上述过程中,出现了公钥(3233,17)和私钥(3233,2753),这两组数字是怎么找出来的呢?参考 RSA算法原理(二)
首字母缩写说明:E是加密(Encryption)D是解密(Decryption)N是数字(Number)。
1.随机选择两个不相等的质数p和q。
alice选择了61和53。(实际应用中,这两个质数越大,就越难破解。)
2.计算p和q的乘积n。
n = 61×53 = 3233
n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。
3.计算n的欧拉函数φ(n)。称作L
根据公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等于60×52,即3120。
4.随机选择一个整数e,也就是公钥当中用来加密的那个数字
条件是1< e < φ(n),且e与φ(n) 互质。
alice就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)
5.计算e对于φ(n)的模反元素d。也就是密钥当中用来解密的那个数字
所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1
6.将n和e封装成公钥,n和d封装成私钥。
在alice的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。
上述故事中,blob为了偷偷地传输移动位数6,使用了公钥做加密,即6^17 mode 3233 = 824。alice收到824之后,进行解密,即824^2753 mod 3233 = 6。也就是说,alice成功收到了blob使用的移动位数。
再来复习一下整个流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要满足以下两个条件:1<E<144,E和144互质)
D = 29(D要满足两个条件,1<D<144,D mode 144 = 1)
假设某个需要传递123,则加密后:123^5 mode 323 = 225
接收者收到225后,进行解密,225^ 29 mode 323 = 123
回顾上面的密钥生成步骤,一共出现六个数字:
p
q
n
L即φ(n)
e
d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。那么,有无可能在已知n和e的情况下,推导出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基网络这样写道:"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"
然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。此外,RSA的缺点还有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此, 使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法 。
加密和解密是自古就有技术了。经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫无意义的数字苦恼,忽然灵光一闪,翻出一本厚书,将第一个数字对应页码数,第二个数字对应行数,第三个数字对应那一行的某个词。数字变成了一串非常有意义的话:
Eat the beancurd with the peanut. Taste like the ham.
这种加密方法是将原来的某种信息按照某个规律打乱。某种打乱的方式就叫做密钥(cipher code)。发出信息的人根据密钥来给信息加密,而接收信息的人利用相同的密钥,来给信息解密。 就好像一个带锁的盒子。发送信息的人将信息放到盒子里,用钥匙锁上。而接受信息的人则用相同的钥匙打开。加密和解密用的是同一个密钥,这种加密称为对称加密(symmetric encryption)。
如果一对一的话,那么两人需要交换一个密钥。一对多的话,比如总部和多个特工的通信,依然可以使用同一套密钥。 但这种情况下,对手偷到一个密钥的话,就知道所有交流的信息了。 二战中盟军的情报战成果,很多都来自于破获这种对称加密的密钥。
为了更安全,总部需要给每个特工都设计一个不同的密钥。如果是FBI这样庞大的机构,恐怕很难维护这么多的密钥。在现代社会,每个人的信用卡信息都需要加密。一一设计密钥的话,银行怕是要跪了。
对称加密的薄弱之处在于给了太多人的钥匙。如果只给特工锁,而总部保有钥匙,那就容易了。特工将信息用锁锁到盒子里,谁也打不开,除非到总部用唯一的一把钥匙打开。只是这样的话,特工每次出门都要带上许多锁,太容易被识破身份了。总部老大想了想,干脆就把造锁的技术公开了。特工,或者任何其它人,可以就地取材,按照图纸造锁,但无法根据图纸造出钥匙。钥匙只有总部的那一把。
上面的关键是锁和钥匙工艺不同。知道了锁,并不能知道钥匙。这样,银行可以将“造锁”的方法公布给所有用户。 每个用户可以用锁来加密自己的信用卡信息。即使被别人窃听到,也不用担心:只有银行才有钥匙呢!这样一种加密算法叫做非对称加密(asymmetric encryption)。非对称加密的经典算法是RSA算法。它来自于数论与计算机计数的奇妙结合。
1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。这种新的加密模式被称为"非对称加密算法"。
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。
1.能“撞”上的保险箱(非对称/公钥加密体制,Asymmetric / Public Key Encryption)
数据加密解密和门锁很像。最开始的时候,人们只想到了那种只能用钥匙“锁”数据的锁。如果在自己的电脑上自己加密数据,当然可以用最开始这种门锁的形式啦,方便快捷,简单易用有木有。
但是我们现在是通信时代啊,双方都想做安全的通信怎么办呢?如果也用这种方法,通信就好像互相发送密码保险箱一样…而且双方必须都有钥匙才能进行加密和解密。也就是说,两个人都拿着保险箱的钥匙,你把数据放进去,用钥匙锁上发给我。我用同样的钥匙把保险箱打开,再把我的数据锁进保险箱,发送给你。
这样看起来好像没什么问题。但是,这里面 最大的问题是:我们两个怎么弄到同一个保险箱的同一个钥匙呢? 好像仅有的办法就是我们两个一起去买个保险箱,然后一人拿一把钥匙,以后就用这个保险箱了。可是,现代通信社会,绝大多数情况下别说一起去买保险箱了,连见个面都难,这怎么办啊?
