导航:首页 > 文档加密 > pdf函数逼近论

pdf函数逼近论

发布时间:2023-01-10 23:00:23

1. 函数逼近论的逼近方法

给定ƒ并且选定了逼近函数类之后,如何在逼近函数类中确定作为ƒ的近似表示函数g的方法是多种多样的。例如插值就是用以确定逼近函数的一种常见方法。所谓插值就是要在逼近函数类中找一个g(x),使它在一些预先指定的点上和ƒ(x)有相同的值,或者更一般地要求g(x)和ƒ(x)在这些指定点上某阶导数都有相同的值。利用插值方法来构造逼近多项式的做法在数学中已有相当久的历史。微积分中着名的泰勒多项式便是一种插值多项式。此外,在各种逼近问题中,线性算子也是广泛应用的一大类逼近工具。所谓线性算子是指某种逼近方法l,对于被逼近函数 ƒ、g,在逼近函数类中有l(ƒ)、l(g)近似表示它们,并且对于任意实数α、β都有l(αƒ+βg)=αl(ƒ)+βl(g)。线性算子逼近方法构造方便。一个典型的例子是2π周期的连续函数ƒ(x)的n 阶傅里叶部分和Sn(ƒ,x),它定义了一个由2π周期的连续函数集到n阶三角多项式集内的线性算子Sn。Sn(ƒ,x)可以用来近似表示ƒ(x)。除了线性算子,在逼近问题中还发展了非线性的逼近方法。这方面最基本的工作是上世纪中叶由俄国数学家∏.Л.切比雪夫提出的最佳逼近。1859年切比雪夫结合机械设计问题的研究提出并讨论了下述类型的极值问题:已知【α,b】区间上的连续函数ƒ(x),P(x,α0,α1,…,αn)是依赖于参数α0,α1,…,αn的初等函数(如多项式,有理分式),用P(x, α0,α1,…,αn)来近似表示ƒ(x),如果产生的误差用来衡量,要求选择一组参数使误差最小。这就是寻求极小问题 的解。当参数 给出最小误差时,就叫做ƒ(x)在P(x,α0,α1,…,αn)所构成的函数类中的一个最佳逼近元;数值 叫做ƒ(x)借助于函数P(x, α0,α1,…,αn)来逼近时的最佳逼近值。切比雪夫研究了P(x, α0,α1,…,αn)是n次多项式(n 是固定整数, α0,α1,…,αn是系数,它们是可以任意取值的参数)的情形。这里的最佳逼近依赖于ƒ,但不是线性依赖关系。所以说切比雪夫的最佳逼近是一种非线性的逼近。

2. 求助:维尔斯特拉斯定理的证明

给你以下参考:

维尔斯特拉斯定理证明(大学生习作)

苏敏

【摘要】:正
维尔斯特拉斯定理是函数逼近论中很基本的一个定理。我们在学习华中工学院出版的《数值分析》中并没有给出它的证明。根据我们工科学生所学过的知识完全可以证明这个定理。在浙江大学所编写的《概率论与数理统计》书中,已经有如下的知识:

【作者单位】: 合肥工业大学计算机软件82—1班
【关键词】: 维尔斯特拉斯定理 定理证明 数值分析 函数逼近论 数理统计 华中工学院 概率论 浙江大学 大数定理 独立试验
【正文快照】:
维尔斯特拉斯定理是函数逼近论中很基本的一个定理。我们在学习华中工学院出版的《数值分析》中并没有给出它的证明汇’J。根据我们工科学生所学过的知识完全可以证明这个定理。
......

3. 统计学中pdf和cdf是什么 怎么理解

PDF指的是概率密度函数(Probability Density Function),所以CDS中的PDF指的是概率密度函数图
CDF指的是累积分布函数(cumulative distribution function),所以CDS中的CDF指的是累积分布函数图!

4. 概率论中的pdf和cdf表示什么

PDF是概率密度(函数)
CDF是(累积)分布函数
(希望能帮到你,也希望你能给我好评哦,你的好评是我最大的鼓励!谢谢~)

