1. 求外国大学数学、物理教材。。。pdf也行。。。谢了。。。
物理:
力学
Kleppner An Introction To Mechanics
热学
Zemansky Heat and Thermodynamics
电磁学
Purcell Electricity and Magnetism
光学
Jenkins/White Fundamentals of Optics
经典力学
John Taylor Classical Mechanics (本科)
Scheck Mechanics (研究生)
电动力学
Griffiths 电动力学导论(本科)
Franklin Classical Electromagnetism(研究生)
量子力学
Griffiths 量子力学导论(本科)
Sakurai 现代量子力学(研究生)
统计力学
Schroeder Introction to Thermal Physics (本科)
Pathria 统计力学(研究生)
统计场论
Ma Shang-Keng Modern Theory of Critical Phenomena
Stanley Phase Transition and Critical Phenomena
固体物理
Ashcroft/Mermin Solid State Physics
数学物理方法
Boas Mathematical Methods in the Physical Science
广义相对论
Hartle Gravity
Wald General Relativity
粒子物理
Griffiths Introction to Elementary Particles
数学:
微分几何:
1、Peter Petersen, Riemannian Geometry:标准的黎曼几何教材;
2、Riemannian Manifolds: An Introction to Curvature by John M. Lee:最新的黎曼几何教材;
3、doCarmo, Riemannian Geometry.:标准的黎曼几何教材;
4、M. Spivak, A Comprehensive Introction to Differential Geometry I—V:全面的微分几何经典,适合作参考书;
5、Helgason , Differential Geometry,Lie groups,and symmetric spaces:标准的微分几何教材;
6、Lang, Fundamentals of Differential Geometry:最新的微分几何教材,很适合作参考书;
7、kobayashi/nomizu, Foundations of Differential Geometry:经典的微分几何参考书;
8、Boothby,Introction to Differentiable manifolds and Riemannian Geometry:标准的微分几何入门教材,主要讲述微分流形;
9、Riemannian Geometry I.Chavel:经典的黎曼几何参考书;
10、Dubrovin, Fomenko, Novikov “Modern geometry-methods and applications”Vol 1—3:经典的现代几何学参考书。
代数几何:
1、Harris,Algebraic Geometry: a first course:代数几何的入门教材;
2、Algebraic Geometry Robin Hartshorne :经典的代数几何教材,难度很高;
3、Basic Algebraic Geometry 1&2 2nd ed. I.R.Shafarevich.:非常好的代数几何入门教材;
4、Principles of Algebraic Geometry by giffiths/harris:全面、经典的代数几何参考书,偏复代数几何;
5、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud:高级的代数几何、交换代数的参考书,最新的交换代数全面参考;
6、The Geometry of Schemes by Eisenbud:很好的研究生代数几何入门教材;
7、The Red Book of Varieties and Schemes by Mumford:标准的研究生代数几何入门教材;
8、Algebraic Geometry I : Complex Projective Varieties by David Mumford:复代数几何的经典。
调和分析 偏微分方程
1、An Introction to Harmonic Analysis,Third Edition Yitzhak Katznelson:调和分析的标准教材,很经典;
2、Evans, Partial differential equations:偏微分方程的经典教材;
3、Aleksei.A.Dezin,Partial differential equations,Springer-Verlag:偏微分方程的参考书;
