导航:首页 > 文档加密 > 磁动力学pdf

磁动力学pdf

发布时间:2023-02-18 20:53:38

Ⅰ 《电动力学》这门课与 《电磁场理论》这门课有哪些相似之处和不同之处

物理系的读电动力学,电动力学是理论物理四大力学之一比电磁场理论难,电磁场理论一般是信息工程这类工科专业读的,差别主要在电动力学的有相对论部分,电磁场一般不讲这块,而且电磁场理论在经典电动力学上也比较简单。

Ⅱ 电动力学听不懂哪里找网课

《哔哩哔哩》。电动力学是一个专业,该专业听不懂去《哔哩哔哩》找网课,里面有此专业的博主进行讲解。电动力学电磁现象的经典的动力学理论,通常也称为经典电动力学,电动力学是它的简称。

Ⅲ 郭光华的教学情况

一、近五年来讲授的主要课程: 课程名称 课程类别 周学时 届数 学生总人数 固体物理学 专业基础课 3 4届 113人 大学物理(理) 基础课 4 2届 118人 热力学统计物理 专业基础课 4 2届 116人 磁学理论 硕士生课程 4 5届 53人 二、承担的实践性教学:
指导毕业论文 4届 5人/届总人数 20人
指导课程设计 2届 学生总人数 58人
指导实习 3届 学生总人数 89人
三、主持的教学研究课题:
(1)固体物理学研究型教学改革的研究
2006-2008年,中南大学本科教育教学改革研究项目,项目负责人
(2)“凝聚态物理专题”教材建设
2007-2009年,中南大学重点教改项目,项目执行人
(3)磁纳米线的制备、表征及磁动力学的研究
2009-2011年,湖南省教育厅大学生研究性学习和创新性实验计划项目,指导教师
(4)研究生精品课程《固体物理学》改革研究与实践
2006-2008年,湖南省教改项目,主要参加者
四、教学研究论文及主编教材:
(1)凝聚态物理专题 中南大学出版社 2009年 副主编
五、获得的教学表彰/奖励
(1)湖南省本科生精品课程《固体物理学》 2010年 湖南省教育厅 课程负责人
(2)师德先进个人 2003年 中南大学
(3)教学质量优秀奖 2006年,2008年 中南大学

Ⅳ 关于物理学方面的论文

物理学是研究物质运动最一般规律和物质基本结构的学科,是当今最精密的一门自然科学学科。下文是我为大家整理的关于物理学方面的论文的 范文 ,欢迎大家阅读参考!

物理学方面的论文篇1

试谈物理学专业电动力学课程教学

动力学电磁现象的经典的动力学理论。通常也称为经典电动力学,电动力学是它的简称。它研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。

一、课程教学根本理念

第一,在教学中要尊重先生学习的主体性、教员教学的主导性,片面发扬先生的盲目性、自动性、发明性。第二,“电动力学”课程属于专业根底课程,教学内容布置上除了让先生学习本门课程的根本知识、根本实际、根本思绪,与其他物理学分支也具有个性和特性的关系。针对这一特点,教师在教学中要留意引导先生类似性抽象思想。第三,教学应突出探求式教学办法,改动传统的教学形式,把信息技术与电动力学课程最大限制地整合,运用多种古代 教育 手腕优化教学进程,推行启示式、探求式、讨论式、小制造等授课方式,培育先生的创新思想和创新理念。

二、在本课程教学中该当做到以下几点

1.讲授内容应实际联络实践

“电动力学”作为一门专业学科课程,是师范院校物理专业的根底实际课。教学中要求先生掌握课程的根本知识、根本实际和根本原理,使先生加深对所授知识的了解,更可深入看法电动力学的实践使用价值,到达学致使用的目的,同时提升先生剖析成绩、处理成绩的才能。

2.注重先生学习的主体性和集体性培育

从课程的设计到评价各个环节,在留意发扬教员在教学中主导作用的同134教改课改2016年3月时,应特别留意表现先生的学习主体位置,以充沛发扬先生的积极性和发掘学习潜能。要求先生能初步剖析消费、生活中的电动力学成绩,以提升先生的剖析成绩和处理成绩的才能。在电动力学实际的学习中运用数学工具处置成绩,使先生看法数学和物理的亲密关系,培育先生运用数学工具处理物理成绩的才能。培育先生自学才能,重要的不是教内容,而是教给先生学习办法。要充沛留意先生的兴味、专长和根底等方面的集体差别,因材施教,依据这种差别性来确定学习目的和评价办法,并提出相应的教学建议。课程规范在课程设计、教学方案、方案制定、内容选取和教学评价等环节上,为教学、学习提供了选择余地和开展的空间。

3.运用多种古代教育手腕优化教学环节

充沛应用古代化教学手腕,发扬信息化教学的劣势,加强先生的学习兴味,进一步强化需求掌握的知识点,拓宽知识面,加强先生的理论操作技艺,培育迷信的思想方式,这样先生能更好地掌握“电动力学”课程知识所触及的相关迷信办法,无效提升其发现成绩、剖析成绩、处理成绩的才能。

4.具有良好的实验条件,充沛保证明验和理论训练质量

鼓舞先生展开科研理论训练,参与各类科技竞赛。实验课及理论训练要留意培育先生的逻辑思想、发明性思想,充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学。

三、课程学习战略探求

第一,针对“电动力学”是实际根底课的特点,先生必需坚持 课前预习 ,预习进程中无意识地提出成绩。课堂教学次要采用探求式课堂教学法,即每节课突出一个主题,讲清论透相关原理知识,每个主题经过师生多种方式的互动,教员及时理解、处理先生的疑问成绩,以加强先生的学习兴味。第二,将传统板书、电子课件、网络和视频多种教学手腕相结合。如课内讲授与课外讨论和制造相结合、根底实际教学与学科前沿讲座结合、根本实际与科研理论训练相结合。第三,鼓舞先生参与科研理论训练和各类科技竞赛。培育多样化使用型人才,以培育使用型、复合型、技艺型人才,加强 毕业 生失业才能,完本钱课的预期目的。第四,电动力学也是一门理论性很强的课程,其研讨对象是区别于实物的物质形状,具有笼统的特征。为防止课程教学的数学化,我们将充沛使用当代信息技术的劣势,比方说以视频教学材料加强先生的理性看法和入手才能。再次,实验课及理论训练要留意培育先生的逻辑思想、发明性思想才能和素质,充沛发扬先生的物理思想和物理探求才能。