于是,人们想到了“撞门”的方法。我这有个可以“撞上”的保险箱,你那里自己也买一个这样的保险箱。通信最开始,我把保险箱打开,就这么开着把保险箱发给你。你把数据放进去以后,把保险箱“撞”上发给我。撞上以后,除了我以外,谁都打不开保险箱了。这就是RSA了,公开的保险箱就是公钥,但是我有私钥,我才能打开。
2.数字签名
这种锁看起来好像很不错,但是锁在运输的过程中有这么一个严重的问题:你怎么确定你收到的开着的保险箱就是我发来的呢?对于一个聪明人,他完全可以这么干:
(a)装作运输工人。我现在把我开着的保险箱运给对方。运输工人自己也弄这么一个保险箱,运输的时候把保险箱换成他做的。
(b)对方收到保险箱后,没法知道这个保险箱是我最初发过去的,还是运输工人替换的。对方把数据放进去,把保险箱撞上。
(c)运输工人往回运的时候,用自己的钥匙打开自己的保险箱,把数据拿走。然后复印也好,伪造也好,弄出一份数据,把这份数据放进我的保险箱,撞上,然后发给我。
从我的角度,从对方的角度,都会觉得这数据传输过程没问题。但是,运输工人成功拿到了数据,整个过程还是不安全的,大概的过程是这样:
这怎么办啊?这个问题的本质原因是,人们没办法获知,保险箱到底是“我”做的,还是运输工人做的。那干脆,我们都别做保险箱了,让权威机构做保险箱,然后在每个保险箱上用特殊的工具刻上一个编号。对方收到保险箱的时候,在权威机构的“公告栏”上查一下编号,要是和保险箱上的编号一样,我就知道这个保险箱是“我”的,就安心把数据放进去。大概过程是这样的:
如何做出刻上编号,而且编号没法修改的保险箱呢?这涉及到了公钥体制中的另一个问题:数字签名。
要知道,刻字这种事情吧,谁都能干,所以想做出只能自己刻字,还没法让别人修改的保险箱确实有点难度。那么怎么办呢?这其实困扰了人们很长的时间。直到有一天,人们发现:我们不一定非要在保险箱上刻规规矩矩的字,我们干脆在保险箱上刻手写名字好了。而且,刻字有点麻烦,干脆我们在上面弄张纸,让人直接在上面写,简单不费事。具体做法是,我们在保险箱上嵌进去一张纸,然后每个出产的保险箱都让权威机构的CEO签上自己的名字。然后,CEO把自己的签名公开在权威机构的“公告栏”上面。比如这个CEO就叫“学酥”,那么整个流程差不多是这个样子:
这个方法的本质原理是,每个人都能够通过笔迹看出保险箱上的字是不是学酥CEO签的。但是呢,这个字体是学酥CEO唯一的字体。别人很难模仿。如果模仿我们就能自己分辨出来了。要是实在分辨不出来呢,我们就请一个笔迹专家来分辨。这不是很好嘛。这个在密码学上就是数字签名。
上面这个签字的方法虽然好,但是还有一个比较蛋疼的问题。因为签字的样子是公开的,一个聪明人可以把公开的签字影印一份,自己造个保险箱,然后把这个影印的字也嵌进去。这样一来,这个聪明人也可以造一个相同签字的保险箱了。解决这个问题一个非常简单的方法就是在看保险箱上的签名时,不光看字体本身,还要看字体是不是和公开的字体完全一样。要是完全一样,就可以考虑这个签名可能是影印出来的。甚至,还要考察字体是不是和其他保险柜上的字体一模一样。因为聪明人为了欺骗大家,可能不影印公开的签名,而影印其他保险箱上的签名。这种解决方法虽然简单,但是验证签名的时候麻烦了一些。麻烦的地方在于我不仅需要对比保险箱上的签名是否与公开的笔迹一样,还需要对比得到的签名是否与公开的笔迹完全一样,乃至是否和所有发布的保险箱上的签名完全一样。有没有什么更好的方法呢?
当然有,人们想到了一个比较好的方法。那就是,学酥CEO签字的时候吧,不光把名字签上,还得带上签字得日期,或者带上这个保险箱的编号。这样一来,每一个保险箱上的签字就唯一了,这个签字是学酥CEO的签名+学酥CEO写上的时间或者编号。这样一来,就算有人伪造,也只能伪造用过的保险箱。这个问题就彻底解决了。这个过程大概是这么个样子:
3 造价问题(密钥封装机制,Key Encapsulation Mechanism)
解决了上面的各种问题,我们要考虑考虑成本了… 这种能“撞”门的保险箱虽然好,但是这种锁造价一般来说要比普通的锁要高,而且锁生产时间也会变长。在密码学中,对于同样“结实”的锁,能“撞”门的锁的造价一般来说是普通锁的上千倍。同时,能“撞”门的锁一般来说只能安装在小的保险柜里面。毕竟,这么复杂的锁,装起来很费事啊!而普通锁安装在多大的保险柜上面都可以呢。如果两个人想传输大量数据的话,用一个大的保险柜比用一堆小的保险柜慢慢传要好的多呀。怎么解决这个问题呢?人们又想出了一个非常棒的方法:我们把两种锁结合起来。能“撞”上的保险柜里面放一个普通锁的钥匙。然后造一个用普通的保险柜来锁大量的数据。这样一来,我们相当于用能“撞”上的保险柜发一个钥匙过去。对方收到两个保险柜后,先用自己的钥匙把小保险柜打开,取出钥匙。然后在用这个钥匙开大的保险柜。这样做更棒的一个地方在于,既然对方得到了一个钥匙,后续再通信的时候,我们就不再需要能“撞”上的保险柜了啊,在以后一定时间内就用普通保险柜就好了,方便快捷嘛。
以下参考 数字签名、数字证书、SSL、https是什么关系?
