者很难成功。
有了关于ψ函数的认识,我们再来分析RSA算法的工作原理:
(1) 密钥配制。设m是要加密的信息,任选两个大质数p与q,使得 ;选择正整数e,使得e与ψ(n) = (p-1)(q-1)互质。
利用辗转相除法,计算d,使得ed mod ψ(n) = ,即ed = kψ(n) +1,其中k为某一正整数。
公共密钥为(e,n),其中没有包含任何有关n的因子p和q的信息。
专用密钥为(d,n),其中d隐含有因子p和q的信息。
(2) 加密过程。使用公式(12-3)对明文m进行加密,得密文c。
(3) 解密过程。使用(d,n)对密文c进行解密,计算过程为:
cd mod n = (me mod n)d mod n
= med mod n
= m(kψ(n) + 1) mod n
= (mkψ(n) mod n)·(m mod n)
= m
m即为从密文c中恢复出来的明文。
例如,假设我们需要加密的明文代码信息为m = 14,则:
选择e = 3,p = 5,q = 11;
计算出n = p·q = 55,(p-1)(q-1) = 40,d = 27;
可以验证:(e·d) mod (p-1)(q-1) = 81 mod 40 = 1;
加密:c = me mod n = 143 mod 55 = 49;
解密:m = cd mod n = 4927 mod 55 = 14。
关于RSA算法,还有几点需要进一步说明:
(1) 之所以要求e与(p-1)(q-1)互质,是为了保证 ed mod (p-1)(q-1)有解。
(2) 实际操作时,通常先选定e,再找出并确定质数p和q,使得计算出d后它们能满足公式(12-3)。常用的e有3和65537,这两个数都是费马序列中的数。费马序列是以17世纪法国数学家费马命名的序列。
(3) 破密者主要通过将n分解成p·q的办法来解密,不过目前还没有办法证明这是唯一的办法,也可能有更有效的方法,因为因数分解问题毕竟是一个不断发展的领域,自从RSA算法发明以来,人们已经发现了不少有效的因数分解方法,在一定程度上降低了破译RSA算法的难度,但至今还没有出现动摇RSA算法根基的方法。
(4) 在RSA算法中,n的长度是控制该算法可靠性的重要因素。目前129位、甚至155位的RSA加密勉强可解,但目前大多数加密程序均采用231、308甚至616位的RSA算法,因此RSA加密还是相当安全的。
据专家测算,攻破512位密钥RSA算法大约需要8个月时间;而一个768位密钥RSA算法在2004年之前无法攻破。现在,在技术上还无法预测攻破具有2048位密钥的RSA加密算法需要多少时间。美国Lotus公司悬赏1亿美元,奖励能破译其Domino产品中1024位密钥的RSA算法的人。从这个意义上说,遵照SET协议开发的电子商务系统是绝对安全的。
另MD5加密算法:
1、MD5算法是对输入的数据进行补位,使得如果数据位长度LEN对512求余的结果
是448。
即数据扩展至K*512+448位。即K*64+56个字节,K为整数。
具体补位操作:补一个1,然后补0至满足上述要求
2、补数据长度:
用一个64位的数字表示数据的原始长度B,把B用两个32位数表示。这时,数据
就被填
补成长度为512位的倍数。
3.初始化MD5参数
四个32位整数(A,B,C,D)用来计算信息摘要,初始化使用的是十六进制表示
的数字
A=0X01234567
B=0X89abcdef
C=0Xfedcba98
D=0X76543210
4、处理位操作函数
X,Y,Z为32位整数。
F(X,Y,Z)=X&Y|NOT(X)&Z
G(X,Y,Z)=X&Z|Y¬(Z)
H(X,Y,Z)=XxorYxorZ
I(X,Y,Z)=Yxor(X|not(Z))
5、主要变换过程:
使用常数组T[1...64],T[i]为32位整数用16进制表示,数据用16个32位的
整
数数组M[]表示。
具体过程如下:
/*处理数据原文*/
Fori=0toN/16-1do
/*每一次,把数据原文存放在16个元素的数组X中.*/
Forj=0to15do
SetX[j]toM[i*16+j].