四、课程教学办法探求

本课程教学中应留意电动力学实际与理论的结合,尊重先生学习的主体性,适当布置指点性自习,培育先生的自学才能。增强对先生课前、课后的答疑辅导,注重先生才能的培育,使先生经过对电动力学中根本实际的了解,看法和掌握电动力学原理的研讨规律,开辟思绪,初步培育先生的科研思想。

1.“双边反应式”教学法

这种教学法由“自学”和“反应”两局部构成,其着眼点是先生在教员指点下的自学和教员由反应来的信息而停止的有重点的解说,使先生的才能在重复训练中失掉锤炼。“自学”和“反应”表现了先生和教员的互相联络、互相配合、互相作用的训练进程。

2.以成绩为中心,展开课堂讨论

式教学法建议课堂教学中遵照迷信性、主体性、开展性准绳,采用以先生为主体的小组讨论式的办法,从提出成绩动手,激起先生学习的兴味,让先生有针对性地去探究并运用实际知识处理实践成绩;也可以针对教研室科研任务中遇到的成绩设计讨论或考虑题,以启示先生剖析、讨论有关电动力学成绩,学习并稳固电动力学知识,开辟思绪,培育科研思想。

3.倡导学导式的教学方式

在教员指点下,先生停止自学、自练,教员把先生在教学进程中的认知活动视为教学活动的主体,让先生自动地去获取知识,开展各自才能,从而到达在充沛发扬先生自动性的根底上,渗入教员的正确引导,使教学单方各尽其能,各得其所。

4.多展开课外理论活动

课外理论训练中,要留意培育先生的逻辑思想、发明性思想才能和素质。鼓舞和指点有才能的先生进入科研理论训练,参与各类科技竞赛。将先生撰写的课程小论文融入教学全进程,从中选出有质量的项目进入科研理论训练。充沛应用好物理、电子竞赛等创新平台,促进电动力学课程的教学,培育使用型、复合型、技艺型人才,加强毕业生失业才能。“电动力学”作为一门探求性课程,在课堂教学中,要突出先生的参与性,使他们自动获取而不是主动承受迷信结论,互动思想使先生觉得电动力学发人沉思,不难入门。“电动力学”与其他物理学分支具有“个性”和“特性”的关系。为了激起先生学习兴味,可以常常采用课堂讨论方式,由先生发问,在教员引导下大家讨论, 总结 得出正确结论。由于剖析“电动力学”需求运用笼统思想,所以课堂教学应充沛运用多媒体,尽量运用图像和颜色搭配,使先生树立正确的物理图像。留意“信息技术”与“电动力学”课程的无效整合,这关于全体优化教学进程,进步先生的专业知识学习效果、进步先生的信息技术才能、培育先生的协作认识和创新肉体均具有严重的理想意义。同时,可将教学实际使用到创新理论才能训练中,使用到物理、电子等各类竞赛中。

参考文献:

[1]冯云光.物理专业电动力学教学变革的探究[J].才智,2014,(19).

[2]郑伟,吕嫣.电动力学网络教学平台建立的研讨[J].沈阳师范大学学报(自然迷信版),2013,31(4):531-534.

[3]刘佳.《电磁学》与《电动力学》课程体系创新研讨[J].科技信息,2013,(11):44.

[4]熊万杰,陆建隆.对“电动力学”课程变革的探究[J].初等文科教育,2003,(6):72-75.

[5]付长宝,徐国慧,王希英.基于电动力学教学变革的学习办法讨论[J].通化师范学院学报,2009,30

物理学方面的论文篇2

试谈电力信息物理融合系统

【摘 要】嵌入式系统、计算机技术、网络通信技术的快速发展使构建未来智能电网成为了可能,基于信息物理系统(CPS)技术构建电力信息物理融合系统(CPPS)为实现未来智能电网提供了新的思路。本文对CPPS平台进行了初步研究分析,介绍了应用于CPPS中的同步PMU技术、开放式通信网络、分布式控制。

【关键词】CPPS;同步PMU;开放式通信;分布式控制

引言

受能源危机、环保压力的推动,以及用户对电能质量(QoS)要求的不断提高,当代电力系统不再符合社会的发展需求,智能电网(Smart Grid)成为未来电力系统的发展方向。智能电网的发展原因主要有以下几个方面:

1)分布式电源(Distributed Generation,DG)大量接入电网导致的系统稳定性问题。由于DG的大量接入使电网变成一个故障电流和运行功率双向流动的有源网络,增加了系统的复杂度和脆弱度,因此亟需发展智能电网以解决DG大量接入电网导致的系统稳定性问题。

2)电力用户对电能质量(QoS)要求的不断提高。现代社会短时间的停电也会给高科技产业带来巨额的经济损失,近年来发生的大停电事故更是给社会带来了难以估量的经济损失。因此,亟需建立坚强自愈的智能电网以提供优质的电力服务。

论文主体结构如下:第1部分介绍了近年来信息物理系统(Cyber Physical System ,CPS)技术的发展以及CPS与智能电网的相互关系;第2部分介绍了电力信息物理融合系统(Cyber-Physical Power System,CPPS)的硬件平台模型;第3部分介绍了同步相量测量装置(Phasor Measurement Units,PMU)技术;第4部分对CPPS中的开放式通信网络进行了初步分析;第5部分对CPPS的分布式控制技术进行了简单介绍;最后第6部分做出全文总结。

1 CPS与智能电网的相互关系

CPS技术的发展得益于近年来嵌入式系统技术、计算机技术以及网络通信技术等的高速发展,其最终目标是实现对物理世界随时随地的控制。CPS通过嵌入数量巨大、种类繁多的无线传感器而实现对物理世界的环境感知,通过高性能、开放式的通信网络实现系统内部安全、及时、可靠地通信,通过高精度、可靠的数据处理系统实现自主协调、远程精确控制的目标[1]。

CPS技术已经在仓储物流、自主导航汽车、无人飞机、智能交通管理、智能楼宇以及智能电网等领域得以初步研究应用[2]。

将CPS技术引入到智能电网中,可以得到电力信息物理融合系统(Cyber-Physical Power System,CPPS)的概念。为了分析CPPS与智能电网的相互关系,首先简单回顾一下智能电网的概念。目前关于智能电网的概念较多,并且未达成一致结论。IBM中国公司高级电力专家Martin Hauske认为智能电网有3个层面的含义:首先利用传感器对发电、输电、配电、供电等环节的关键设备的运行状况进行实时监控;然后把获得的数据通过网络系统进行传输、收集、整合;最后通过对实时数据的分析、挖掘,达到对整个电力系统运行进行优化管理的目的[3-4]。

