导航:首页 > 文档加密 > 公开加密rsa

公开加密rsa

发布时间:2022-12-10 16:52:29

1. RSA公钥加密是什么意思

RSA公钥密码是1977年由Ron Rivest、Adi Shamirh和LenAdleman在MIT(美国麻省理工学院〉开发的,1978年首次公布[RIVE78]。它是目前最有影响的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击。目前它已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想分解它们的乘积却极端困难,因此可以将乘积公开作为加密密钥。

RSA的算法结构相当简单,整个算法可以描述如下:

(1)选取两个大素数p和q(保密);

(2)计算n=pq(公开),γ=(p一1〉(q-1)(保密);

(3)随机选取整数e(公开,加密密钥),使得ed(ear)=1

(4)计算d(保密,私人密钥),使得ed≡1(mod r),即d=e-1(mod r);

(5)加密:c=me mod n

(6)解密:m=cd mod n。

利用RSA对被加密的信息m (长度小于log2n的整数)进行加密得到相应的密文c=me mod n;解密算法则是计算m=cd modn RSA的优点是不需要密钥分配,但缺点是速度慢。

2. rsa加密算法

rsa加密算法如下:

算法原理:

RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥

3. 公钥密码系统及RSA公钥算法

公钥密码系统及RSA公钥算法

本文简单介绍了公开密钥密码系统的思想和特点,并具体介绍了RSA算法的理论基础,工作原理和具体实现过程,并通过一个简单例子说明了该算法是如何实现。在本文的最后,概括说明了RSA算法目前存在的一些缺点和解决方法。

关键词:公钥密码体制 , 公钥 ,私钥 ,RSA

§1引言

随着计算机联网的逐步实现,Internet前景越来越美好,全球经济发展正在进入信息经济时代,知识经济初见端倪。计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全。信息安全技术是一门综合学科,它涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。其中,信息安全的核心是密码技术。密码技术是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。它不仅能够保证机密性信息的加密,而且能够实现数字签名、身份验证、系统安全等功能。是现代化发展的重要科学之一。本文将对公钥密码系统及该系统中目前最广泛流行的RSA算法做一些简单介绍。

§2公钥密码系统

要说明公钥密码系统,首先来了解一下不同的加密算法:目前的加密算法按密钥方式可分为单钥密码算法和公钥密码算法。

2.1.单钥密码

又称对称式密码,是一种比较传统的加密方式,其加密运算、解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码(称为对称密码)。因此,通信双方都必须获得这把钥匙,并保持钥匙的秘密。

单钥密码系统的安全性依赖于以下两个因素:第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性,因此,我们没有必要确保算法的秘密性(事实上,现实中使用的很多单钥密码系统的算法都是公开的),但是我们一定要保证密钥的秘密性。

从单钥密码的这些特点我们容易看出它的主要问题有两点:第一,密钥量问题。在单钥密码系统中,每一对通信者就需要一对密钥,当用户增加时,必然会带来密钥量的成倍增长,因此在网络通信中,大量密钥的产生﹑存放和分配将是一个难以解决的问题。第二,密钥分发问题。单钥密码系统中,加密的安全性完全依赖于对密钥的保护,但是由于通信双方使用的是相同的密钥,人们又不得不相互交流密钥,所以为了保证安全,人们必须使用一些另外的安全信道来分发密钥,例如用专门的信使来传送密钥,这种做法的代价是相当大的,甚至可以说是非常不现实的,尤其在计算机网络环境下,人们使用网络传送加密的文件,却需要另外的安全信道来分发密钥,显而易见,这是非常不智是甚至是荒谬可笑的。

2.2公钥密码

正因为单钥密码系统存在如此难以解决的缺点,发展一种新的﹑更有效﹑更先进的密码体制显得更为迫切和必要。在这种情况下,出现了一种新的公钥密码体制,它突破性地解决了困扰着无数科学家的密钥分发问题,事实上,在这种体制中,人们甚至不用分发需要严格保密的密钥,这次突破同时也被认为是密码史上两千年来自单码替代密码发明以后最伟大的成就。

这一全新的思想是本世纪70年代,美国斯坦福大学的两名学者Diffie和Hellman提出的,该体制与单钥密码最大的不同是:

在公钥密码系统中,加密和解密使用的是不同的密钥(相对于对称密钥,人们把它叫做非对称密钥),这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。这使得通信双方无需事先交换密钥就可进行保密通信。其中加密密钥和算法是对外公开的,人人都可以通过这个密钥加密文件然后发给收信者,这个加密密钥又称为公钥;而收信者收到加密文件后,它可以使用他的解密密钥解密,这个密钥是由他自己私人掌管的,并不需要分发,因此又成称为私钥,这就解决了密钥分发的问题。

为了说明这一思想,我们可以考虑如下的类比:

两个在不安全信道中通信的人,假设为Alice(收信者)和Bob(发信者),他们希望能够安全的通信而不被他们的敌手Oscar破坏。Alice想到了一种办法,她使用了一种锁(相当于公钥),这种锁任何人只要轻轻一按就可以锁上,但是只有Alice的钥匙(相当于私钥)才能够打开。然后Alice对外发送无数把这样的锁,任何人比如Bob想给她寄信时,只需找到一个箱子,然后用一把Alice的锁将其锁上再寄给Alice,这时候任何人(包括Bob自己)除了拥有钥匙的Alice,都不能再打开箱子,这样即使Oscar能找到Alice的锁,即使Oscar能在通信过程中截获这个箱子,没有Alice的钥匙他也不可能打开箱子,而Alice的钥匙并不需要分发,这样Oscar也就无法得到这把“私人密钥”。

从以上的介绍可以看出,公钥密码体制的思想并不复杂,而实现它的关键问题是如何确定公钥和私钥及加/解密的算法,也就是说如何找到“Alice的锁和钥匙”的问题。我们假设在这种体制中, PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。它们须满足条件:

①加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X

②加密密钥不能用来解密,即DPK(EPK(X))≠X

③在计算机上可以容易地产生成对的PK和SK。

④从已知的PK实际上不可能推导出SK。

⑤加密和解密的运算可以对调,即:EPK(DSK(X))=X

从上述条件可看出,公开密钥密码体制下,加密密钥不等于解密密钥。加密密钥可对外公开,使任何用户都可将传送给此用户的信息用公开密钥加密发送,而该用户唯一保存的私人密钥是保密的,也只有它能将密文复原、解密。虽然解密密钥理论上可由加密密钥推算出来,但这种算法设计在实际上是不可能的,或者虽然能够推算出,但要花费很长的时间而成为不可行的。所以将加密密钥公开也不会危害密钥的安全。

这种体制思想是简单的,但是,如何找到一个适合的算法来实现这个系统却是一个真正困扰密码学家们的难题,因为既然Pk和SK是一对存在着相互关系的密钥,那么从其中一个推导出另一个就是很有可能的,如果敌手Oscar能够从PK推导出SK,那么这个系统就不再安全了。因此如何找到一个合适的算法生成合适的Pk和SK,并且使得从PK不可能推导出SK,正是迫切需要密码学家们解决的一道难题。这个难题甚至使得公钥密码系统的发展停滞了很长一段时间。

为了解决这个问题,密码学家们考虑了数学上的陷门单向函数,下面,我们可以给出它的非正式定义:

Alice的公开加密函数应该是容易计算的,而计算其逆函数(即解密函数)应该是困难的(对于除Alice以外的人)。许多形式为Y=f(x)的函数,对于给定的自变量x值,很容易计算出函数Y的值;而由给定的Y值,在很多情况下依照函数关系f (x)计算x值十分困难。这样容易计算但难于求逆的函数,通常称为单向函数。在加密过程中,我们希望加密函数E为一个单项的单射函数,以便可以解密。虽然目前还没有一个函数能被证明是单向的,但是有很多单射函数被认为是单向的。

例如,有如下一个函数被认为是单向的,假定n为两个大素数p和q的乘积,b为一个正整数,那么定义f:

f (x )= x b mod n

(如果gcd(b,φ(n))=1,那么事实上这就是我们以下要说的RSA加密函数)

如果我们要构造一个公钥密码体制,仅给出一个单向的单射函数是不够的。从Alice的观点来看,并不需要E是单向的,因为它需要用有效的方式解密所收到的信息。因此,Alice应该拥有一个陷门,其中包含容易求出E的你函数的秘密信息。也就是说,Alice可以有效解密,因为它有额外的秘密知识,即SK,能够提供给你解密函数D。因此,我们称一个函数为一个陷门单向函数,如果它是一个单向函数,并在具有特定陷门的知识后容易求出其逆。

考虑上面的函数f (x) = xb mod n。我们能够知道其逆函数f -1有类似的形式f (x ) = xa mod n,对于合适的取值a。陷门就是利用n的因子分解,有效的算出正确的指数a(对于给定的b)。