4.数字签名(Digital Signature)
数据在浏览器和服务器之间传输时,有可能在传输过程中被冒充的盗贼把内容替换了,那么如何保证数据是真实服务器发送的而不被调包呢,同时如何保证传输的数据没有被人篡改呢,要解决这两个问题就必须用到数字签名,数字签名就如同日常生活的中的签名一样,一旦在合同书上落下了你的大名,从法律意义上就确定是你本人签的字儿,这是任何人都没法仿造的,因为这是你专有的手迹,任何人是造不出来的。那么在计算机中的数字签名怎么回事呢?数字签名就是用于验证传输的内容是不是真实服务器发送的数据,发送的数据有没有被篡改过,它就干这两件事,是非对称加密的一种应用场景。不过他是反过来用私钥来加密,通过与之配对的公钥来解密。
第一步:服务端把报文经过Hash处理后生成摘要信息Digest,摘要信息使用私钥private-key加密之后就生成签名,服务器把签名连同报文一起发送给客户端。
第二步:客户端接收到数据后,把签名提取出来用public-key解密,如果能正常的解密出来Digest2,那么就能确认是对方发的。
第三步:客户端把报文Text提取出来做同样的Hash处理,得到的摘要信息Digest1,再与之前解密出来的Digist2对比,如果两者相等,就表示内容没有被篡改,否则内容就是被人改过了。因为只要文本内容哪怕有任何一点点改动都会Hash出一个完全不一样的摘要信息出来。
5.数字证书(Certificate Authority)
数字证书简称CA,它由权威机构给某网站颁发的一种认可凭证,这个凭证是被大家(浏览器)所认可的,为什么需要用数字证书呢,难道有了数字签名还不够安全吗?有这样一种情况,就是浏览器无法确定所有的真实服务器是不是真的是真实的,举一个简单的例子:A厂家给你们家安装锁,同时把钥匙也交给你,只要钥匙能打开锁,你就可以确定钥匙和锁是配对的,如果有人把钥匙换了或者把锁换了,你是打不开门的,你就知道肯定被窃取了,但是如果有人把锁和钥匙替换成另一套表面看起来差不多的,但质量差很多的,虽然钥匙和锁配套,但是你却不能确定这是否真的是A厂家给你的,那么这时候,你可以找质检部门来检验一下,这套锁是不是真的来自于A厂家,质检部门是权威机构,他说的话是可以被公众认可的(呵呵)。
同样的, 因为如果有人(张三)用自己的公钥把真实服务器发送给浏览器的公钥替换了,于是张三用自己的私钥执行相同的步骤对文本Hash、数字签名,最后得到的结果都没什么问题,但事实上浏览器看到的东西却不是真实服务器给的,而是被张三从里到外(公钥到私钥)换了一通。那么如何保证你现在使用的公钥就是真实服务器发给你的呢?我们就用数字证书来解决这个问题。数字证书一般由数字证书认证机构(Certificate Authority)颁发,证书里面包含了真实服务器的公钥和网站的一些其他信息,数字证书机构用自己的私钥加密后发给浏览器,浏览器使用数字证书机构的公钥解密后得到真实服务器的公钥。这个过程是建立在被大家所认可的证书机构之上得到的公钥,所以这是一种安全的方式。
常见的对称加密算法有DES、3DES、AES、RC5、RC6。非对称加密算法应用非常广泛,如SSH,
HTTPS, TLS,电子证书,电子签名,电子身份证等等。
参考 DES/3DES/AES区别
B. 加密算法的算法
一个加密系统S可以用数学符号描述如下:
S={P, C, K, E, D}
其中
P——明文空间,表示全体可能出现的明文集合,
C——密文空间,表示全体可能出现的密文集合,
K——密钥空间,密钥是加密算法中的可变参数,
E——加密算法,由一些公式、法则或程序构成,
D——解密算法,它是E的逆。
当给定密钥kÎK时,各符号之间有如下关系:
C = Ek(P), 对明文P加密后得到密文C
P = Dk(C) = Dk(Ek(P)), 对密文C解密后得明文P
如用E-1 表示E的逆,D-1表示D的逆,则有:
Ek = Dk-1且Dk = Ek-1
因此,加密设计主要是确定E,D,K。
RSA是Rivest、Shamir和Adleman提出来的基于数论非对称性(公开钥)加密算法。大整数的素因子难分解是RSA算法的基础。
RSA在国外早已进入实用阶段,已研制出多种高速的RSA的专用芯片。尽管RSA的许多特性并不十分理想,但迫于信息安全的实际需要,许多重要的信息系统还是采用RSA作为基础加密机制。从RSA提出不久,我国有关部门就一直对它进行研究。从应用的角度看,软件实现的RSA已经开始用于计算机网络加密,用来完成密钥分配、数字签名等功能。
除了RSA之外,还有DES(数据加密标准)。尽管DES公开了其加密算法并曾被美国列为“标准”,但很快被废弃。加密技术又回归到“算法保密”的传统上。
C. RSA 加密算法(原理篇)
前几天看到一句话,“我们中的很多人把一生中最灿烂的笑容大部分都献给了手机和电脑屏幕”。心中一惊,这说明了什么?手机和电脑已经成为了我们生活中的一部分,所以才会有最懂你的不是你,也不是你男朋友,而是大数据。
如此重要的个人数据,怎样才能保证其在互联网上的安全传输呢?当然要靠各种加密算法。说起加密算法,大家都知道有哈希、对称加密和非对称加密了。哈希是一个散列函数,具有不可逆操作;对称加密即加密和解密使用同一个密钥,而非对称加密加密和解密自然就是两个密钥了。稍微深入一些的,还要说出非对称加密算法有DES、3DES、RC4等,非对称加密算法自然就是RSA了。那么当我们聊起RSA时,我们又在聊些什么呢?今天笔者和大家一起探讨一下,有不足的地方,还望各位朋友多多提意见,共同进步。
RSA简介:1976年由麻省理工学院三位数学家共同提出的,为了纪念这一里程碑式的成就,就用他们三个人的名字首字母作为算法的命名。即 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)。
公钥:用于加密,验签。
私钥:解密,加签。
通常知道了公钥和私钥的用途以后,即可满足基本的聊天需求了。但是我们今天的主要任务是来探究一下RSA加解密的原理。
说起加密算法的原理部分,肯定与数学知识脱不了关系。
我们先来回忆几个数学知识:
φn = φ(A*B)=φ(A)*φ(B)=(A-1)*(B-1)。
这个公式主要是用来计算给定一个任意的正整数n,在小于等于n的正整数中,有多少个与n构成互质的关系。
其中n=A*B,A与B互为质数,但A与B本身并不要求为质数,可以继续展开,直至都为质数。
在最终分解完成后,即 φ(N) = φ(p1)*φ(p2)*φ(p3)... 之后,p1,p2,p3都是质数。又用到了欧拉函数的另一个特点,即当p是质数的时候,φp = p - 1。所以有了上面给出的欧拉定理公式。
举例看一下:
计算15的欧拉函数,因为15比较小,我们可以直接看一下,小于15的正整数有 1、2、3、4、5、6、7、8、9、10、11、12、13、14。和15互质的数有1、2、4、7、8、11、13、14一共四个。
对照我们刚才的欧拉定理: 。
其他感兴趣的,大家可以自己验证。
之所以要在这里介绍欧拉函数,我们在计算公钥和私钥时候,会用到。
如果两个正整数m 和 n 互质,那么m 的 φn 次方减1,可以被n整除。
其中 .