从上文关于CPS和智能电网的介绍中可以看出,CPS与智能电网在概念上有相通之处,它们均强调利用前沿通信技术和高端控制技术增强对系统的环境感知和控制能力。因此,在CPS基础上建立的CPPS为促进电力一次系统与电力信息系统的深度融合,最终实现构建完整的智能电网提供了新的思路和实现途径。

2 CPPS的硬件平台架构

基于分布式能源广泛接入电网所引起的系统稳定性问题以及建立坚强自愈智能电网的总体目标,建立安全、稳定、可靠的智能电网成为未来电力系统研究的重要方向,同时也是CPPS研究的主要内容。

传统的电力系统监测手段主要有基于电力系统稳态监测的SCADA/EMS系统和侧重于电磁暂态过程监测的各种故障录波仪,保护控制方式主要有基于SCADA主站的集中控制方式和基于保护控制装置安装处的就地控制方式[5]。就地控制方式易于实现,并且响应速度快,但是由于利用的信息有限,控制性能不够完善,不能预测和解决系统未知故障,对于电力系统多重反应故障更不能准确动作。集中控制方式利用系统全局信息,能够优化系统控制性能,但是计算数据庞大、通信环节多,系统响应速度慢,并且现有SCADA系统主要对电力系统进行稳态分析,不能对电力系统的动态运行进行有效地控制。

针对目前电力系统监测、控制手段的不足,要建立坚强自愈的未来智能电网,必须建立相应的广域保护的实时动态监控系统,CPPS的硬件平台就是在此基础上建立起来的。

CPPS的硬件平台6层体系架构如图1所示,主要包括:物理层(电力一次设备)、传感驱动层(同步PMU)、分布式控制层(智能终端单元STU、智能电子装置IED等)、过程控制层(控制子站PLC)、高级优化控制层(SCADA主站控制中心)和信息层(开放式通信网络)。

其中,底层的物理层是指电力系统的一次设备,如发电厂、输配电网等。传感驱动层主要用于对电力系统的动态运行参数进行实时监控,测量参数包括电流、电压、相角等,在CPPS中广泛使用的测量装置是同步PMU。分布式控制层主要包括各STU/IED,为广域保护的分布式就地控制提供反馈控制回路。过程控制层主要指枢纽发电厂和变电站的控制子站,是CPPS的重要组成部分,通过收集多个测量节点的数据信息,建立系统层面的控制回路,并做出相应的控制决策。高级优化控制层是指调度中心控制主站,主要为电力系统的动态运行提供人工辅助优化控制。顶层的信息层即智能电网的开放式通信网络,注意信息层并不是单独的一层,而是重叠搭接CPPS的各个分层,为CPPS内部各组件提供安全、及时、可靠的通信。

上文给出了CPPS的硬件平台模型,但要在电力系统中具体实现CPPS,涉及诸多方面的技术难题,下面对CPPS中的同步PMU、开放式通信网络以及分布式控制等分别加以简单介绍。

3 同步PMU测量技术

同步PMU是构建CPPS的基础,它为CPPS中广域保护的动态监测提供了丰富的测量数据。同步PMU装置主要对电力系统内部的同步相量进行测量和输出,装设点包括大型发电厂、联络线落点、重要负荷连接点以及HVDC、SVC等控制系统,测量数据包括线路的三相电压、三相电流、开关量以及发电机端的三相电压、三相电流、开关量、励磁电流、励磁电压、励磁信号、气门开度信号、AGC、AVC、PSS等控制信号[6]。利用测得的数据可以进行系统的稳定裕度分析,为电力系统的动态控制提供依据。

同步PMU的硬件结构框图如图2所示。

其中,GPS接收模块将精度在±1微秒之内的秒脉冲对时脉冲与标准时间信号送入A/D转换器和CPU单元,作为数据采集和向量计算的标准时间源。由电压、电流互感器测得的三相电流、电压经过滤波整形和A/D转换后,送到CPU单元进行离散傅里叶计算,求出同步相量后再进行输出。注意,发电机PMU除了测量机端电压、电流和励磁电压、电流以外,还需接入键相脉冲信号用以测量发电机功角[7]。

4 CPPS的开放式通信网络

建立CPPS的开放式通信网络,应该在保证安全、及时、可靠的通信的基础上,使系统具有高度的开放性,支持自动化设备与应用软件的即插即用,支持分布式控制与集中控制的结合。对于建立的开放式通信网络,需要进行通信实时性分析、网络安全性和可靠性分析。

4.1 IEC 61850标准的应用

IEC 61850标准作为新一代的网络通信标准而运用于智能变电站中,支持设备的即插即用和互操作,使智能变电站具有高度的开放性。IEC 61850标准是智能变电站的网络通信标准,同时正在进一步发展成为智能电网的通信标准[8],因此,使用IEC 61850作为CPPS通信网路的通信标准是最佳选择。

IEC 61850的核心技术[9]包括面向对象建模技术、XML(可扩展标记语言)技术、软件复用技术、嵌入式 操作系统 技术以及高速以太网技术等。

4.2 通信网络配置与分析

对于CPPS开放式通信网络的网络配置,可参考智能变电站的三层二网式网络结构配置,构建CPPS的3层式通信网络,如图3所示。

其中,底层为位于发电厂、变电站和重要负荷处的大量PMU、STU/IED,分别负责采集实时信息和执行保护控制功能。中间层为控制子站(过程控制单元PLC),每个控制子站与多个PMU、STU/IED相连,以完成该分区系统层面的保护控制,并根据需要将数据上传到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上传数据,处理以后将控制信息下发到各控制子站,以实现CPPS的广域保护控制功能。注意,各层设备均嵌入GPS实现精确对时,保证全系统的同步数据采样。

5 CPPS的分布式控制机理

要建立坚强自愈的智能电网,必须利用新型控制机理建立可靠的电力控制系统。根据电力故障扩大的路径和范围以及故障的时间演变过程,文献[10-11]中提出建立时空协调的大停电防御框架,建立了电力系统的3道防线,为实现智能电网的广域动态保护控制奠定了良好的基础。