为方便起见,我们把特定的某类陷门单向函数计为?。那么随机选取一个函数f属于?,作为公开加密函数;其逆函数f-1是秘密解密函数。那么公钥密码体制就能够实现了。

根据以上关于陷门单向函数的思想,学者们提出了许多种公钥加密的方法,它们的安全性都是基于复杂的数学难题。根据所基于的数学难题,至少有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭园曲线离散对数系统(ECC)和离散对数系统(代表性的有DSA)。

§3 RSA算法

3.1简介

当前最着名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。它是一个基于数论的非对称(公开钥)密码体制,是一种分组密码体制。其名称来自于三个发明者的姓名首字母。它的安全性是基于大整数素因子分解的困难性,而大整数因子分解问题是数学上的着名难题,至今没有有效的方法予以解决,因此可以确保RSA算法的安全性。RSA系统是公钥系统的最具有典型意义的方法,大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。

RSA算法是第一个既能用于数据加密也能用于数字签名的算法,因此它为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册,人们用公钥加密文件发送给个人,个人就可以用私钥解密接受。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。

该算法基于下面的两个事实,这些事实保证了RSA算法的安全有效性:

1)已有确定一个数是不是质数的快速算法;

2)尚未找到确定一个合数的质因子的快速算法。

3.2工作原理

1)任意选取两个不同的大质数p和q,计算乘积r=p*q;

2)任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥。注意:e的选取是很容易的,例如,所有大于p和q的质数都可用。

3)确定解密密钥d:d * e = 1 molo(p - 1)*(q - 1) 根据e、p和q可以容易地计算出d。

4)公开整数r和e,但是不公开d;

5)将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为:

C = Pe molo r

6)将密文C解密为明文P,计算方法为:

P = Cd molo r

然而只根据r和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密。

3.3简单实例

为了说明该算法的工作过程,我们下面给出一个简单例子,显然我们在这只能取很小的数字,但是如上所述,为了保证安全,在实际应用上我们所用的数字要大的多得多。

例:选取p=3, q=5,则r=15,(p-1)*(q-1)=8。选取e=11(大于p和q的质数),通过d * 11 = 1 molo 8,计算出d =3。

假定明文为整数13。则密文C为

C = Pe molo r

= 1311 molo 15

= 1,792,160,394,037 molo 15

= 7

复原明文P为:

P = Cd molo r

= 73 molo 15

= 343 molo 15

= 13

因为e和d互逆,公开密钥加密方法也允许采用这样的方式对加密信息进行"签名",以便接收方能确定签名不是伪造的。

假设A和B希望通过公开密钥加密方法进行数据传输,A和B分别公开加密算法和相应的密钥,但不公开解密算法和相应的密钥。A和B的加密算法分别是ECA和ECB,解密算法分别是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。 若A要向B发送明文P,不是简单地发送ECB(P),而是先对P施以其解密算法DCA,再用加密算法ECB对结果加密后发送出去。

密文C为:

C = ECB(DCA(P))

B收到C后,先后施以其解密算法DCB和加密算法ECA,得到明文P:

ECA(DCB(C))

= ECA(DCB(ECB(DCA(P))))

= ECA(DCA(P))/*DCB和ECB相互抵消*/

=

P          /*DCB和ECB相互抵消*/

这样B就确定报文确实是从A发出的,因为只有当加密过程利用了DCA算法,用ECA才能获得P,只有A才知道DCA算法,没 有人,即使是B也不能伪造A的签名。

3.4优缺点

3.4.1优点

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。该算法的加密密钥和加密算法分开,使得密钥分配更为方便。它特别符合计算机网络环境。对于网上的大量用户,可以将加密密钥用电话簿的方式印出。如果某用户想与另一用户进行保密通信,只需从公钥簿上查出对方的加密密钥,用它对所传送的信息加密发出即可。对方收到信息后,用仅为自己所知的解密密钥将信息脱密,了解报文的内容。由此可看出,RSA算法解决了大量网络用户密钥管理的难题,这是公钥密码系统相对于对称密码系统最突出的优点。

3.4.2缺点

1)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。

2)安全性, RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价,而且密码学界多数人士倾向于因子分解不是NPC问题。目前,人们已能分解140多个十进制位的大素数,这就要求使用更长的密钥,速度更慢;另外,目前人们正在积极寻找攻击RSA的方法,如选择密文攻击,一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )d = Xd *Md mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。除了利用公共模数,人们还尝试一些利用解密指数或φ(n)等等攻击.