end /结束对J的循环
/*SaveAasAA,BasBB,CasCC,andDasDD.*/
AA=A
BB=B
CC=C
DD=D
/*第1轮*/
/*以[abcdksi]表示如下操作
a=b+((a+F(b,c,d)+X[k]+T[i])<<<s).*/
/*Dothefollowing16operations.*/
[ABCD071][DABC1122][CDAB2173][BCDA3224]
[ABCD475][DABC5126][CDAB6177][BCDA7228]
[ABCD879][DABC91210][CDAB101711][BCDA112212]
[ABCD12713][DABC131214][CDAB141715][BCDA152216]
/*第2轮**/
/*以[abcdksi]表示如下操作
a=b+((a+G(b,c,d)+X[k]+T[i])<<<s).*/
/*Dothefollowing16operations.*/
[ABCD1517][DABC6918][CDAB111419][BCDA02020]
[ABCD5521][DABC10922][CDAB151423][BCDA42024]
[ABCD9525][DABC14926][CDAB31427][BCDA82028]
[ABCD13529][DABC2930][CDAB71431][BCDA122032]
/*第3轮*/
/*以[abcdksi]表示如下操作
a=b+((a+H(b,c,d)+X[k]+T[i])<<<s).*/
/*Dothefollowing16operations.*/
[ABCD5433][DABC81134][CDAB111635][BCDA142336]
[ABCD1437][DABC41138][CDAB71639][BCDA102340]
[ABCD13441][DABC01142][CDAB31643][BCDA62344]
[ABCD9445][DABC121146][CDAB151647][BCDA22348]
/*第4轮*/
/*以[abcdksi]表示如下操作
a=b+((a+I(b,c,d)+X[k]+T[i])<<<s).*/
/*Dothefollowing16operations.*/
[ABCD0649][DABC71050][CDAB141551][BCDA52152]
[ABCD12653][DABC31054][CDAB101555][BCDA12156]
[ABCD8657][DABC151058][CDAB61559][BCDA132160]
[ABCD4661][DABC111062][CDAB21563][BCDA92164]
/*然后进行如下操作*/
A=A+AA
B=B+BB
C=C+CC
D=D+DD
end/*结束对I的循环*/
6、输出结果。
Ⅳ 几种常见加密算法解析及使用
几种对称性加密算法:AES,DES,3DES
DES是一种分组数据加密技术(先将数据分成固定长度的小数据块,之后进行加密),速度较快,适用于大量数据加密,而3DES是一种基于DES的加密算法,使用3个不同密匙对同一个分组数据块进行3次加密,如此以使得密文强度更高。
相较于DES和3DES算法而言,AES算法有着更高的速度和资源使用效率,安全级别也较之更高了,被称为下一代加密标准。
几种非对称性加密算法:RSA,DSA,ECC
RSA和DSA的安全性及其它各方面性能都差不多,而ECC较之则有着很多的性能优越,包括处理速度,带宽要求,存储空间等等。
几种线性散列算法(签名算法):MD5,SHA1,HMAC
这几种算法只生成一串不可逆的密文,经常用其效验数据传输过程中是否经过修改,因为相同的生成算法对于同一明文只会生成唯一的密文,若相同算法生成的密文不同,则证明传输数据进行过了修改。通常在数据传说过程前,使用MD5和SHA1算法均需要发送和接收数据双方在数据传送之前就知道密匙生成算法,而HMAC与之不同的是需要生成一个密匙,发送方用此密匙对数据进行摘要处理(生成密文),接收方再利用此密匙对接收到的数据进行摘要处理,再判断生成的密文是否相同。
对于各种加密算法的选用:
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。
如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。
Ⅳ ssl用哪些加密算法,认证机制
SSL是一个安全协议,它提供使用 TCP/IP 的通信应用程序间的隐私与完整性。因特网的 超文本传输协议(HTTP)使用 SSL 来实现安全的通信。
在客户端与服务器间传输的数据是通过使用对称算法(如 DES 或 RC4)进行加密的。公用密钥算法(通常为 RSA)是用来获得加密密钥交换和数字签名的,此算法使用服务器的SSL数字证书中的公用密钥。
有了服务器的SSL数字证书,客户端也可以验证服务器的身份。SSL 协议的版本 1 和 2 只提供服务器认证。版本 3 添加了客户端认证,此认证同时需要客户端和服务器的数字证书。
详细介绍:网页链接
Ⅵ 加密算法的常见加密算法
DES(Data Encryption Standard):对称算法,数据加密标准,速度较快,适用于加密大量数据的场合;
3DES(Triple DES):是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高;
RC2和RC4:对称算法,用变长密钥对大量数据进行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)国际数据加密算法,使用 128 位密钥提供非常强的安全性;
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法; 算法如下:
首先, 找出三个数, p, q, r,其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数......p, q, r 这三个数便是 private key
接着, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了.....再来, 计算 n = pq.......m, n 这两个数便是 public key