电力系统的分布式控制(Distributed Control,DC)是相对于传统的SCADA主站集中控制方式而言的,指的是多机系统,即用多台计算机(指嵌入式系统,包括PLC控制子站和STU/IED等)分别控制不同的设备和对象(如发电机、负荷、保护装置等),各自构成独立的子系统,各子系统之间通过通信网络互联,通过对任务的相互协调和分配而完成系统的整体控制目标[12]。分布式控制的核心特征就是“分散控制,集中管理”。在电力系统的3道防线的基础上,结合分布式控制技术,建立CPPS的3层控制架构,如图4所示。

其中,分布式控制层主要是在故障发生的起始阶段(缓慢开断阶段)采取的控制 措施 ,其控制目标应该是保证系统在不严重故障下的稳定性,防止故障的蔓延。过程控制层是在系统已经发生严重故障时(级联崩溃开始阶段)所采取的广域紧急控制措施,需要付出较大的代价。通常针对可能会使系统失稳的特定故障,往往需要投切非故障设备以保证系统的稳定性。广域的紧急控制措施应该在故障被识别出的第一时间立即实施,控制措施实施越晚,控制效果越差。优化控制层是在前两层控制均拒动或欠控制而没有取得控制效果,同时在检测到各种不稳定现象后所采取的控制措施,通常需要进行多轮次的切负荷和振荡解列。在电力恢复阶段,要有自适应的黑启动和自痊愈的控制方案。

6 结语

将CPS 方法 引入到电力系统中,建立CPPS的模型平台,为建立坚强自愈的智能电网提供新的思路。文中对CPPS中的同步PMU测量技术、开放式通信 网络技术 、分布式控制技术分别进行了简单介绍。

>>>下一页更多精彩的“物 理 学方面的论 文”

Ⅳ 什么样的金属有机框架适合探究磁性

稀土金属有机框架。通过查询资料显示稀土金属有机框架也是磁性研究的重要平台,不但可以利用金属-有机框架的刚性框架结构限定节点中金属离子的配位构型来调控金属节点的磁性,还可通过变换客体分子实现对金属节点的磁动力学进行有效调控,稀土金属有机框架在催化,磁性和荧光方面的研究近年来受到了广泛的关注。

Ⅵ 光是宇宙的精灵,也是宇宙的秘密

光的本质

无论我们赋予光多少宇宙间最纯粹的赞誉,显然都不会显得夸大其词和言过其实。因为光承载了太多宇宙的秘密,也担负着太多宇宙的使命。

生命从最根本的层面来讲,其实和冰冷的物质一样,不过是能量在宇宙中的表观形式。即使在一个宏观的角度来看,光也是生命得以存在的基本前提,因为生命活动所需的全部能量,不可例外的来源于恒星以光子作为主要形式的能量传递。

对于生命体来说,我们在与环境相互作用中获取的生存必不可少的信息,绝大部分是通过光来传递的。而人类基于天文观测的宇宙认知,信息的采集几乎全部通过光来实现。

γ光子正碰产生正负电子对的实验,以及正反物质湮灭为γ光子实验,则以无可辩驳的方式,预示着在最基本层面宇宙创生并存在的的原则和方式。

同时,光子作为能量传递的唯一形式,是形形色色的各种现象得以呈现并被感知的基本原因。

所以,我们可以说,我们对宇宙的理解程度,完全取决于我们对光的认知能力和认知程度。


人类对光的真正认知,显然始于经典电磁动力学的麦克斯韦电磁方程组,只是在这样的理论框架内,光是一种以恒定速度在空间中传播的电磁波,其实只是一种理论推测,原因则仅仅因为电动势和电场强度的周期性转换,与磁势和磁场强度一样,在时间上的函数形式与传统的波动方程基本一致。而实验物理学家赫兹的被公认为验证经典物理学电磁波理论的实验,实际上仅仅证实了电磁波的传播特性。至于电磁波的真实空间行为,无论在现代还是当代,都缺乏更精确的实验描述。

而颠覆认知常识的γ光子正碰以及正反物质湮灭,揭示的也只是物质和光子相互转换的现象,并没有同时给出这种转换的内在根源和具体的转换过程。

物理学看起来更习惯于依赖数学手段对他们感兴趣的现象进行一种基于数学语言的描述,似乎对某一种物理现象的具体描述更乐于不屑一顾。物理学的定量描述对于某种事物的具体把握,无疑在现实能力方面具有哲学拍马难及的优势。不过就我们对于特定物理现象的真正认知来说,被物理选择性忽略的事物本身具有的实在性和具体性,显然具有同样重要的意义。

这实际上是我们从一个与物理学截然不同的视角对光进行认知的主要理由,而且我们试图证实,这样一种认知视角,可能更有利于我们对物理现象的真正认识。

我们对一个波长内电磁波的阐述,基于经典电磁力学的以下基本规律:

1. 在一个波长的时间范围,时变的电场对应一个伴随的磁场,两者在强度上表现为同相周期性变化,空间分布具有时间依从特性的变化的磁场的边缘同时伴随一个感生电场,感生电场的规律遵循感生电流揭示出来的感生电场变化规律:增加的磁通量感生一个反向电场,减少的磁通量感生一个同向电场;

2. 磁场在空间中,以电场为中心以有限速度扩布(可以通过感生电流在相对源电流不同距离出现是否存在时间差来进行验证),半个周期的扩散直径是波长的唯一原因;

3. 磁场总是依附于电流和变化的电场存在,新的电场出现时,存在于原有电场周围的磁场消失;

4. 在一个波长1/4或者2/4周期时长范围内,不存在电磁的无限感生,否则将导致与常识不符的电磁波以无限速度传播(可以通过感生电流实验进行实验验证)。电磁的感应不需要时间,但感生电场受制于一个最低的能量变化率,对于不同强度的源电场,感生电场的实现存在一个特定的时间延搁。

最后一个规律的主要依据于我们对连续电磁波谱的简单观察,即电磁波谱存在一个最小频率(至于是否同时存在一个最大频率尚无确定的观测或实验可以验证)。这意味着新的电场的感生存在一个最低限度的能量变化率。所以感生电场出现的时间与变化的源电场存在一个最小的时间差,这种特性决定感生电场的不断出现与源磁场间呈现出时间依从的先后次序。而至于电流与感应磁场是否同样存在一个极小的时间差,则无相应的实验可以确切证实,但至少存在逻辑上的先后,即电—磁,或者磁—电。