其中当n为质数时,那么 上面看到的公式就变成了
mod n 1.
这个公式也就是着名的 费马小定理 了。
如果两个正整数e和x互为质数,那么一定存在一个整数d,不止一个,使得 e*d - 1 可以被x整除,即 e * d mode x 1。则称 d 是 e 相对于 x的模反元素。
了解了上面所讲的欧拉函数、欧拉定理和模反元素后,就要来一些化学反应了,请看图:
上面这幅图的公式变化有没有没看明白的,没看明白的咱们评论区见哈。
最终我们得到了最重要的第5个公式的变形,即红色箭头后面的:
mod n m。
其中有几个关系,需要搞明白,m 与 n 互为质数,φn = x,d 是e相对于x的模反元素。
有没有看到一些加解密的雏形。
从 m 到 m。 这中间涵盖了从加密到解密的整个过程,但是缺少了我们想要的密文整个过程。
OK,下面引入本文的第四个数学公式:
我们来看一下整个交换流程:
1、客户端有一个数字13,服务端有一个数字15;
2、客户端通过计算 3的13次方 对 17 取余,得到数字12; 将12发送给服务端;同时服务端通过计算3的15次方,对17取余,得到数字6,将6发送给客户端。至此,整个交换过程完成。
3、服务端收到数字12以后,继续计算,12的15次方 对 17取余,得到 数字10。
4、客户端收到数字 6以后,继续计算,6的13次方 对 17 取余,得到数字 10。
有没有发现双方,最终得到了相同的内容10。但是这个数字10从来没有在网络过程中出现过。
好,讲到这里,可能有些人已经恍然大悟,这就是加密过程了,但是也有人会产生疑问,为什么要取数字3 和 17 呢,这里还牵涉到另一个数学知识,原根的问题。即3是17的原根。看图
有没有发现规律,3的1~16次方,对17取余,得到的整数是从1~16。这时我们称3为17的原根。也就是说上面的计算过程中有一组原根的关系。这是最早的迪菲赫尔曼秘钥交换算法。
解决了为什么取3和17的问题后,下面继续来看最终的RSA是如何产生的:
还记得我们上面提到的欧拉定理吗,其中 m 与 n 互为质数,n为质数,d 是 e 相对于 φn的模反元素。
当迪菲赫尔曼密钥交换算法碰上欧拉定理会产生什么呢?
我们得到下面的推论:
好,到这里我们是不是已经看到了整个的加密和解密过程了。
其中 m 是明文;c 是密文; n 和 e 为公钥;d 和 n 为私钥 。
其中几组数字的关系一定要明确:
1、d是e 相对于 φn 的模反元素,φn = n-1,即 e * d mod n = 1.
2、m 小于 n,上面在讲迪菲赫尔曼密钥交换算法时,提到原根的问题,在RSA加密算法中,对m和n并没有原根条件的约束。只要满足m与n互为质数,n为质数,且m < n就可以了。
OK,上面就是RSA加密算法的原理了,经过上面几个数学公式的狂轰乱炸,是不是有点迷乱了,给大家一些时间理一下,后面会和大家一起来验证RSA算法以及RSA为什么安全。
D. 用于文件加密的算法有哪些,以及它们的原理
MD5全称"message-digest algorithm 5"(信息-摘要算法)。
90年代初由MIT计算机科学实验室和RSA Data Security Inc联合开发。
MD5算法采用128位加密方式,即使一台计算机每秒可尝试10亿条明文,要跑出原始明文也要1022年。在802.1X认证中,一直使用此算法。
加密算法之二---ELGamal
ELGamal算法是一种较为常见的加密算法,他基于1984年提出的公钥密码体制和椭圆曲线加密体系。即能用于数据加密,又能用于数字签名,起安全性依赖于计算有限领域上离散对数这一数学难题。
着名的DSS和Schnorr和美国国家标准X9.30-199X中ELGamal为唯一认可加密方式。并且椭圆曲线密码加密体系增强了ELGamal算法的安全性。
ELGamal在加密过程中,生成的密文长度是明文的两倍。且每次加密后都会在密文中生成一个随即数K。
加密算法之三---BlowFish
BlowFish算法由着名的密码学专家部鲁斯·施耐尔所开发,是一个基于64位分组及可变密钥长度[32-448位]的分组密码算法。
BlowFish算法的核心加密函数名为BF_En,为一种对称算法,加密强度不够。
加密算法之四---SHA
SHA(即Secure Hash Algorithm,安全散列算法)是一种常用的数据加密算法,由美国国家标准与技术局于1993年做为联邦信息处理标准公布,先版本SHA-1,SHA-2。
SHA算法与MD5类似,同样按2bit数据块为单位来处理输入,但它能产生160bit的信息摘要,具有比MD5更强的安全性。
SHA收到一段明文,然后以不可逆方式将它转为一段密文,该算法被广泛运用于数字签名及电子商务交易的身份认证中。(
E. DES加密算法原理
网络安全通信中要用到两类密码算法,一类是对称密码算法,另一类是非对称密码算法。对称密码算法有时又叫传统密码算法、秘密密钥算法或单密钥算法,非对称密码算法也叫公开密钥密码算法或双密钥算法。对称密码算法的加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。
对称算法又可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度既考虑到分析破译密码的难度,又考虑到使用的方便性。后来,随着破译能力的发展,分组长度又提高到128位或更长。
常用的采用对称密码术的加密方案有5个组成部分(如图所示)
1)明文:原始信息。
2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。
3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。
4)密文:对明文进行变换的结果。
5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。