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法;
AES(Advanced Encryption Standard):高级加密标准,对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael 算法;
BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;
MD5:严格来说不算加密算法,只能说是摘要算法;
对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。
在MD5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(Bits Length)将被扩展至N*512+448,即N*64+56个字节(Bytes),N为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,如今信息字节长度=N*512+448+64=(N+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。(可参见MD5算法词条)
PKCS:The Public-Key Cryptography Standards (PKCS)是由美国RSA数据安全公司及其合作伙伴制定的一组公钥密码学标准,其中包括证书申请、证书更新、证书作废表发布、扩展证书内容以及数字签名、数字信封的格式等方面的一系列相关协议。
SSF33,SSF28,SCB2(SM1):国家密码局的隐蔽不公开的商用算法,在国内民用和商用的,除这些都不容许使用外,其他的都可以使用;
Ⅶ 分享Java常用几种加密算法
简单的Java加密算法有:
第一种. BASE
Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
第二种. MD
MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。广泛用于加密和解密技术,常用于文件校验。校验?不管文件多大,经过MD后都能生成唯一的MD值。好比现在的ISO校验,都是MD校验。怎么用?当然是把ISO经过MD后产生MD的值。一般下载linux-ISO的朋友都见过下载链接旁边放着MD的串。就是用来验证文件是否一致的。
MD算法具有以下特点:
压缩性:任意长度的数据,算出的MD值长度都是固定的。
容易计算:从原数据计算出MD值很容易。
抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。
弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。
强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。
MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。
第三种.SHA
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
SHA-与MD的比较
因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行攻击的安全性:最显着和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。
对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。
速度:在相同的硬件上,SHA-的运行速度比MD慢。
第四种.HMAC
HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。
Ⅷ 网络信息安全古典加密算法都有哪些
常用密钥算法
密钥算法用来对敏感数据、摘要、签名等信息进行加密,常用的密钥算法包括:
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合;
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高;
RC2和RC4:用变长密钥对大量数据进行加密,比DES快;
RSA:由RSA公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件快的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的DSS(数字签名标准);
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前AES标准的一个实现是 Rijndael算法;
BLOWFISH:它使用变长的密钥,长度可达448位,运行速度很快;
其它算法:如ElGamal、Deffie-Hellman、新型椭圆曲线算法ECC等。
常见加密算法
des(data
encryption
standard):数据加密标准,速度较快,适用于加密大量数据的场合;
3des(triple
des):是基于des,对一块数据用三个不同的密钥进行三次加密,强度更高;
rc2和
rc4:用变长密钥对大量数据进行加密,比
des
快;
idea(international
data
encryption
algorithm)国际数据加密算法:使用
128
位密钥提供非常强的安全性;
rsa:由
rsa
公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
dsa(digital
signature
algorithm):数字签名算法,是一种标准的
dss(数字签名标准);
aes(advanced
encryption
standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前
aes
标准的一个实现是
rijndael
算法;
blowfish,它使用变长的密钥,长度可达448位,运行速度很快;
其它算法,如elgamal、deffie-hellman、新型椭圆曲线算法ecc等。
比如说,md5,你在一些比较正式而严格的网站下的东西一般都会有md5值给出,如安全焦点的软件工具,每个都有md5。