我们在上下面给出两个外观上差异不大的图示,用以表达一个周期内,电磁波两种可能的空间行为模式。

图一中第一个箭头表示源电流或者电场的形态和方向(形态可以随实际的电路元件的不同而不同,此处我们假定为线段),第二个虚线箭头表示1/4周期内任一时间点感生电场的方向和与磁场的相对位置,即感生电场对应于任一时刻的磁力线,第3个箭头为1/2π时刻的感生电场。第一个实线圆为1/2π时刻源电场的感应磁场,第二个实线圆为π时刻感生电场的感应磁场,第一个虚线圆为1/4周期内任一时间点的源电场的感应磁场,第二个虚线圆为2/4周期内任一时间点的感生电场的感应磁场,外围的虚线圆为半个周期内任一时刻的源电场的感应磁场,在π时刻的空间分布达到最大值。

图二中,第一个箭头为源电场的位置和方向,第二个箭头为后半个周期初消失磁场的感应电场的位置和方向;第一个实线源为π时刻源电场的磁场,第二个实线圆为2π时刻的感应电场的伴随磁场,两个虚线圆均为前后半个周期内任一时刻的磁场的磁力线。


在进行具体的描述前,我们先给出正弦改变的源电流或者电场一个周期内的变化过程如下:

1.1/2π:电流或者电场强度呈正弦规律从零逐步增大至峰值,方向为初始方向,变化率逐渐从峰值减小为零;

2.2/2π:电流或者电场强度呈正弦规律从峰值逐步减小至零,方向与1/2π相同,变化率逐渐从零增大为峰值;

3.3/2π:电流或者电场强度呈正弦规律从零逐步增大至峰值,方向与π相反,变化率逐渐从峰值减小为零;

4.4/2π:电流或者电场强度呈正弦规律从峰值逐步减小至零,方向与π相反,变化率逐渐从零增大为峰值。

结合我们给出的用于我们阐述电磁波空间行为的基本电磁力学规律,图一描述的空间行为是在半个周期内,同时存在感生电场,感生电场周围存在感应磁场,但感应磁场不再同时产生感应电场,否则如此无限进行,电磁波将以无限速度传播,更重要的是,电磁波传播的只是一个有限能量,不可能无限分布。


于是,以1/4周期为单位,电磁波在半个周期的空间行为描述如下:

1.1/2π:电磁感应必然性决定源电流必然伴随一个协变的感应磁场,这个磁场以有限速度扩布,在1/4周期时间点最远,不同强度的磁场传播速度相同(因为磁场扩布是电磁波速度的唯一原因,所以电磁波速度恒定表征的其实是磁场扩布速度恒定);由于感生电场的必然性,变化的感应磁场必然伴随一个协变的与源电流方向相反的感生电场,电场的空间形态与源电流一致并且不随强度改变,在1/4周期时间点,感生电场位于动态扩布磁场的边缘;

2.2/2π:源电流方向不变,但强度减弱伴随一个强度减弱的磁场,从而感生一个方向相同的感生电场,由于电场改变以及磁场具有电场依赖性,前1/4周期末由第一个感生电场感应生成的磁场消失,一个新的磁场随着第二个方向相反的感生电场从零开始在空间扩布,在2/4周期末再次达到最大值;

3. 源电流的磁场在2/4周期继续扩布,在2/4周期末达到最大值,边缘与2/4周期末的第二个感生电场伴随的磁场的边缘在空间上重叠;

4. 由于平行电流的相互作用本质上由自身的感应磁场介导,所以1/4周期的感生电场感应磁场与源电场的感应磁场表现为排斥并导致感生电场远离源电场的位移,同时由于反向磁场场间的相互作用引起磁场能的消耗;但2/4周期产生一个与源电场同向的感生电场,磁场的作用及发生的位移与前一个1/4周期完全相反,而同向磁场相互作用表现为总场能的增加。所以,整体的位移和总的磁场能的消耗为零。

5. 半个周期内,半波长等于源电场感应磁场在半个周期时长的磁场扩布距离,也等于2个1/4周期感生电场伴随的感应磁场的扩布距离的和,显然,这两种距离是相等的。


至于图二所示,则假定半个周期内,并不存在前两个1/4周期内的感生电场,基于我们上面提到的电磁感应的逻辑先后,新的电场只在半个周期末的时间点上由消失的磁场感应生成。由于新的感应电场与源电场方向相反,由于电场的完全改变,导致电场依赖的源电场周围的磁场消失,新的感应磁场以新的电场为中心再次从零且以与前半个周期相等的有限速度扩布。于是半个波长就等于半个周期内源电场伴随的感应磁场在半个周期的扩布距离。

可见,无论哪种模式,磁场在半个周期的空间扩布距离,均是电磁波空间传播速度的唯一来源。


实际上,我们不知道电磁波真实的空间行为表现为上述的哪一种方式,前一种方式考虑电磁感应必然性的同时考虑感生电场的必然性,而后一种方式显然忽略了感生电场的必然性。所以,我们更倾向于电磁波的真实空间行为由第一种方式给出。但是两种模式都存在同样的规定,即在半个周期,电磁感应并不是无限发生的。这种规定是我们根据光速有限传播的事实,并结合经典电磁动力学揭示的波动特性共同进行的。

倘若果真如此,我们对电磁波空间行为的尝试性描述可以一目了然的推论出电磁波传播的主要特征如下:

1. 电磁波的传播原因在于必然规律作用下感生电场与源电场在空间上并不重叠,这种不重叠的根源在于伴随源电场的感应磁场以有限速度在空间中扩布,任一时刻的磁力线对应一条与之垂直的电场线,在磁场的边缘处的电场线表征磁场扩布的最大速度,新的电场的感应生成总是在磁场的最大边缘处,新的感应磁场以源磁场感应电场为中心重新从零开始扩布;

2. 电磁波的速度唯一的来源于与传播方向在同一个平面的磁场的空间扩布,感生电场的空间分布与源电场在空间位置上保持形态的恒定,由于感生电场总是垂直于伴随磁场与传播方向共同构成的平面,所以电场即使在麦克斯韦电磁波动理论是闭合曲线(尽管我们认为开放曲线更符合电场的基本特性),电场唯一的只决定电磁波的振幅,且大小由源电场给出并保持恒定。