4、L. Hormander “Linear Partial Differential Operators, ” I&II:偏微分方程的经典参考书;
5、A Course in Abstract Harmonic Analysis by Folland:高级的研究生调和分析教材;
6、Abstract Harmonic Analysis by Ross Hewitt:抽象调和分析的经典参考书;
7、Harmonic Analysis by Elias M. Stein:标准的研究生调和分析教材;
8、Elliptic Partial Differential Equations of Second Order by David Gilbarg:偏微分方程的经典参考书;
9、Partial Differential Equations ,by Jeffrey Rauch:标准的研究生偏微分方程教材。
复分析 多复分析导论
1、Functions of One Complex Variable II,J.B.Conway:单复变的经典教材,第二卷较深入;
2、Lectures on Riemann Surfaces O.Forster:黎曼曲面的参考书;
3、Compact riemann surfaces Jost:黎曼曲面的参考书;
4、Compact riemann surfaces Narasimhan:黎曼曲面的参考书;
5、Hormander ” An introction to Complex Analysis in Several Variables”:多复变的标准入门教材;
6、Riemann surfaces , Lang:黎曼曲面的参考书;
7、Riemann Surfaces by Hershel M. Farkas:标准的研究生黎曼曲面教材;
8、Function Theory of Several Complex Variables by Steven G. Krantz:高级的研究生多复变参考书;
9、Complex Analysis: The Geometric Viewpoint by Steven G. Krantz:高级的研究生复分析参考书。
专业方向选修课:
1、多复分析;2、复几何;3、几何分析;4、抽象调和分析;5、代数几何;6、代数数论;7、微分几何;8、代数群、李代数与量子群;9、泛函分析与算子代数;10、数学物理;11、概率理论;12、动力系统与遍历理论;13、泛代数。
数学基础:
1、halmos ,native set theory;
2、fraenkel ,abstract set theory;
3、ebbinghaus ,mathematical logic;
4、enderton ,a mathematical introction to logic;
5、landau, foundations of analysis;
6、maclane ,categories for working mathematican。应该在核心课程学习的过程中穿插选修
2. 《游戏开发入门:数学和物理高清》pdf下载在线阅读全文,求百度网盘云资源
《游戏开发入门:数学和物理高清》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1KncyVWdgJNvSFnYZRIzICA
3. 求高中物理数学等的5年高考3年模拟的PDF
五年高考三年模拟(高中物理电学部分)
http://www.shangxueba.com/share/p8544721.html
曲一线科学备考·5年高考3年模拟:高中数学(必修1)(北师大版)
http://book.knowsky.com/book_338943.htm
5年高考3年模拟·高中物理·必修2·粤教版,txt下载,免费下载,pdf下载,全集下载,在线阅读,电子版下载
http://www.laitaobook.com/newsShow/330000/355163.html
4. 《数学物理方法II》pdf下载在线阅读,求百度网盘云资源
《数学物理方法II》([德]R.柯朗)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1C4G1jxtRDdqUGQDYCt0VLQ
书名:数学物理方法II
作者:[德]R.柯朗
译者:熊振翔
豆瓣评分:9.0
出版社:科学出版社
出版年份:2012-3
页数:667
内容简介:
《数学物理方法2(中译本)》系一经典性专着。本书系统地提供了为解决各种重要物理问题所需的基本数学方法。全书分为三卷出版,卷Ⅱ的内容基本上与卷Ⅰ无关,是从数学物理的观点来处理偏微分方程理论的,其中包括:一阶偏微分方程一般理论,高阶偏微分方程,势论和椭圆型微分方程,两个自变量和多于两个自变量的双曲型微分方程。本书内容十分丰富,可供数学、物理、力学等方面的研究工作者、教师和学生参考。
5. 求高中物理和数学通用模型解题pdf书,解题卡和视频
高中数学合集网络网盘下载
链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