对称密码当中有几种常用到的数学运算。这些运算的共同目的就是把被加密的明文数码尽可能深地打乱,从而加大破译的难度。
◆移位和循环移位
移位就是将一段数码按照规定的位数整体性地左移或右移。循环右移就是当右移时,把数码的最后的位移到数码的最前头,循环左移正相反。例如,对十进制数码12345678循环右移1位(十进制位)的结果为81234567,而循环左移1位的结果则为23456781。
◆置换
就是将数码中的某一位的值根据置换表的规定,用另一位代替。它不像移位操作那样整齐有序,看上去杂乱无章。这正是加密所需,被经常应用。
◆扩展
就是将一段数码扩展成比原来位数更长的数码。扩展方法有多种,例如,可以用置换的方法,以扩展置换表来规定扩展后的数码每一位的替代值。
◆压缩
就是将一段数码压缩成比原来位数更短的数码。压缩方法有多种,例如,也可以用置换的方法,以表来规定压缩后的数码每一位的替代值。
◆异或
这是一种二进制布尔代数运算。异或的数学符号为⊕ ,它的运算法则如下:
1⊕1 = 0
0⊕0 = 0
1⊕0 = 1
0⊕1 = 1
也可以简单地理解为,参与异或运算的两数位如相等,则结果为0,不等则为1。
◆迭代
迭代就是多次重复相同的运算,这在密码算法中经常使用,以使得形成的密文更加难以破解。
下面我们将介绍一种流行的对称密码算法DES。
DES是Data Encryption Standard(数据加密标准)的缩写。它是由IBM公司研制的一种对称密码算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准,三十年来,它一直活跃在国际保密通信的舞台上,扮演了十分重要的角色。
DES是一个分组加密算法,典型的DES以64位为分组对数据加密,加密和解密用的是同一个算法。它的密钥长度是56位(因为每个第8 位都用作奇偶校验),密钥可以是任意的56位的数,而且可以任意时候改变。其中有极少数被认为是易破解的弱密钥,但是很容易避开它们不用。所以保密性依赖于密钥。
DES加密的算法框架如下:
首先要生成一套加密密钥,从用户处取得一个64位长的密码口令,然后通过等分、移位、选取和迭代形成一套16个加密密钥,分别供每一轮运算中使用。
DES对64位(bit)的明文分组M进行操作,M经过一个初始置换IP,置换成m0。将m0明文分成左半部分和右半部分m0 = (L0,R0),各32位长。然后进行16轮完全相同的运算(迭代),这些运算被称为函数f,在每一轮运算过程中数据与相应的密钥结合。
在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作替代成新的48位数据,再将其压缩置换成32位。这四步运算构成了函数f。然后,通过另一个异或运算,函数f的输出与左半部分结合,其结果成为新的右半部分,原来的右半部分成为新的左半部分。将该操作重复16次。
经过16轮迭代后,左,右半部分合在一起经过一个末置换(数据整理),这样就完成了加密过程。
加密流程如图所示。
DES解密过程:
在了解了加密过程中所有的代替、置换、异或和循环迭代之后,读者也许会认为,解密算法应该是加密的逆运算,与加密算法完全不同。恰恰相反,经过密码学家精心设计选择的各种操作,DES获得了一个非常有用的性质:加密和解密使用相同的算法!
DES加密和解密唯一的不同是密钥的次序相反。如果各轮加密密钥分别是K1,K2,K3…K16,那么解密密钥就是K16,K15,K14…K1。这也就是DES被称为对称算法的理由吧。
至于对称密码为什么能对称? DES具体是如何操作的?本文附录中将做进一步介绍,有兴趣的读者不妨去读一读探个究竟
4.DES算法的安全性和发展
DES的安全性首先取决于密钥的长度。密钥越长,破译者利用穷举法搜索密钥的难度就越大。目前,根据当今计算机的处理速度和能力,56位长度的密钥已经能够被破解,而128位的密钥则被认为是安全的,但随着时间的推移,这个数字也迟早会被突破。
另外,对DES算法进行某种变型和改进也是提高DES算法安全性的途径。
例如后来演变出的3-DES算法使用了3个独立密钥进行三重DES加密,这就比DES大大提高了安全性。如果56位DES用穷举搜索来破译需要2∧56次运算,而3-DES 则需要2∧112次。
又如,独立子密钥DES由于每轮都使用不同的子密钥,这意味着其密钥长度在56位的基础上扩大到768位。DES还有DESX、CRYPT、GDES、RDES等变型。这些变型和改进的目的都是为了加大破译难度以及提高密码运算的效率
F. 常见密码算法原理
PBKDF2(Password-Based Key Derivation Function)是一个用来导出密钥的函数,用来生成加密的密码,增加破解的难度,类似bcrypt/scrypt等,可以用来进行密码或者口令的加密存储。主要是盐值+pwd,经过多轮HMAC算法的计算,产生的密文。
PBKDF2函数的定义
DK = PBKDF2(PRF, Password, Salt, c, dkLen)
• PRF是一个伪随机函数,例如HASH_HMAC函数,它会输出长度为hLen的结果。
• Password是用来生成密钥的原文密码。
• Salt是一个加密用的盐值。
• c是进行重复计算的次数。
• dkLen是期望得到的密钥的长度。
• DK是最后产生的密钥。
https://segmentfault.com/a/1190000004261009
下面我们以Alice和Bob为例叙述Diffie-Hellman密钥交换的原理。
1,Diffie-Hellman交换过程中涉及到的所有参与者定义一个组,在这个组中定义一个大质数p,底数g。
2,Diffie-Hellman密钥交换是一个两部分的过程,Alice和Bob都需要一个私有的数字a,b。
下面是DH交换的过程图:
本图片来自wiki
下面我们进行一个实例
1.爱丽丝与鲍伯协定使用p=23以及g=5.
