‘壹’ 如何入门参与数学建模
来源:知乎
一. 关于建模竞赛、报名和参赛:
这里简要介绍几个比较主流的建模竞赛
(1)全国大学生数学建模竞赛:国赛一般指的是“高教社”杯数学建模竞赛
报名:报名时间可能每个大学不太一样,有的大学要先进行校赛预选,大约是在5-6月开始报名,报名请关注学校相关教务处网站、数学学院网站。报名费300元(有的学校会返还报名费来鼓励大家积极参与,获奖的话说不定学校还会给丰厚的奖金呢~~)。以团队报名,每个队伍不超过3人(所以也可以2人或者1人),每队须有一个指导教师。(关于组队的注意事项后面会详细讲到)
培训:有的学校会在暑假小学期组织建模培训,如果有的话,建议可以去听听~没有培训的话,就自己好好看看呗~
比赛时间:比赛一般在每年9月中上旬举行,比赛时间是从某个周五的上午8:00开始,为期三天三夜,截止到次周一上午8:00。(关于时间的分配我在后面也会详细讲讲)
比赛期间:参赛队伍可以在比赛期间利用图书、互联网资料帮助建模,有问题也可以请教老师,原则上不相互交流(原则上......)。本科组比赛有A,B两道题,需要选择其中一道题进行解答。PS:最后AB两题各个奖项数量相同,所以如果选A,B题的分别有7000,3000只队伍,国赛一等奖A,B题分别有20个名额,那么A题的获奖比例和B题是不同的,但是具体选做的人少的还是选容易的要自己斟酌~(关于换题在后面会讲讲)
比赛提交:提交纸质版给数学学院,并且把论文、数据、程序打包压缩拷贝给相关老师。
比赛答辩:初审进入国赛获奖名单的队伍需要答辩,每个省的初审进度可能不太一样,有的在9月底就会进行答辩,有的可能10月。答辩开始有一个3-5分钟的概要介绍,每个队伍选一个口齿伶俐的小伙伴上去讲就好。答辩的主要目的是验真,所以只要是自己做的应该没多大问题。答辩可能会问到关于模型、软件或者程序的问题。当然答辩也是可能挂掉的,挂掉了就降档。
(2)美国大学生数学建模竞赛:
报名:美赛报名比国赛复杂一些...这里我先把美赛官网的网址附上,然后我们再慢慢来说
一般在下半年可以开始报名(具体时间忘记了,大约11月左右报名),Contests→Register for
Contest(这里需要用指导老师的邮箱来注册,所以需要提前联系老师,确定老师愿意指导,用老师的邮箱号注册,每位老师最多指导2只队伍)。美赛报名费100美元,需要用VISA卡或者MASTER卡支付,如果有队员有当然最好,如果没有就找万能的淘宝吧~
比赛时间:春节前后(这点很悲剧,也阻碍了很多人参赛,但是相信对于那些勇于放弃春节孜孜不倦投身于建模竞赛的同学们还是值得的),比赛时间四天四夜,早上9:00开始。
论文提交:在网上提交,并且寄送纸质版到美国。
没有大便(答辩)!
奖状发放:大概4月左右网上自己下载获奖证书(大陆同学),对,就一个pdf而已...
(3)全国统计建模竞赛:两年一次(单数年),比赛形式是在6月30日前提交论文
(4)电工杯:不熟,sorry
除此之外,还有什么深证杯、认证杯之类的......
二.建模竞赛的好处:
理工科的同学就把获奖当成打装备吧,你们懂得,等到快要保研、出国的时候简历上有那么几行还看得过眼的比赛获奖很有用,很有用,很有用(重要的事说三遍)。美赛对出国还是比较有用啦,毕竟还是国际比赛嘛,以前得特等奖的师兄那组去了剑桥大学和斯坦福...虽然特例不代表什么,但是有比没有好撒~
三. 组队
建模主要分为建模、编程、论文三个部分,但是要完全分开的你会发现人力资源闲置,所以推荐每位队员主攻其中两项左右。所以建议千万千万不要三个数学学院的同学凑一队!!!(如果三个啥子都会的数学大神凑一起也...没有...关系)。组队的时候大家容易发现每个队都想要至少一个数学学院的,然而通常并没有那么多数院的同学,而且数院的同学爱扎堆...有数学学院的同学是好的,但是其实数学学院的同学比其他学院并没有那么多优势...so,其实我自己觉得电气、软件、计算机的同学更好,建的了模,编的了程序,还写的了论文,卖的了萌...