3)速度太慢,由于RSA的分组长度太大,为保证安全性,n至少也要600 bitx以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。为了速度问题,目前人们广泛使用单,公钥密码结合使用的方法,优缺点互补:单钥密码加密速度快,人们用它来加密较长的文件,然后用RSA来给文件密钥加密,极好的解决了单钥密码的密钥分发问题。

§4结束语

目前,日益激增的电子商务和其它因特网应用需求使公钥体系得以普及,这些需求量主要包括对服务器资源的访问控制和对电子商务交易的保护,以及权利保护、个人隐私、无线交易和内容完整性(如保证新闻报道或股票行情的真实性)等方面。公钥技术发展到今天,在市场上明显的发展趋势就是PKI与操作系统的集成,PKI是“Public

Key Infrastructure”的缩写,意为“公钥基础设施”。公钥体制广泛地用于CA认证、数字签名和密钥交换等领域。

公钥加密算法中使用最广的是RSA。RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。目前为止,很多种加密技术采用了RSA算法,该算法也已经在互联网的许多方面得以广泛应用,包括在安全接口层(SSL)标准(该标准是网络浏览器建立安全的互联网连接时必须用到的)方面的应用。此外,RSA加密系统还可应用于智能IC卡和网络安全产品。

但目前RSA算法的专利期限即将结束,取而代之的是基于椭圆曲线的密码方案(ECC算法)。较之于RSA算法,ECC有其相对优点,这使得ECC的特性更适合当今电子商务需要快速反应的发展潮流。此外,一种全新的量子密码也正在发展中。

至于在实际应用中应该采用何种加密算法则要结合具体应用环境和系统,不能简单地根据其加密强度来做出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性以及投入产出分析都应在实际环境中具体考虑。加密技术随着网络的发展更新,将有更安全更易于实现的算法不断产生,为信息安全提供更有力的保障。今后,加密技术会何去何从,我们将拭目以待。

参考文献:

[1] Douglas R.Stinson.《密码学原理与实践》.北京:电子工业出版社,2003,2:131-132

[2]西蒙.辛格.《密码故事》.海口:海南出版社,2001,1:271-272

[3]嬴政天下.加密算法之RSA算法.http://soft.winzheng.com/infoView/Article_296.htm,2003

[4]加密与数字签名.http://www.njt.cn/yumdq/dzsw/a2.htm

[5]黑客中级教程系列之十.http://www.qqorg.i-p.com/jiaocheng/10.html

4. RSA加解密原理

RSA是目前使用最为广泛的公钥密码算法,公钥加密也称为非对称加密,与对称加密的最大区别在于加密与解密使用不同的密钥。

在RSA中,明文、密文和密钥都是数字,假设公钥用二元组(E,N)来表示,私钥用(D,N)来表示,其中E、D、N都是数字,那么加解密过程可表示如下:

可见,在RSA中,不论加密还是解密,都可归结为求x的y次幂对m取余问题。

生成RSA密钥可分成以下4步:

首先准备两个很大的质数p和q,那么N = p * q。

L = lcm(p-1, q-1)

由于存在恒等式gcd(a,b) * lcm(a,b) = a * b,求lcm可转换为求gcd,而求gcd可通过欧几里德算法在对数时间内算出。

E是一个比1大、比L小的数,且满足E与L互质,即有:gcd(E,L)=1, 1 < E < L。gcd(E,L)=1是为了保证后面要求的数字D一定存在。

可不断地生成[2,L-1]之间的随机数作为E的候选数,检查是否满足条件,直到找出符合要求的E为止。

至此,E和N都已求出,那么公钥(E,N)也就得到了。

数D是由数E计算得到的,D、E和L之间满足关系:E * D mod L = 1, 1 < D < L。

只要D满足上述条件,那么通过E与N加密的内容,就可通过D和N进行解密。

求D也可采用类似求E的方法,不断产生随机数去试,直到找出满足条件的D为止,这样私钥(D,N)也准备好了。

为方面说明,这里用较小的数计算。先准备两个质数,例如,p=17, q=19,那么N=17*19=323,L=lcd(16,18)=144。

满足gcd(E,L)=1的数很多,例如5,7,11,13,25等,这里取E=5。

满足E*D mod L = 1的数也很多,这里取D=29。

到这里,公私钥都有了,公钥为(5,323),私钥为(29,323),公钥可任意公开,私钥则保密。

明文必须是小于N的数,因为加密运算中要求mod N。假设明文是123,用公钥(5,323)对其加密:

再用私钥(29,323)对密文225进行解密:

解出的明文与原始明文一致。

5. rsa和rsa的区别

首先来说,RSA是一种非对称加密算法,它是由三位数学家(Rivest、Shamir、Adleman)设计出来的。非对称加密是相对于对称加密而言的。对称加密算法是指加密解密使用的是同一个秘钥,而非对称加密是由两个密钥(公钥、私钥)来进行加密解密的,由此可见非对称加密安全性更高。 公钥顾名思义就是公开的密钥会发放给多个持有人,而私钥是私有密码往往只有一个持有人。 公私钥特性 公钥与私钥是成对出现的; 私钥文件中包含了公钥数据,所以可以基于私钥导出公钥; 密钥越长,越难破解,所以2048位密钥比1024位密钥要更安全; 公钥和私钥都是密钥,被公开的那个就是公钥,没有被公开的那个就是私钥。 公钥和私钥都可用于加密和解密 公钥和私钥都可以用于加解密操作,用公钥加密的数据只能由对应的私钥解密,反之亦然。虽说两者都可用于加密,但是不同场景使用不同的密钥来加密,规则如下: 1、私钥用于签名、公钥用于验签 签名和加密作用不同,签名并不是为了保密,而是为了保证这个签名是由特定的某个人签名的,而不是被其它人伪造的签名,所以私钥的私有性就适合用在签名用途上。 私钥签名后,只能由对应的公钥解密,公钥又是公开的(很多人可持有),所以这些人拿着公钥来解密,解密成功后就能判断出是持有私钥的人做的签名,验证了身份合法性。 2、公钥用于加密、私钥用于解密,这才能起到加密作用 因为公钥是公开的,很多人可以持有公钥。若用私钥加密,那所有持有公钥的人都可以进行解密,这是不安全的! 若用公钥加密,那只能由私钥解密,而私钥是私有不公开的,只能由特定的私钥持有人解密,保证的数据的安全性。 RSA算法可以总结为四句话:公钥加密、私钥解密、私钥签名、公钥验签。加密是防止信息泄露,而签名是为了防止信息被篡改。

6. Rsa是什么意思

RSA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

1973年,在英国政府通讯总部工作的数学家克利福德·柯克斯(Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被发表。

(6)公开加密rsa扩展阅读

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解。

假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。 RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。人们已能分解多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。

7. RSA加密原理

RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。公钥加密--私钥解密,私钥加密--公钥解密

在 整数 中, 离散对数 是一种基于 同余 运算和 原根 的一种 对数 运算。而在实数中对数的定义 log b a 是指对于给定的 a b ,有一个数 x ,使得 b x = a 。相同地在任何群 G 中可为所有整数 k 定义一个幂数为 b K ,而 离散对数 log b a 是指使得 b K = a 的整数 k

当3为17的 原根 时,我们会发现一个规律

对 正整数 n,欧拉函数是小于或等于n的正整数中与n 互质 的数的数目(因此φ(1)=1)。有以下几个特点

服务端根据生成一个随机数15,根据 3 15 mod 17 计算出6,服务端将6传递给客户端,客户端生成一个随机数13,根据 3 13 mod 17 计算出12后,将12再传回给服务端,客户端收到服务端传递的6后,根据 6 13 mod 17 计算出 10 ,服务端收到客户端传递的12后,根据 12 15 mod 17 计算出 10 ,我们会发现我们通过 迪菲赫尔曼密钥交换 将 10 进行了加密传递

说明:

安全性:
除了 公钥 用到 n 和 e ,其余的4个数字是 不公开 的(p1、p2、φ(n)、d)
目前破解RSA得到的方式如下:

缺点
RSA加密 效率不高 ,因为是纯粹的数学算法,大数据不适合RSA加密,所以我们在加密大数据的时候,我们先用 对称加密 算法加密大数据得到 KEY ,然后再用 RSA 加密 KEY ,再把大数据和KEY一起进行传递

因为Mac系统内置了OpenSSL(开源加密库),所以我们开源直接在终端进行RSA加密解密

生成RSA私钥,密钥名为private.pem,密钥长度为1024bit

因为在iOS中是无法使用 .pem 文件进行加密和解密的,需要进行下面几个步骤

生成一个10年期限的crt证书

crt证书格式转换成der证书

8. rsa是什么意思

RSA是公开密钥密码体制是一种使用不同的加密密钥与解密密钥,“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制。RSA是1977年由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼(LeonardAdleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