2.爱丽丝选择一个秘密整数a=6, 计算A = g^a mod p并发送给鲍伯。
A = 5^6 mod 23 = 8.
3.鲍伯选择一个秘密整数b=15, 计算B = g^b mod p并发送给爱丽丝。
B = 5^15 mod 23 = 19.
4.爱丽丝计算s = B a mod p
19^6 mod 23 = 2.
5.鲍伯计算s = A b mod p
8^15 mod 23 = 2.
ECDH:
ECC算法和DH结合使用,用于密钥磋商,这个密钥交换算法称为ECDH。交换双方可以在不共享任何秘密的情况下协商出一个密钥。ECC是建立在基于椭圆曲线的离散对数问题上的密码体制,给定椭圆曲线上的一个点P,一个整数k,求解Q=kP很容易;给定一个点P、Q,知道Q=kP,求整数k确是一个难题。ECDH即建立在此数学难题之上。密钥磋商过程:
假设密钥交换双方为Alice、Bob,其有共享曲线参数(椭圆曲线E、阶N、基点G)。
来自 http://www.cnblogs.com/fishou/p/4206451.html
https://zh.wikipedia.org/wiki/SHA%E5%AE%B6%E6%97%8F
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
-----END RSA PRIVATE KEY-----
while a RSA public key contains only the following data:
-----BEGIN RSA PUBLIC KEY-----
RSAPublicKey ::= SEQUENCE {
molus INTEGER, -- n
publicExponent INTEGER -- e
}
-----END RSA PUBLIC KEY-----
and this explains why the private key block is larger.
Note that a more standard format for non-RSA public keys is
-----BEGIN PUBLIC KEY-----
PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
PublicKey BIT STRING
}
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL
}
-----END PUBLIC KEY-----
More info here.
BTW, since you just posted a screenshot of the private key I strongly hope it was just for tests :)
密钥的长度
C:\herong>java RsaKeyGenerator 128
p: 17902136406704537069
q: 17902136406704537077
m:
Molus:
Key size: 128
Public key:
Private key:
C:\herong>java RsaKeyGenerator 256
p:
q:
m: ...
Molus: ...
Key size: 256
Public key: ...
Private key: ...
https://security.stackexchange.com/questions/90169/rsa-public-key-and-private-key-lengths
https://stackoverflow.com/questions/2921508/trying-to-understand-java-rsa-key-size >
http://www.herongyang.com/Cryptography/RSA-BigInteger-Keys-Generated-by-RsaKeyGenerator-java.html
update() adds data to the Cipher’s internal buffer, then returns all currently completely encoded blocks. If there are any encoded blocks left over, they remain in the Cipher’s buffer until the next call, or a call to doFinal(). This means that if you call update() with a four byte array to encrypt, and the buffer size is eight bytes, you will not receive encoded data on the return (you’ll get a null instead). If your next call to update() passes five bytes of data in, you will get an 8 byte (the block size) array back, containing the four bytes passed in on the previous call, the first four bytes from the current call – the remaining byte from the current call is left in the Cipher’s buffer.
doFinal() on the other hand is much simpler: it encrypts the passed data, pads it out to the necessary length, and then returns it. The Cipher is essentially stateless.
来自 https://segmentfault.com/a/1190000006931511
DH算法的中间人攻击
在最初的描述中,迪菲-赫尔曼密钥交换本身并没有提供通讯双方的身份验证服务,因此它很容易受到中间人攻击。 一个中间人在信道的中央进行两次迪菲-赫尔曼密钥交换,一次和Alice另一次和Bob,就能够成功的向Alice假装自己是Bob,反之亦然。而攻击者可以解密(读取和存储)任何一个人的信息并重新加密信息,然后传递给另一个人。因此通常都需要一个能够验证通讯双方身份的机制来防止这类攻击。
优缺点:
1、 仅当需要时才生成密钥,减小了将密钥存储很长一段时间而致使遭受攻击的机会。
2、 除对全局参数的约定外,密钥交换不需要事先存在的基础结构。
然而,该技术也存在许多不足:
1、 没有提供双方身份的任何信息。
2、 它是计算密集性的,因此容易遭受阻塞性攻击,即对手请求大量的密钥。受攻击者花费了相对多的计算资源来求解无用的幂系数而不是在做真正的工作。
3、 没办法防止重演攻击。
4、 容易遭受中间人的攻击。第三方C在和A通信时扮演B;和B通信时扮演A。A和B都与C协商了一个密钥,然后C就可以监听和传递通信量。中间人的攻击按如下进行:
(1) B在给A的报文中发送他的公开密钥。
(2) C截获并解析该报文。C将B的公开密钥保存下来并给A发送报文,该报文具有B的用户ID但使用C的公开密钥YC,仍按照好像是来自B的样子被发送出去。A收到C的报文后,将YC和B的用户ID存储在一块。类似地,C使用YC向B发送好像来自A的报文。
(3) B基于私有密钥XB和YC计算秘密密钥K1。A基于私有密钥XA和YC计算秘密密钥K2。C使用私有密钥XC和YB计算K1,并使用XC和YA计算K2。
(4) 从现在开始,C就可以转发A发给B的报文或转发B发给A的报文,在途中根据需要修改它们的密文。使得A和B都不知道他们在和C共享通信。
G. RSA加密、解密、签名、验签的原理及方法
RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。两者之间有数学相关,该加密算法的原理就是对一极大整数做因数分解的困难性来保证安全性。通常个人保存私钥,公钥是公开的(可能同时多人持有)。
加密和签名都是为了安全性考虑,但略有不同。常有人问加密和签名是用私钥还是公钥?其实都是对加密和签名的作用有所混淆。简单的说,加密是为了防止信息被泄露,而签名是为了防止信息被篡改。这里举2个例子说明。
RSA的加密过程如下:
RSA签名的过程如下:
总结:公钥加密、私钥解密、私钥签名、公钥验签。