3. 经典电磁波动理论给出的电磁波的传播速度,实际上是磁场在空间中的扩布速度,由于电磁波速度恒定,因此磁场的扩布速度也恒定,与磁场的强度无关。

4. 波速来源于磁场的空间扩布,而磁场总是以电场为中心的,于是波速只能是以源电场为参照物的相对于源电场的速度,等效于总的传播速度以波源为中心的以波源为参照物的相对速度。电磁波速的绝对性仅仅是指任何频率和波长的电磁波相对于波源的速度是一个定值,其大小来源于电磁波动方程推导出的由真空介电常数与真空磁导率决定的常数。

5. 电磁波的实质是时变耦联的电磁场,产生的唯一机制是经典电磁力学基于观测的电磁感应的必然特征,并且可以脱离波源以运动的形式存在。与脱离枪膛的子弹不同,波速不是波源以冲量的形式赋予的,而是电磁感应的必然性和磁场空间扩布的必然性决定的,所以电磁波的冲量仅仅呈现为磁场扩布具有的冲量。换句话说波源发射电磁波和枪发射子弹机制迥异,不能由经典运动力学的冲量规律来描述电磁波的宏观冲量,电磁波仅仅在半个波长范围内具备磁场扩布产生的微观冲量,而不局部宏观传播上惯性运动赋予的宏观冲量。量子力学用冲量来解释由场介导的力产生的运动效应的原因,看起来似乎有些不合时宜。

电磁波的行为的图示,在电磁波动理论中以下面的方式给出



显然,图一展示的是电磁波空间分布的具体图示,与我们给出的图示外观上非常相似,最大的不同在于,我们认为电场是线段性质的而不是闭合的,线段的空间形态由源电场给定并保持不变。但即使电磁波中真实的电场的确是闭合的,由于电场总是线性,不会像磁场一样从圆心向周围扩布,所以闭合的电场依然不是电磁波传播速度的来源。

图2和图3揭示的只是电磁波能量—时间曲线,所以图3展示的动态效果并不是电磁波在空间传播的具体描述,只是能量随时间的变化图示。


电磁波是一种波,主要的理论依据是电磁波的能量—时间函数与物质波的空间—时间函数在数学形式上基本一致,于是,为了更好的理解电磁波,我们必须从函数形式上对物质波和电磁波进行比较考察。

我们先给出物质波方程的一般形式如下:


显然,对物质波的考察,是基于可见和可轻易感知的物质波都存在一个确定的空间形式,所以对物质波进行描述的波动方程,是物质波的空间—时间函数。

而电磁波的波动方程显然并非如此,它表现为如下的形式:

可见,电磁波动方程的最初形式实际上是能量—时间函数,作为空间形态的波动形式,仅仅是依据方程与波动方程的一般形式类似而做的一种推论。所以,经典电磁波动理论函数中不存在空间坐标。实际上,由于电场和磁场在空间上并不连续分布,上述的两个方程必须联立存在,才能真正揭示电磁波的空间行为,即电场的波动特征只能是通过磁场介导的,磁场的波动特征也只能是通过电场介导的。换句话说,孤立的电场波或者孤立的磁场波均不存在,只存在耦联的电磁波。


其实,所有的波,都是波源运动变化导致的能量变化以某种物质运动变化的形式在空间中传播,波的两大要素包括:其一,不同能量形式(势能和动能)的周期性转换;其二,以物质形式表现的能量转换在空间上的位移。

以水波为例,物质波的内涵包括两个方面,其一,能量以重力势能、介质宏观动能和压强势能的方式在一个周期内周期性转换,这种转换是由外力始动下介质之间的相互作用来实现的,这种相互作用必然伴随能量的损耗(变成介质不同程度的以分子运动为唯一依据的热能),因此,物质波在传播过程中不遵守完全的能量守恒,波的传播逐步衰减;其二,位移的产生来源于压强势能在波传播方向上对介质产生的与传播方向平行的推移作用。

而在电磁波中,能量的周期性变化表现为电势能与磁势能以及电场能与磁场能的周期性转换,而且转换过程无总的能量损耗,因此遵守完全的能量守恒,传播过程不衰减;位移产生的唯一依据来源于磁场的空间扩布,以及新的感生电场与源磁场在空间上不完全重叠,总的位移效应为远离源磁场,这种位移的产生方式与物质波的位移产生方式显然大相径庭。


我们进一步考察波源运动对波速的影响。

不需要任何严格的理论证明,依据物质作用的基本特征,我们就会推论出物质波波源的运动由于介质间必然的相互作用,会使波源运动伴随的动能传递到介质波的运动中去,从而改变波的速度,但由于相互作用本身的的能量损耗,这种传递是不完全的。

而在电磁波中,波源的移动由于波源与运动方向总是垂直的场不发生相互作用(这一点可以由简单的经验证实),波源移动的能量不会传递到电磁波的传播中去,因此不会改变电磁波相对于波源的绝对速度。但是波源的移动会改变第一个电磁波的初始位置,而这种位置的改变会由于电磁波的连续性,分布到后续的电磁波中。如果定义速度为位移与时间的商,且以波源运动速度自身的参照物作为新的电磁波速度的参照物,则计算的速度必然大于电磁波相对于波源的速度,而且在量值上表现为两个速度的完全叠加。

可见,在物质波的描述上,波动方程的一般形式必然包括以波源为中心的坐标系的空间坐标,而且计算的波速必然是以波源为参照物的。而电磁波描述的只是电动强度和磁场强度与时间的函数关系,而强度的变化显然与空间位置无关。但是这并不意味着可以在电磁波的速度的界定上完全忽略任何形式的以波源为中心的参考系的运动带来的影响。换句话说,坐标系运动仅仅不改变电磁波相对于波源的速度。而任何有限速度,速度的度量必然是针对相应参照物的相对速度,换句话说,不依赖参照物的速度不可能存在。


我们花费大量的时间用以描述电磁波的本质,在于光的本质是一种电磁波,所以通过电磁波的考察,可以等效于对光的考察。但显然,光在以下方面与更多时候由可控操作产生的电磁波并不完全一致:

1. 具有电荷效应的微粒的振动并不一定是周期性的,如核外电子的跃迁;

2. 光的振幅依旧取决于电荷效应的粒子的振动范围,但无论方向还是幅度并不总是一个确定值。

最后结合对电磁波的考察及光源自身的运动特点,我们总结光的基本特征如下:

1. 光在本质上是电荷或具有电荷属性的粒子运动变化对应的能量变化,以运动时变耦联的电磁场在空间中的存在形式;