6. 谁有新人教版初中数学,物理,化学,地理,生物电子课本百度云给我
初中7-9年级全学科下册电子课本,两人带着唯一一个幸存小哥进城
干预他国内政一直是美国乐此不疲的事
7. 《数学物理方法I》pdf下载在线阅读,求百度网盘云资源
《数学物理方法 I》([德]R.柯朗)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1f2AxiiaINhNT868_PG84UQ
书名:数学物理方法 I
作者:[德]R.柯朗
译者:钱敏
豆瓣评分:9.1
出版社:科学出版社
出版年份:2011-6
页数:457
内容简介:
《数学物理方法》系一经典名着。《数学物理方法》系统地提供了为解决各种重要物理问题所需的基本数学方法。全书分三卷出版。本书为《数学物理方法I》,由R.柯朗和D.希尔伯特编写,内容包括:线性代数和二次型、任意函数的级数展开、线性积分方程、变分法、振动和本征 值问题、变分法在 本征值问题上的应用以及本征值问题所定义的特殊函数。《数学物理方法I》可以作为高等学校“数学物理”课程的教科书;对理论物理学工作者,它也是一本有用的参考书。
8. 《数学物理方法》PDF版 高等教育出版社 By梁昆淼编
《数学物理方法》PDF版 高等教育出版社 By梁昆淼编
WP: https://545c.com/file/24592629-439403726
ZL: http://24592629.d.yyupload.com/down/24592629/理工教材/数学物理方法 梁昆淼(第四版).pdf
内容简介 · · · · · ·
《数学物理方法(第4版)》是在第三版的基础上,根据当前的教学实践情况修订而成的。全书南复变函数论、数学物理方程两部分组成,以常见物理问题中三类偏微分方程定解问题的建立和求解为中心内容。《数学物理方法(第4版)》保持了前三版数学紧密联系物理、讲解流畅的特点,并对内容作了适度的调整,以适应当前的要求。
《数学物理方法(第4版)》可作为高等院校物理类、电子工程类各专业“数学物理方法”课程的教材.亦可供高等学校的其他有关专业选用。
作者简介 · · · · · ·
梁昆淼,已故,前南京大学教授,着名数学物理学家。编着过《数学物理方法》、《力学》等书籍。梁昆淼于1989年获得全国教育系统劳动模范,由国家教委、中宣部、全国教育工会表彰。
目录 · · · · · ·
第一篇 复变函数论 第一章 复变函数 §1.1 复数与复数运算 §1.2 复变函数 §1.3 导数 §1.4 解析函数 §1.5 平面标量场 §1.6 多值函数 第二章 复变函数的积分 §2.1 复变函数的积分 §2.2 柯西定理 §2.3 不定积分 §2.4 柯西公式 第三章 幂级数展开 §3.1 复数项级数 §3.2 幂级数 §3.3 泰勒级数展开 §3.4 解析延拓 §3.5 洛朗级数展开 §3.6 孤立奇点的分类 第四章 留数定理 §4.1 留数定理 §4.2 应用留数定理计算实变函数定积分 §4.3 计算定积分的补充例题 第五章 傅里叶变换 §5.1 傅里叶级数 §5.2 傅里叶积分与傅里叶变换 §5.3 δ函数 第六章 拉普拉斯变换 §6.1 拉普拉斯变换 §6.2 拉普拉斯变换的反演 §6.3 应用例第二篇 数学物理方程 第七章 数学物理定解问题 §7.1 数学物理方程的导出 §7.2 定解条件 §7.3 数学物理方程的分类 §7.4 达朗n1尔公式定解问题 第八章 分离变数法 §8.1 齐次方程的分离变数法 §8.2 非齐次振动方程和输运方程 §8.3 非齐次边界条件的处理 §8.4 泊松方程 §8.5 分离变数法小结 第九章 二阶常微分方程级数解法 本征值问题 §9.1 特殊函数常微分方程 §9.2 常点邻域上的级数解法 §9.3 正则奇点邻域上的级数解法 §9.4 施图姆一刘维尔本征值问题 第十章 球函数 §10.1 轴对称球函数 §10.2 连带勒让德函数 §10.3 一般的球函数 第十一章 柱函数 §11.1 三类柱函数 §11.2 贝塞尔方程 §11.3 柱函数的渐近公式 §11.4 虚宗量贝塞尔方程 §11.5 球贝塞尔方程 §11.6 可化为贝塞尔方程的方程 第十二章 格林函数法 §12.1 泊松方程的格林函数法 §12.2 用电像法求格林函数 §12.3 含时间的格林函数 §12.4 用冲量定理法求格林函数 §12.5 推广的格林公式及其应用 第十三章 积分变换法 §13.1 傅里叶变换法 §13.2 拉普拉斯变换法 §13.3 小波变换简介 第十四章 保角变换法 §14.1 保角变换的基本性质 §14.2 某些常用的保角变换 第十五章 非线性数学物理问题简介 §15.1 孤立子 §15.2 混沌附录 一、傅里叶变换函数表 二、拉普拉斯变换函数表 三、高斯函数和误差函数 四、勒让德方程的级数解(9.2.7)和(9.2.8)在x=±1发散 五、连带勒让德函数 六、贝塞尔函数表 匕、诺伊曼函数 八、虚宗量贝塞尔函数虚宗量汉克尔函数 九、球贝塞尔函数 十、埃尔米特多项式 十一、拉盖尔多项式 十二、方程x+ntan x=0的前六个根 十三、r函数(第二类欧拉积分)习题答案参考书目人名对照表