5. 函数逼近论的发展

20世纪初在一批杰出的数学家,包括С.Η.伯恩斯坦、D.杰克森、 瓦莱-普桑、H.L.勒贝格等人的积极参加下,开创了最佳逼近理论蓬勃发展的阶段。这一理论主要在以下几个方面取得了很大进展: 在逼近论中系统地阐明函数的最佳逼近值En(ƒ)(借助于代数多项式来逼近,或者对2π周期函数借助于三角多项式来逼近,或借助于有理函数来逼近等等)的数列当n→∞时的性态和函数ƒ(x)的构造性质(可微性、光滑性、解析性等等)之间内在联系的理论统称为定量理论。下面叙述的定理比较典型地反映出函数的构造性质与其最佳逼近值之间的深刻联系。杰克森、伯恩斯坦、A.赞格蒙证明:2π周期函数ƒ(x)具有满足条件 或 的r阶导数ƒ(r)(r=0,1,2,…)的充分必要条件是,ƒ(x)借助于三角多项式的n阶最佳一致逼近值(简称最佳逼近,简记为)满足条件 ,式中的M,A是不依赖于n的正的常数。对于【α,b】区间上的(不考虑周期性)连续函数借助于代数多项式的逼近值与函数构造性质间的联系也有和上述结果相类似的定理,不过情况比周期函数复杂多了。这一问题是在50年代由苏联数学家Α.Ф.季曼、Β.К.贾德克解决的。
杰克森、伯恩斯坦等人的工作对逼近论的发展所产生的影响是深远的。沿着他们开辟的方向继续深入,到20世纪30年代中期出现了J.A.法瓦尔、Α.Η.柯尔莫哥洛夫关于周期可微函数类借助于三角多项式的最佳逼近的精确估计以及借助于傅里叶级数部分和的一致逼近的渐近精确估计的工作。这两个工作把从杰克森开始的逼近论的定量研究提高到一个新的水平。从那时起,直到60年代,以С.М.尼科利斯基、Α.И.阿希耶泽尔等人为代表的很多逼近论学者在定量研究方面继续有许多精深的研究工作。 切比雪夫发现了连续函数的最佳逼近多项式的特征,提出了以切比雪夫交错点组着称的特征定理。最佳逼近多项式是唯一存在的。最佳逼近多项式的存在性、唯一性及其特征定理都是定性的结果,对这些问题的深入研究构成了逼近论定性研究的基本内容。匈牙利数学家A.哈尔在1918年首先研究了用广义多项式在【α,b】上对任意连续函数ƒ的最佳逼近多项式的唯一性问题。在【α,b】上给定n+1个线性无关的连续函。作为逼近函数类,式中α0,α1,…,αn是任意参数。这样的P(x)称为广义多项式。是存在的。哈尔证明,为了对每一连续函数ƒ唯一,必须而且只须任一不恒等于零的广义多项式P(x,α0,α1,…,αn)在【α, b】内至多有n个不同的根。在20世纪20~30年代,伯恩斯坦、М.Γ.克列因等人对满足哈尔条件的函做过很多深入的研究。它在逼近论、插值论、样条分析、矩量论、数理统计中有着比较广泛的应用。
关于最佳逼近多项式的切比雪夫特征定理也有很多进一步的研究和推广。其中最重要的一个推广是柯尔莫哥洛夫在1948年做出的,它涉及复平面的闭集上的复值连续函数借助于复值广义多项式的一致逼近问题(见复变函数逼近)。
对于lp【α,b】(1≤p<+∞)内的函数ƒ借助于广义多项式在p 次幂尺度下的逼近问题也建立了类似的一套定性理论。到50~60年代,经过一些学者的努力,抽象逼近的定性理论建立起来。 最佳逼近多项式和被逼近函数间的关系除了平方逼近的情形外一般都不是线性关系。线性关系比较简单,线性算子比较容易构造。所以在逼近论发展中人们一直非常重视对线性逼近方法的研究,形成了逼近论中一个很重要的分支──线性算子的逼近理论。针对特定的函数类、特定的逼近问题设计出构造简便、逼近性能良好的线性逼近方法与研究各种类型的线性逼近方法(算子)的逼近性能,一直是线性算子逼近理论的中心研究课题。在这一方面,几十年来取得了十分丰富的成果。比较着名的经典结果有E.B.沃罗诺夫斯卡娅、G.G.洛伦茨等对经典的伯恩斯坦多项式
的研究;柯尔莫哥洛夫、尼科利斯基等对周期可微函数的傅里叶级数部分和的逼近阶的渐近精确估计;40~60年代许多逼近论学者对作为逼近方法的傅里叶级数的线性求和过程逼近性能的研究(包括对傅里叶级数的费耶尔平均、泊松平均、瓦莱·普桑平均等经典的线性平均方法的研究)。50年代初期∏.∏.科罗夫金深入研究了线性正算子作为逼近方法的特征,开辟了单调算子逼近理论的新方向(见线性正算子逼近)。40年代中期法瓦尔在概括前人对线性算子逼近的研究成果的基础上,提出了线性算子的饱和性概念做为刻画算子的逼近性能的一个基本概念,开辟了算子饱和理论研究的新方向。 从实际应用的角度来看,要解决一个函数的最佳逼近问题,需要构造出最佳逼近元和算出最佳逼近值。一般说要精确解决这两个问题十分困难。这种情况促使人们为寻求最佳逼近元的近似表示和最佳逼近值的近似估计而设计出各种数值方法。一个数值方法中包含着有限个确定的步骤,借助它对每一个函数ƒ可以在它的逼近函数类P(x,α0,α1,…,αn)中求出一个函数作为最佳逼近元的近似解,并且可以估计出误差。数值方法自然不限于函数的最佳逼近问题。在插值、求积(计算积分的近似值)、函数的展开理论中也都建立了相应的数值方法。近20年来由于快速电子计算机的广泛应用,数值逼近理论和方法的研究发展很快,成为计算数学和应用数学的重要分支。
除了以上列举的几个方向外,还发展了插值逼近、借助于非线性集(如有理函数)的逼近、联合逼近、在抽象空间内的逼近等等。 多元函数的逼近问题具有很重要的理论和实践意义。由于在多元函数的逼近问题中包含了很多为单变元情形所没有的新的困难,所以多元函数的逼近论比单变元情形的发展要慢得多和晚得多。在多元逼近的情形下已经研究得比较充分的一个基本问题是函数借助于三角多项式或指数型整函数的最佳逼近阶和函数(在一定意义下的)光滑性之间的关系。这一工作主要是由苏联学者尼柯利斯基和他的学生们于50~60年代完成的。它除了对函数逼近论本身有重要意义之外,还有很多重要应用。例如,对研究多元函数在低维子流形上的性质,多元函数在一定要求下的开拓问题等都有重要作用。后一类问题的研究属于泛函分析中的嵌入定理。近年来,在多元函数的线性算子逼近、插值逼近、样条逼近和用单变元函数的复合近似表示多元函数等方面都有所进展。
现在函数逼近论已成为函数理论中最活跃的分支之一。科学技术的蓬勃发展和快速电子计算机的广泛使用给它的发展以强大的刺激。现代数学的许多分支,包括基础数学中象拓扑、泛函分析、代数这样的抽象学科以及计算数学、数理方程、概率统计、应用数学中的一些分支都和逼近论有着这样那样的联系。函数逼近论正在从过去基本上属于古典分析的一个分支发展成为同许多数学分支相互交叉的、密切联系实际的、带有一定综合特色的分支学科。