RSA加密对明文的长度有所限制,规定需加密的明文最大长度=密钥长度-11(单位是字节,即byte),所以在加密和解密的过程中需要分块进行。而密钥默认是1024位,即1024位/8位-11=128-11=117字节。所以默认加密前的明文最大长度117字节,解密密文最大长度为128字。那么为啥两者相差11字节呢?是因为RSA加密使用到了填充模式(padding),即内容不足117字节时会自动填满,用到填充模式自然会占用一定的字节,而且这部分字节也是参与加密的。
H. 质数的定义是什么大质数加密的原理是什么
只能被1和本身整除的数叫质数,例如13,质数是无穷多的。得到两个巨大质数的乘积是简单的事,但想从该乘积反推出这两个巨大质数却没有任何有效的办法,这种不可逆的单向数学关系,是国际数学界公认的质因数分解难题。
R、S、A三人巧妙利用这一假说,设计出RSA公匙加密算法的基本原理:1、让计算机随机生成两个大质数p和q,得出乘积n;2、利用p和q有条件的生成加密密钥e;3、通过一系列计算,得到与n互为质数的解密密钥d,置于操作系统才知道的地方;4、操作系统将n和e共同作为公匙对外发布,将私匙d秘密保存,把初始质数p和q秘密丢弃。
国际数学和密码学界已证明,企图利用公匙和密文推断出明文--或者企图利用公匙推断出私匙的难度等同于分解两个巨大质数的积。这就是Eve不可能对Alice的密文解密以及公匙可以在网上公布的原因。
至于"巨大质数"要多大才能保证安全的问题不用担心:利用当前可预测的计算能力,在十进制下,分解两个250位质数的积要用数十万年的时间;并且质数用尽或两台计算机偶然使用相同质数的概率小到可以被忽略。
I. 椭圆曲线加密算法
椭圆曲线加密算法,即:Elliptic Curve Cryptography,简称ECC,是基于椭圆曲线数学理论实现的一种非对称加密算法。相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位RSA加密。
椭圆曲线在密码学中的使用,是1985年由Neal Koblitz和Victor Miller分别独立提出的。
一般情况下,椭圆曲线可用下列方程式来表示,其中a,b,c,d为系数。
例如,当a=1,b=0,c=-2,d=4时,所得到的椭圆曲线为:
该椭圆曲线E的图像如图X-1所示,可以看出根本就不是椭圆形。
过曲线上的两点A、B画一条直线,找到直线与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A+B,即为加法。如下图所示:A + B = C
上述方法无法解释A + A,即两点重合的情况。因此在这种情况下,将椭圆曲线在A点的切线,与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A + A,即2A,即为二倍运算。
将A关于x轴对称位置的点定义为-A,即椭圆曲线的正负取反运算。如下图所示:
如果将A与-A相加,过A与-A的直线平行于y轴,可以认为直线与椭圆曲线相交于无穷远点。
综上,定义了A+B、2A运算,因此给定椭圆曲线的某一点G,可以求出2G、3G(即G + 2G)、4G......。即:当给定G点时,已知x,求xG点并不困难。反之,已知xG点,求x则非常困难。此即为椭圆曲线加密算法背后的数学原理。
椭圆曲线要形成一条光滑的曲线,要求x,y取值均为实数,即实数域上的椭圆曲线。但椭圆曲线加密算法,并非使用实数域,而是使用有限域。按数论定义,有限域GF(p)指给定某个质数p,由0、1、2......p-1共p个元素组成的整数集合中定义的加减乘除运算。
假设椭圆曲线为y² = x³ + x + 1,其在有限域GF(23)上时,写作:y² ≡ x³ + x + 1 (mod 23)
此时,椭圆曲线不再是一条光滑曲线,而是一些不连续的点,如下图所示。以点(1,7)为例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此还有如下点:
(0,1) (0,22)(1,7) (1,16)(3,10) (3,13)(4,0)(5,4) (5,19)(6,4) (6,19)(7,11) (7,12)(9,7) (9,16)(11,3) (11,20)等等。
另外,如果P(x,y)为椭圆曲线上的点,则-P即(x,-y)也为椭圆曲线上的点。如点P(0,1),-P=(0,-1)=(0,22)也为椭圆曲线上的点。
相关公式如下:有限域GF(p)上的椭圆曲线y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,则R(Xr,Yr) = P+Q 由如下规则确定:
Xr = (λ² - Xp - Xq) mod pYr = (λ(Xp - Xr) - Yp) mod p其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)
因此,有限域GF(23)上的椭圆曲线y² ≡ x³ + x + 1 (mod 23),假设以(0,1)为G点,计算2G、3G、4G...xG等等,方法如下:
计算2G:λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12Xr = (12² - 0 - 0) mod 23 = 6Yr = (12(0 - 6) - 1) mod 23 = 19即2G为点(6,19)
计算3G:3G = G + 2G,即(0,1) + (6,19)λ = (19 - 1)/(6 - 0) mod 23 = 3Xr = (3² - 0 - 6) mod 23 = 3Yr = (3(0 - 3) - 1) mod 23 = 13即3G为点(3, 13)
建立基于椭圆曲线的加密机制,需要找到类似RSA质因子分解或其他求离散对数这样的难题。而椭圆曲线上的已知G和xG求x,是非常困难的,此即为椭圆曲线上的的离散对数问题。此处x即为私钥,xG即为公钥。
椭圆曲线加密算法原理如下:
设私钥、公钥分别为k、K,即K = kG,其中G为G点。
公钥加密:选择随机数r,将消息M生成密文C,该密文是一个点对,即:C = {rG, M+rK},其中K为公钥
私钥解密:M + rK - k(rG) = M + r(kG) - k(rG) = M其中k、K分别为私钥、公钥。
椭圆曲线签名算法,即ECDSA。设私钥、公钥分别为k、K,即K = kG,其中G为G点。
私钥签名:1、选择随机数r,计算点rG(x, y)。2、根据随机数r、消息M的哈希h、私钥k,计算s = (h + kx)/r。3、将消息M、和签名{rG, s}发给接收方。
公钥验证签名:1、接收方收到消息M、以及签名{rG=(x,y), s}。2、根据消息求哈希h。3、使用发送方公钥K计算:hG/s + xK/s,并与rG比较,如相等即验签成功。
原理如下:hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s= r(h+xk)G / (h+kx) = rG
假设要签名的消息是一个字符串:“Hello World!”。DSA签名的第一个步骤是对待签名的消息生成一个消息摘要。不同的签名算法使用不同的消息摘要算法。而ECDSA256使用SHA256生成256比特的摘要。
摘要生成结束后,应用签名算法对摘要进行签名:
产生一个随机数k
利用随机数k,计算出两个大数r和s。将r和s拼在一起就构成了对消息摘要的签名。
这里需要注意的是,因为随机数k的存在,对于同一条消息,使用同一个算法,产生的签名是不一样的。从函数的角度来理解,签名函数对同样的输入会产生不同的输出。因为函数内部会将随机值混入签名的过程。
关于验证过程,这里不讨论它的算法细节。从宏观上看,消息的接收方从签名中分离出r和s,然后利用公开的密钥信息和s计算出r。如果计算出的r和接收到的r值相同,则表示验证成功。否则,表示验证失败。
J. 加密解密字符串的算法原理
我们经常需要一种措施来保护我们的数据,防止被一些怀有不良用心的人所看到或者破坏。在信息时代,信息可以帮助团体或个人,使他们受益,同样,信息也可以用来对他们构成威胁,造成破坏。在竞争激烈的大公司中,工业间谍经常会获取对方的情报。因此,在客观上就需要一种强有力的安全措施来保护机密数据不被窃取或篡改。数据加密与解密从宏观上讲是非常简单的,很容易理解。加密与解密的一些方法是非常直接的,很容易掌握,可以很方便的对机密数据进行加密和解密。
一:数据加密方法
在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip,它既压缩数据又加密数据。又如,dbms的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。
幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86 cpu系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。