简介
在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然解密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。正是基于这种理论,1978年出现了着名的RSA算法,它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要。

算法原理
RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。

9. 密钥密码体系的公开密钥算法RSA

公开密钥算法是在1976年由当时在美国斯坦福大学的迪菲(Diffie)和赫尔曼(Hellman)两人首先发明的(论文New Direction in Cryptography)。但目前最流行的RSA是1977年由MIT教授Ronald L.Rivest,Adi Shamir和Leonard M.Adleman共同开发的,分别取自三名数学家的名字的第一个字母来构成的。
1976年提出的公开密钥密码体制思想不同于传统的对称密钥密码体制,它要求密钥成对出现,一个为加密密钥(e),另一个为解密密钥(d),且不可能从其中一个推导出另一个。自1976年以来,已经提出了多种公开密钥密码算法,其中许多是不安全的, 一些认为是安全的算法又有许多是不实用的,它们要么是密钥太大,要么密文扩展十分严重。多数密码算法的安全基础是基于一些数学难题, 这些难题专家们认为在短期内不可能得到解决。因为一些问题(如因子分解问题)至今已有数千年的历史了。
公钥加密算法也称非对称密钥算法,用两对密钥:一个公共密钥和一个专用密钥。用户要保障专用密钥的安全;公共密钥则可以发布出去。公共密钥与专用密钥是有紧密关系的,用公共密钥加密的信息只能用专用密钥解密,反之亦然。由于公钥算法不需要联机密钥服务器,密钥分配协议简单,所以极大简化了密钥管理。除加密功能外,公钥系统还可以提供数字签名。
公钥加密算法中使用最广的是RSA。RSA使用两个密钥,一个公共密钥,一个专用密钥。如用其中一个加密,则可用另一个解密,密钥长度从40到2048bit可变,加密时也把明文分成块,块的大小可变,但不能超过密钥的长度,RSA算法把每一块明文转化为与密钥长度相同的密文块。密钥越长,加密效果越好,但加密解密的开销也大,所以要在安全与性能之间折衷考虑,一般64位是较合适的。RSA的一个比较知名的应用是SSL,在美国和加拿大SSL用128位RSA算法,由于出口限制,在其它地区(包括中国)通用的则是40位版本。
RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完性。 公用密钥的优点就在于,也许你并不认识某一实体,但只要你的服务器认为该实体的CA是可靠的,就可以进行安全通信,而这正是Web商务这样的业务所要求的。例如信用卡购物。服务方对自己的资源可根据客户CA的发行机构的可靠程度来授权。目前国内外尚没有可以被广泛信赖的CA。美国Natescape公司的产品支持公用密钥,但把Natescape公司作为CA。由外国公司充当CA在我国是一件不可想象的事情。
公共密钥方案较保密密钥方案处理速度慢,因此,通常把公共密钥与专用密钥技术结合起来实现最佳性能。即用公共密钥技术在通信双方之间传送专用密钥,而用专用密钥来对实际传输的数据加密解密。另外,公钥加密也用来对专用密钥进行加密。
在这些安全实用的算法中,有些适用于密钥分配,有些可作为加密算法,还有些仅用于数字签名。多数算法需要大数运算,所以实现速度很慢,不能用于快的数据加密。以下将介绍典型的公开密钥密码算法-RSA。
RSA算法很好的完成对电文的数字签名以抗对数据的否认与抵赖;利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。目前为止,很多种加密技术采用了RSA算法,比如PGP(PrettyGoodPrivacy)加密系统,它是一个工具软件,向认证中心注册后就可以用它对文件进行加解密或数字签名,PGP所采用的就是RSA算法。由此可以看出RSA有很好的应用。

10. 13RSA加密:公开的钥匙反而更安全RSAEncryption: open keys are more secure

RSAEncryption: open keys are more secure

上节 已经知道,通过模运算这种不可逆的数学工具,密码学已经发展到不需要单独发送钥匙了。

这个突破很大,但它实用吗?答案是不行。

因为这套方案有个前提——需要双方一直同时在线,通信才能启动。而现实中,像我们用微信、发短信、发邮件,一般都不用对方立刻回复。这个应用场景的问题不解决,这套方法就没法商用。