四. 时间分配
常常有师弟师妹我建模要不要熬夜。当然,有不熬夜的也有取得了好成绩的,但是,大部分人需要熬夜。我想建议大家的是要适度地熬夜...比如前两天每天睡7-8个小时,第三天就熬一熬吧。关于时间分配,建模一般从周五早上8点开始,建议大家在中午之前确定好做A题还是B题,分别去看看哪个题更有思路一些,不要拍脑袋决定~选题很重要!选题很重要!选题很重要!一方面是获奖比例,我前面说过了;另一方面,没选好就要涉及到换题,我后面会再说说。吃完午饭最好就把题目确定下来,接下来下午和晚上把第一个问做出来,然后对第二个问开始着手解决。第二天,周六需要把第二问解决,第三问争取基本解决。第三天,完善,如果有第四问要解决第四问。至少在下午4点左右开始集中写论文,当然,其实从第一天解决第一问开始就要开始着手写论文,粘贴数据什么的,谁闲着谁就去写写论文。当然,时间分配要依据不同队伍的进度来,我只是给出一个参考而已~
五. 换题
很多同学会遇到“换题危机”,因为周五上午没有选好题,做到一半发现做不动了,就想换题。所以,可以换题,但是建议至少在周六上午之前,不然真的很难完成...
六. 论文模板
大家最好入手一本优秀论文集
比如:《数学建模优秀论文精选与点评(2005-2010)》【摘要 书评 试读】
和《数学建模系列丛书:全国大学生数学建模竞赛赛题与优秀论文评析(2005年
看看别人的论文层次,我还是给出一个粗略的论文模板:
题目→摘要→模型假设→符号说明→模型的建立→模型的求解→模型评价→仿真测试→模型的推广→参考文献→附录
你可以按照问题一、问题二、问题三分别来写
PS:摘要最重要!摘要最重要!摘要最重要!(阅卷老师和答辩老师的大部分时间在看摘要,所以至少花2个小时左右写那短短的不起眼的摘要)模型评价很重要,你的Model好不好请用数据来说明,回带效果和预测效果都很重要。
七. 常用软件和参考书目
常用软件:Matlab, SPSS, Lingo, (SAS, R)
除了上面两本优秀论文外,我还推荐以下书籍:(精选了几本,其实还有很多不过估计应该看不完)
Matlab:用的最多,不解释
SPSS:统计里面用
Lingo:解规划问题,比较简单,就不推荐专门的书了
SAS, R: 统计编程
推荐书目:
《MATLAB 在数学建模中的应用(第2版)》【摘要 书评 试读】
《SPSS统计分析从基础到实践(第2版)(附光盘1张)》(罗应婷)【摘要 书评 试读】
《数学建模算法与应用(附光盘1张)/普通高等院校“十二五”规划教材》(司守奎,孙玺菁)【摘要 书评 试读】
我就不推荐姜启源那种书了...
接下来,我想重点写写数模中常用的算法,但是今天应该是写不完了,所以下次再继续写吧~
八. 算法
下面我开始PO算法,我在这里只介绍一些比较经典的建模算法和程序,也会在后面介绍一些智能算法,边写边总结边回顾也是极好的~
‘贰’ 数学建模算法与应用第二版怎么样
司守奎老师的书都还不错
本书涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏最小二乘面归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。本书既可以作为数学建模课程教材和辅导书,也可以作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书。
‘叁’ 《数学建模算法与应用习题解答》 司守奎 有下载地址么
没有电子版,本人也找司老师要过一次,但是司老师说和我说“和出版社签了协议不能够把电子版的外放”。用怀疑我说的是假。
‘肆’ 数学建模算法与应用的介绍
《数学建模算法与应用》是国防工业出版社2011年8月1日出版的图书,作者是司守奎、孙玺菁。《数学建模算法与应用》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏最小二乘面归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。
‘伍’ 谁有《数学建模算法与应用》的课后习题答案
本书是是国防工业出版社出版的《数学建模算法与应用》的配套书籍。《普通高等院校"十二五"规划教材:数学建模算法与应用习题解答》给出了《数学建模算法与应用》中全部习题的解答及程序设计,另外针对选修课的教学内容,又给出一些补充习题及解答。《普通高等院校"十二五"规划教材:数学建模算法与应用习题解答》的程序来自于教学实践,有许多经验心得体现在编程的技巧中。这些技巧不仅实用,也很有特色。书中提供了全部习题的程序,可以将这些程序直接作为工具箱来使用
‘陆’ 数学建模的建模资料
《建模协会为铁大学子准备的备战建模资料0401-0502》网络网盘免费资源下载
链接: https://pan..com/s/1y9fB2G-J_gW98MH9K26XOA