2. 光速唯一的来源于磁场在半个周期时间内在空间中以电场为中心的扩布,光速的界定以电场为参照物,等效于宏观的光速以波源为参照物;

3. 光速恒定来源于经典电磁动力学能量—时间函数的解,即

因为真空介电常数和真空磁导率均为经验测定的常数,因此光速同样是一个被真空介电常数和真空磁导率共同规定的常数,表征的是电磁基本特性而不是光波的能量。由于不同频率的光具有相同的波速,而唯一表征能量变化的振动对应于特定的振动周期,所以,频率是表征光能量的唯一形式。能量的降低表现为频率减小,而在光速不变的原则下,频率对应的波长相应变长。

4. 光源的运动不会改变光相对于光源的速度,但会改变光相对于运动光源的参照物的速度。光速绝对的真正含义在于光源的运动不改变光相对于波源的在不同频率均为常数的速度,

5. 作为一种有限速度,光速的界定和所有的有限速度一样,必须存在波源参照物。不需要参照物的绝对光速违背物理学对速度界定的基本原则。脱离参照物的光速绝对性实际上把自己凌驾于物理学之上,仅仅具备数学意义,因而仅仅是一种人为的规定,并非一种客观的物理实在。

6. 光速在量值上表现为极限速度的根源,唯一的在于不存在物实体质量的磁场在空间扩布以最大速度进行。普通物体的速度取决于外力和物体质量共同规定的加速度,或者说取决于外力所做的功。如果把场作为能量的非物实体形式,则物实体受限于质量,运动速度不可能超过不受质量约束的场的扩布速度。


我们通过上面的描述,试图从另一个与物理学截然不同的视角,展示光的空间行为。不过我们对光空间行为的描述,显然多数是基于简单的思辨和推论,完全缺乏数理逻辑演绎和简单有效的实验验证,因而在物理学专业人士看来无疑显得荒谬且不值一顾。

我们之所以固执的坚持下来,在于我们认为这样一种思维视角,可以促进对光速绝对性的正确理解,从而重新评价包括相对论在内的一些现代物理学理论。由于牵涉的内容过多,不适合在这里继续喋喋不休的叙述下去。因此,我们在这里对光的本质的阐述,会是我们进一步考察某些物理学基本理论的基础。


Ⅶ 三天可以学完电动力学吗

不可以。
电动力学包含内容比较广泛,电动力学的基本方程,静电场,带电粒子和电磁场的相到作用等内容,内容比较繁琐,需要大量时间进行学习。
电动力学电磁现象的经典的动力学理论。通常也称为经典电动力学,电动力学是它的简称。

Ⅷ 光,宇宙中能量世界的通用货币

光:电磁世界的能量载体

我们耳熟能详的所谓能量,本质上其实只是物质和物质运动的变量,这种变量在能量守恒这种宇宙基本规则的制约下,只能从一种物体通过遵循动量守恒的相互作用转移到另一个物体,或者只能从物质的某种形式转变为另一种形式,不会凭空产生,也不会凭空消失。

能量具有两种最基本的形式,其一为动能,表征物质和物质的运动;其二为势能,表征使事物获得特定势能所做的功的大小,换句话说,势能实际上是一种功或者动能的蓄积。势能产生的必须条件是一个可以对处于某个事物产生作用的力的存在,在该力的作用下在某处静止的事物可以从势能转变为物质的动能。

显而易见,宏观物体以及无电荷属性物质的能量变量的转移是在物体的相互作用中通过冲量来实现的,而动量是冲量的结果或者表观形式,也就是说力和时间的乘积,可以在相互作用中转变为质量和速度的乘积。


电荷属性物体的电荷本身决定的能量的转移,与普通物质的能量转移方式截然不同。这种仅仅存在于电荷属性物质之间的能量转移形式,我们称之为光,当然这里的光属于一个更广泛的概念,它包含连续电磁波波谱中所有频率的电磁波。

运动的电荷属性粒子显然具有两种能量,一种是粒子质量决定的动能,一种是电荷决定的势能。因此运动电荷属性粒子运动改变产生的能量,就包括两个部分,其一为动能,其二为势能。但显然,动能的变量的转移将绝大部分遵循普通物质动能转移的基本规则,只有运动被阻止后电荷属性决定的势能,才能以光子的形式传递出去,实际上光子的产生,也只是基于电荷属性能量的变量。换句话说,光子传递的,只能是电场表征的势能。


经验表明,光源既可以是变化的电流,也可以是变化的电场,不过对于电荷属性粒子运动改变产生的光子,光源无疑只能是变化的电流(电流唯一来源于电荷属性粒子的运动)。对具体的光子来说,只有第一个光子的产生需要光源的存在,后续的光子便在时变电磁场本身的属性规定下,在传播方向上前面一个光子在后面一个光子消失的刹那产生,而且在空间上是连续的。

我们很容易理解稳定电流周围的磁场,因为我们可以把它看作电流中定向运动电子伴随磁场的矢量和。我们同样容易理解有源电路中的电场,因为我们可以视之为电流阻断后电荷相互作用本质蓄积起来的势能。显然他们都具有一个共同的特点,即其存在依附于具体的事物。

但是在光子中却并非如此,除了第一个光子,组成后续光子空间结构的只有变化的电场和垂直的同相变化的磁场,电场空间形态稳定只是强度周期性变化,磁场则在强度周期性变化的同时空间形态处于动态的扩布中。

宇宙中最奇妙的事情莫过于此,即光子中的电场和磁场可以不依赖场源而独立存在,尽管必须以变化和耦联的方式。那种认为场必须依附具体的事物而存在的想法,显然在光子面前不攻自破。

如果我们把光子中电场的出现视为源电场势能的空间转移,而磁场则必然是凭空产生的。于是同样匪夷所思的地方在于,这种电场的转移,是以什么样的机制实现的,而凭空产生的磁场,来自于什么地方,又是以什么样的机制产生的。

在以往的文章中我们已经描述过,磁场的总体能量效应为零,所以磁场的凭空产生和消失不会干扰宇宙的总体能量,而光子中的电场只是源电场变量的空间转移,因此电场的凭空出现也不会干扰宇宙的总体能量。唯一合理的解释可能是,磁场创生的目的仅仅是为了在空间上转移无法存在于源电场中的电场势能的变量,这也是运动电荷必然伴随磁场的根本原因。