最终实现这个功能的,是第六代密码法——RSA加密法。

这门课到现在,我们讲了很多加密方法,如今大多数都不再使用了。而RSA加密法,仍是目前使用最广泛的方法。像我们的手机支付加密、网银加密,都会用到它。

关乎钱包和信息安全,你一定得认真听。

RSA这3个字母,分别代表的是它的3位创立者——Ron Rivest、Adi Shamir、Leonard Adleman。

下面我们用打比方的方式,来说说具体的加密过程:

这个过程的关键点就是,对同一把锁来说,上锁和开锁用的是两把不同的钥匙,而之前我们说的所有加密法都是使用相同钥匙的。

所以之前的都叫“ 对称钥匙 ”,而RSA因为使用了不同的钥匙,所以叫“非对称钥匙”,或者“非对称加密”。

刚刚我们用一个非常简单的比喻,把非对称加密过程形容了一下。但还是那句话,比喻是不能代替理解的,实际的思考逻辑是这样的:

爱丽丝要设计出一把公开钥匙,之所以公开,是为了让每个人都能复制这把钥匙,用来给自己发信息加密用。但这把钥匙,又一定不能解开加密过的信息。

所以这一步,需要一种不可逆的函数运算,只能加密不能解密,这个就可以用我们上节课说的模运算来实现。

爱丽丝本人还得有一把私人钥匙,它是不公开的。而这把钥匙,可以解开用她的公开钥匙加密过的信息。

具体的细节比较难懂,需要公式的辅助,我来说说关键步骤:

爱丽丝展示出来的公开钥匙,是通过两个比较大的素数p和q相乘得到的一个更大的数N得到的。p和q具体是多少,爱丽丝只要自己知道就行,千万不要告诉别人。而乘积N是公开的,谁都可以知道。

凡是要给爱丽丝发消息的人,都需要用N来加密。加密的过程依然用的是模运算,而且模就是N。整个数学过程会保证这个模运算不可逆,所以伊芙就算知道N也没用。

那爱丽丝是怎么解密的呢?她解密时就不需要N了,而是要用到p和q的具体值,而这两个值别人都不知道,只有爱丽丝自己知道。具体来说,爱丽丝私下做的另外一个模运算中的模,不是刚才我们说的N,而是另外一个值(p-1)×(q-1)。你看,在这个公式中就必须要知道p和q到底是多少才行。

至于为什么一定要是(p-1)×(q-1),你不用纠结,数学原理保证这样操作能算出一把新钥匙,这把新的钥匙就是爱丽丝自己的私钥。用这把私钥,一定可以解出原文。

你说,这样做就能保证安全吗?伊芙已经知道了一个大数N,她难道不能利用精巧的算法,找出N到底是由哪两个大的质数相乘得到的吗?

不能的,这种不能是由数学保证的。N越大,找到p和q两个因数的时间就增加得越夸张。现在银行使用的RSA加密,都要求N是一个超过300位的大数。想分解这样一个数,大约需要把全球计算机的算力集中起来算上几亿年才行。

有人可能会问,为什么非要用两个大的质数相乘呢?用两个巨大的合数相乘得到N,想把这个N的因数找齐,不是也要很久吗?没错,是要很久。但这样做的话,最后算出的私钥也没法解出原文了。所以,找两个质数相乘,也是由数学决定的。

1978年2月,顶级期刊《ACM通信》刊登了一篇文章,叫《一种实现数字签名和公钥密码系统的方法》(A Method of Obtaining Digital Signatures and Public-Key Cryptosystems),作者就是姓名以RSA这三个字母开头的密码学家。

在文章的第三页就出现了这么一句:

“我们假设一个场景,爱丽丝和鲍勃是公钥密码系统中的两个用户。”这篇文章此后所有的技术细节,爱丽丝和鲍勃就成了主角。这是密码学史上,爱丽丝和鲍勃的首次出现。

这种论文风格很另类,看上去好像在讲故事。那为什么是爱丽丝和鲍勃,而不是汤姆和杰瑞呢?