建模协会为铁大学子准备的备战建模资料0401-0501|用前必读:数学建模协会承办竞赛参赛报名通知渠道.docx|建模协会为铁大学子准备的备战建模资料.rar
‘柒’ 求分享下司守奎老师的数学建模算法与应用这本书的电子版,多谢多谢
‘捌’ 数学建模算法总结
无总结反省则无进步
写这篇文章,一是为了总结之前为了准备美赛而学的算法,而是将算法罗列并有几句话解释方便以后自己需要时来查找。
数学建模问题总共分为四类:
1. 分类问题 2. 优化问题 3. 评价问题 4. 预测问题
我所写的都是基于数学建模算法与应用这本书
一 优化问题
线性规划与非线性规划方法是最基本经典的:目标函数与约束函数的思想
现代优化算法:禁忌搜索;模拟退火;遗传算法;人工神经网络
模拟退火算法:
简介:材料统计力学的研究成果。统计力学表明材料中不同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(此过程称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形成处于低能状态的晶体。
思想可用于数学问题的解决 在寻找解的过程中,每一次以一种方法变换新解,再用退火过程的思想,以概率接受该状态(新解) 退火过程:概率转化,概率为自然底数的能量/KT次方
遗传算法: 遗传算法是一种基于自然选择原理和自然遗传机制的搜索算法。模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。
遗传算法的实质是通过群体搜索技术(?),根据适者生存的原则逐代进化,最终得到最优解或准最优解。
具体实现过程(P329~331)
* 编码
* 确定适应度函数(即目标函数)
* 确定进化参数:群体规模M,交叉概率Pc,变异概率Pm,进化终止条件
* 编码
* 确定初始种群,使用经典的改良圈算法
* 目标函数
* 交叉操作
* 变异操作
* 选择
改良的遗传算法
两点改进 :交叉操作变为了以“门当户对”原则配对,以混乱序列确定较差点位置 变异操作从交叉操作中分离出来
二 分类问题(以及一些多元分析方法)
* 支持向量机SVM
* 聚类分析
* 主成分分析
* 判别分析
* 典型相关分析
支持向量机SVM: 主要思想:找到一个超平面,使得它能够尽可能多地将两类数据点正确分开,同时使分开的两类数据点距离分类面最远
聚类分析(极其经典的一种算法): 对样本进行分类称为Q型聚类分析 对指标进行分类称为R型聚类分析
基础:样品相似度的度量——数量化,距离——如闵氏距离
主成分分析法: 其主要目的是希望用较少的变量去解释原来资料中的大部分变异,将掌握的许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,及主成分。实质是一种降维方法
判别分析: 是根据所研究的个体的观测指标来推断个体所属类型的一种统计方法。判别准则在某种意义下是最优的,如错判概率最小或错判损失最小。这一方法像是分类方法统称。 如距离判别,贝叶斯判别和FISHER判别
典型相关分析: 研究两组变量的相关关系 相对于计算全部相关系数,采用类似主成分的思想,分别找出两组变量的各自的某个线性组合,讨论线性组合之间的相关关系
三 评价与决策问题
评价方法分为两大类,区别在于确定权重上:一类是主观赋权:综合资讯评价定权;另一类为客观赋权:根据各指标相关关系或各指标值变异程度来确定权数
* 理想解法
* 模糊综合评判法
* 数据包络分析法
* 灰色关联分析法
* 主成分分析法(略)
* 秩和比综合评价法 理想解法
思想:与最优解(理想解)的距离作为评价样本的标准
模糊综合评判法 用于人事考核这类模糊性问题上。有多层次模糊综合评判法。
数据包络分析法 是评价具有多指标输入和多指标输出系统的较为有效的方法。是以相对效率为概念基础的。
灰色关联分析法 思想:计算所有待评价对象与理想对象的灰色加权关联度,与TOPSIS方法类似
主成分分析法(略)
秩和比综合评价法 样本秩的概念: 效益型指标从小到大排序的排名 成本型指标从大到小排序的排名 再计算秩和比,最后统计回归
四 预测问题
* 微分方程模型
* 灰色预测模型
* 马尔科夫预测
* 时间序列(略)
* 插值与拟合(略)
* 神经网络
微分方程模型 Lanchester战争预测模型。。
灰色预测模型 主要特点:使用的不是原始数据序列,而是生成的数据序列 优点:不需要很多数据·,能利用微分方程来充分挖掘系统的本质,精度高。能将无规律的原始数据进行生成得到规律性较强的生成序列。 缺点:只适用于中短期预测,只适合指数增长的预测
马尔科夫预测 某一系统未来时刻情况只与现在状态有关,与过去无关。
马尔科夫链
时齐性的马尔科夫链
时间序列(略)
插值与拟合(略)
神经网络(略)
‘玖’ 求吴孟达老师的《数学建模教程 》 PDF电子书
数学建模教程--吴孟达,下载 密码:uwi9