对这种“置换表”方式的一个改进就是使用2个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a表,对所有的奇数位置使用b表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。
与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer中,再在buffer中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient 可以变为listen,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。
但是,还有一种更好的加密算法,只有计算机可以做,就是字/字节循环移位和xor操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci数列。对数列所产生的数做模运算(例如模3),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用fibbonaci数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。
在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。
循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor操作来产生一个16位或32位的校验和 ,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如 xmodem-crc。 这是方法已经成为标准,而且有详细的文档。但是,基于标准crc算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。
二.基于公钥的加密算法
一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常着名的pgp公钥加密以及rsa加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。
rsa加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa加密算法。pgp算法(以及大多数基于rsa算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。
我们举一个例子:假定现在要加密一些数据使用密钥‘12345’。利用rsa公钥,使用rsa算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。
一些简单的基于rsa算法的加密算法可在下面的站点找到:
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa
三.一个崭新的多步加密算法
现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在1998年6月1日才正式公布的。下面详细的介绍这个算法:
使用一系列的数字(比如说128位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用256个表项,使用随机数序列来产生密码转表,如下所示:
把256个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在0到255之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的256字节的表。让这个随机数产生器接着来产生这个表中的其余的数,以至于每个表是不同的。下一步,使用"shotgun technique"技术来产生解码表。基本上说,如果 a映射到b,那么b一定可以映射到a,所以b[a[n]] = n.(n是一个在0到255之间的数)。在一个循环中赋值,使用一个256字节的解码表它对应于我们刚才在上一步产生的256字节的加密表。
使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这256个字节的随机数使用的是二次伪随机,使用了两个额外的16位的密码.现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个256字节的表的索引。或者,为了提高加密效果,可以使用多余8位的值,甚至使用校验和或者crc算法来产生索引字节。假定这个表是256*256的数组,将会是下面的样子:
crypto1 = a[crypto0][value]
变量'crypto1'是加密后的数据,'crypto0'是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子” 是我们必须记住的。如果使用256*256的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的crc校验和。顺便提及的是曾作过这样一个测试: 使用16个字节来产生表的索引,以128位的密钥作为这16个字节的初始的"种子"。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟100k个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配。
加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些ascii码的序列,如“eeeeeeee"可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。
如果确实不理解如何来产生一个随机数序列,就考虑fibbonacci数列,使用2个双字(64位)的数作为产生随机数的种子,再加上第三个双字来做xor操作。 这个算法产生了一系列的随机数。算法如下:
unsigned long dw1, dw2, dw3, dwmask;
int i1;
unsigned long arandom[256];
dw1 = {seed #1};
dw2 = {seed #2};
dwmask = {seed #3};
// this gives you 3 32-bit "seeds", or 96 bits total
for(i1=0; i1 < 256; i1++)
{
dw3 = (dw1 + dw2) ^ dwmask;
arandom[i1] = dw3;
dw1 = dw2;
dw2 = dw3;
}
如果想产生一系列的随机数字,比如说,在0和列表中所有的随机数之间的一些数,就可以使用下面的方法:
int __cdecl mysortproc(void *p1, void *p2)
{
unsigned long **pp1 = (unsigned long **)p1;
unsigned long **pp2 = (unsigned long **)p2;
if(**pp1 < **pp2)
return(-1);
else if(**pp1 > *pp2)
return(1);
return(0);
}
...
int i1;
unsigned long *aprandom[256];
unsigned long arandom[256]; // same array as before, in this case
int aresult[256]; // results go here
for(i1=0; i1 < 256; i1++)
{
aprandom[i1] = arandom + i1;
}
// now sort it
qsort(aprandom, 256, sizeof(*aprandom), mysortproc);
// final step - offsets for pointers are placed into output array
for(i1=0; i1 < 256; i1++)
{
aresult[i1] = (int)(aprandom[i1] - arandom);
}
...
变量'aresult'中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在0到255之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。
作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。
四.结论:
由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。