只要参考之前的通信类论文你就会发现,以往用来指代发送方和接收方的,一直都是A和B,而且由A发出的内容大都是α,由B发出的内容大都是β。

可能这三位密码学家不想太枯燥,就把名字以A开头的Alice当做A,把名字以B开头的Bob当做B,于是爱丽丝和鲍勃就这样尽人皆知了。

现在我们再来回头看,密码学发展的过程中,公开透明的部分越来越多。

到了第六代的RSA加密法,不但加密的操作公开了,连部分钥匙都公开了。而且公钥不是情不得已才公开的,而是越公开益处越大,因为这样才能有更多的人给你发加密消息。到了现在,唯一不能公开的就只有私钥。

可能听到这里,你会感觉RSA加密法使用的数学工具很陌生。没错,这个方法用到了两大数学领域的知识——质数方面的应用和数论有关,单向函数的应用和群论有关。

这个算法背后的数学证明,一般在计算机系《算法导论》有详细论述。如果想深入了解,你可以参考这类教科书。

数学有很多分支,现在大多已经成为工程应用的理论基础了。不过它们化身为应用的范围有宽有窄,比如群论的应用就广阔很多,而数论部分就狭窄很多,目前只有密码学在应用。

1979年,RSA注册了专利后,还成就了很多信息安全公司。但如果就这样介绍完RSA加密法是如何创生的,那真的有人要受委屈了。

因为同样的加密法,其实早在4年就已经有人完整的做出来了。那他们为什么没有成为这种非对称钥匙系统的专利发明人呢?

道理还是我之前说的,密码学领域注定会有很多受屈者。

最早发明这种方法的,并不是RSA这三个人,而是詹姆斯·艾利斯(James Ellis)、克里佛·考克斯(Clifford Cocks)和马尔科姆·威廉森(Malcolm Williamson),我们简称他们三人为JCM。

他们都是英国政府通讯总部的员工。不知道你是不是还记得图灵破解恩尼格玛机时,那个庞大的情报部门布莱切利园。当时9000名员工,战后绝大部分都回到了原来的生活中,只有少数转去英国通讯总部做了公务员,这3位密码学家就是这样留任的。

他们之后的研究也全都带有军方项目的性质,所以是国家机密。别看1975年他们就做出了整套非对称钥匙加密系统,但直到24年后的1997年,人们才知道这件事。这时不要说和RSA争夺专利发明权了,连RSA的专利甚至都要过期了。

其实在1975年,JCM刚刚做出全套算法的时候,他们曾经向国家通讯总部提出过注册专利的要求,但总部没有批。

几年后他们听说RSA三个人注册了专利后,特别失落,因为他们才是最早的发明人,专利应该属于他们。但因为军方的限制,他们只好保持沉默。

到了80年代,随着计算机性能持续提升,RSA实用性越来越高,连当年拒绝JCM申请专利的通讯总部的长官,都开始后悔了。

而且这种遗憾,随着时间推移还在持续增加。2006年,RSA数据安全公司被EMC公司花2.1亿美元收购。又过了10年,EMC公司又被戴尔公司收购,成为戴尔技术品牌的一员。

1997年,英国公布JCM三人成果不久之后,他们举行了一次公开演讲。

演讲结束后,JCM里的威廉森接受采访,被问到错失专利的感受时,他说“没办法,人生就是这样”。另一个人考克斯的反应要更淡定一些,他说“我要是想得到公开的赞扬,就不会来做当前这份工作了”,他指的就是在英国通讯总部的工作。

而第三个人,也是最早参与研发的詹姆斯·艾利斯,在演讲前一个月刚刚过世,享年73岁。

讲到现在,密码学近代史上,已经有3个重要人物没有在他们有生之年获得应有的嘉奖了。

他们都是因为军方需要保密,而不得不做出牺牲。可从事密码学研究的人,有相当高的比例就是为政府情报部门工作的。这个属性就决定了,他们很容易受到历史不公正的评价。而对我们这些看客来说,关于密码学的突破,我们能了解到的,只是各国情报部门允许我们了解到的部分。

这是密码学这个学科分支,独有的文化特征。

这节讲了RSA加密法的加密原理,知道了这种“ 非对称加密 ”的高明之处。

下节引起了整个美国全民大讨论的密码学事件,看看RSA加密法是怎么被普及的。

阅读全文

与公开加密rsa相关的资料

热点内容
dvd光盘存储汉子算法 浏览:757
苹果邮件无法连接服务器地址 浏览:962
phpffmpeg转码 浏览:671
长沙好玩的解压项目 浏览:144
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:736
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:484
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:381
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:349
风翼app为什么进不去了 浏览:778
im4java压缩图片 浏览:362
数据查询网站源码 浏览:150
伊克塞尔文档怎么进行加密 浏览:892
app转账是什么 浏览:163