6. 数学函数逼近论方向投哪个期刊投稿比较好

推荐《数学学习与研究》,见刊快,以下是关于该杂志的简介和投稿须知,希望有所帮助:

《数学学习与研究》杂志是由东北师范大学主管,吉林省数学会与东北师范大学出版社联合主办的省级优秀数学类期刊杂志。杂志经新闻出版总署批准,全国发行。国际标准刊号:ISSN1007-872X,国内统一刊号:CN22-1217/O1,邮发代号:12-377。杂志为国内 为数不多的数学类研究专刊,国内数学类优秀刊物。《数学学习与研究》杂志,是一本吉林省的数学类的专业学术期刊。杂志涵盖数学研究最丰富的学术资源。

7. 概率论中的PDF(probability density function)和PMF(probability mass function)有什么区别

1、用法

PDF:对连续性随机变量的定义。与PMF不同的是PDF在特定点上的值并不是该点的概率, 连续随机概率事件只能求一段区域内发生事件的概率, 通过对这段区间进行积分来求。

PMF:对离散随机变量的定义。是离散随机变量在各个特定取值的概率。

2、写法

PDF:一般写法是一个函数。

例如:

f(x)=e^(-x),

积分得到∫f(x)dx=1.

PMF:一般写法是写成对应每一个特定取值的概率。

例如:

P{x=xi}=1/15.

(7)pdf函数逼近论扩展阅读:

发展过程

起源

概率论是研究随机现象数量规律的数学分支,是一门研究事情发生的可能性的学问。但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Cardano)开始研究掷骰子等赌博中的一些简单问题。

概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

发展

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。

随后棣莫弗和拉普拉斯又导出了第 二个基本极限定理(中心极限定理)的原始形式。

拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。

19世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面柯尔莫哥洛夫、维纳、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。

参考资料来源:网络-概率论



阅读全文

与pdf函数逼近论相关的资料

热点内容
ssm身份认证源码 浏览:464
预排序遍历树算法 浏览:671
加密装置如何打开ping功能 浏览:478
python下载372 浏览:901
u盘子文件夹隐藏 浏览:296
本地误删svn文件夹 浏览:685
海康威视python通道名 浏览:241
如何用app覆盖全部曲库 浏览:602
变异布林源码 浏览:686
表格加密设置打印区域 浏览:437
卡耐基pdf下载 浏览:924
现在最流行的单片机 浏览:88
机顶盒刷机源码 浏览:985
编码pdf下载 浏览:946
隔壁同学app怎么 浏览:301
c语言宏命令 浏览:542
php卡死源码 浏览:576
time库中的clock函数python 浏览:991
cad视觉移动命令怎么打开 浏览:821
安卓java调用python 浏览:398