人为制造的电磁波意味着机械能产生和消失的变量,而且这种变量至少部分转换为电场势能的变量,物质基本粒子的振动意味着运动方向改变伴随的势能的变量,电子在核场不同等势面的跃迁导致势能的变量,显然在能量守恒基本规则的制约下,以上势能的变量必须传递出去。如果没有电场的无源转移以及磁场的完全匹配于电场的出现和消失,这些变量就无法传递出去。

从电场消失或者不变而伴随的磁场都将消失这种观测事实来看,磁场出现的唯一条件在电场的变化,至于均匀变化的磁场是否会出现稳定的磁场,尽管理论上应该如此,但至少在电磁力学中似乎缺乏相关实验的确切描述。当然时变的电场伴随时变的磁场实际上也仅仅是经典电磁动力学的理论描述,没有直接的实验对此验证(赫兹验证的只是电磁波的传播)。至少在经典电磁动力学中闭合的电场只是一种虚拟涡旋电场并非真实存在。

因此我们只能把变化的电场必然伴随磁场视为宇宙的基本规则,就像我们从大量的观察事实认为能量守恒是宇宙的基本规则一样。至于磁场的更深刻的本质,涉及到质量的空间属性,与我们的讨论无直接关系,因而就此搁置。

但是磁场的作用也仅仅是伴随而已,那种认为磁场通过电磁必然存在的感应现象把磁场的能量传递到电场中去的观点无疑是错误的,因为磁场不具备可以转移出去的净能量,并且磁场和电场之间不存在任何相互作用。磁场的唯一意义在于通过自身在空间中的扩布,把新的表征源电场变量的电场从源电场的位置转移到另一个空间。新的电场的动态变化唯一来源于与磁场同步的变化率表征的电动势,显然这种电动势并不是一种像电场那样的势能,只是电场变化能力的表征。同样的道理,磁场的变化也是由表征磁场变化能力的磁势本身决定的,不可能由电场能转移而来。

电场和磁场的变化总是同步的,而且遵循同样的规则,因此电磁在变化这种行为上具有几乎相同的规律,这是电磁等效性的唯一根源。所以经典电磁动力学中电场的能量时间函数和磁场的能量时间函数具有相同的形式,但结合时变电磁场是一种波这样一种已经被证实的事实,则这两个方程必须联立存在,才能揭示时变电磁场的波动本质,即电场只是能量周期性变化而空间形态不变,而磁场除了能量周期性变化还包括周期时间依赖性的空间扩布,这种扩布是时变电磁场表现为可在空间中传播的波的唯一原因,只有把电场和磁场的变化关联在一起,才存在完整的电磁波。

可见,电磁等效性只有在能量变化上是成立的,如果把磁场和电场的空间变化以及电场和磁场总的能量效应考虑在内,电磁之间的等效原则将不复存在,那种独立看待经典电磁动力学中的电场和磁场各自的能量—时间函数,认为电场和磁场都可以视为独立的电波和磁波的观点,显然是不合时宜的。


光可以作为宇宙中纯粹的通用能量形式的原因,在于光子中的电场携带势能,而电荷在物质结构中除了中子外,是其他所有的组成部分,于是光子携带的势能就可以通过电场对电荷属性粒子的作用,转换成特定粒子的动能,从而不同程度改变粒子的运动。

但是光子中的磁场却比较特殊,因为磁场只能在磁力线的方向上对磁体做功,在垂直于磁力线的与粒子接触的方向上磁场对电荷粒子伴随的的磁场不做功,但物质的基本结构中并不存在像质子和电子那样的南磁子和北磁子。所以磁场只能通过与物质基本组成成分的电荷粒子伴随的磁场发生磁力线方向上的相互作用,从而改变电荷粒子的运动方向,协助改变电荷粒子的位置进而改变电荷粒子的势能,因为在原子核周围的核场空间,位置不同意味着势能不同。

光可以作为宇宙中普遍能量粒子的另一个原因,在于光子能够在一个确定方向上,以单个光子连续转移的形式,在空间中扩布。再结合光子的反射、折射和衍射能力,光子就几乎可以到达宇宙中任一位置。

由于光子宏观运动的本质仅仅在于单个光子在空间的连续转移,并非射出枪膛的子弹那样的惯性位移,因此光子的能量仅仅来源于电场携带的势能,并不具有像子弹那样的惯性动能。因此,认为光子具有运动质量的说法,不过是按照质能方程,用光子的能量(频率和普朗克常数的乘积)除以光速的平方的一种理论值,在真正认识场的本质前,这个理论值未必具有物理学家笃信不疑的现实意义。


在电磁波谱中,存在一个最小的频率(0.1)。如果这个最低频率不是由测量精度的极限给定的,则决定可以产生传播效应的电磁波具有一个最低能量的限制,根据电磁波能量的计算公式,这个能量在数值上等于普朗克常数的十分之一(6.626 10-35Js)。由于这个能量的取值实在是过于微小,以至于我们可以认为,具有电荷属性粒子几乎任何动能和势能的变量,都可以光子的形式传递出去。

于是宇宙就呈现为这样的场景:所有运动变化的电荷属性粒子不断的产生可以传播的光子,而光子通过空间中的传播,达到所有电荷属性粒子并改变其动能或者势能,一种运动的改变通过光子实现对另一种运动的影响,传递能量的同时传递一种运动规定的信息。


因此,电场和磁场的本质未明的情况下,从电场和磁场表现出来的基本规律,可以认为光子之所以能够存在并作为能量携带的基本方式,取决于时变电场和时变磁场的表观属性。在光子的能量效应上,电场改变电荷属性粒子的动能,而磁场只是改变电荷属性粒子的运动方向,进而可能引起势能的改变。

对于宇宙更深刻本质的理解,则取决于对电场和磁场更进一步的认知。


所以可以认为,光是宇宙间电磁世界自由能量的唯一载体,电磁现象普遍存在的宇宙中,物质通过光进行的能量传播,彼此影响,相互改变。

Ⅸ 物理中动力学的种类

物理力学分为静力学和动力学。静力学主要是受力分析,动力学主要就是牛顿定律与运动学的结合问题。动力学又可分为电磁动力学、天体动力学、分子动力学、晶格动力学等分支。
阅读全文

与磁动力学pdf相关的资料

热点内容
文件压缩包如何加密文件 浏览:183
2010提出的算法 浏览:672
冰柜压缩机的寿命 浏览:105
办公室采访程序员 浏览:569
美橙云服务器购买 浏览:754
汉语词典pdf下载 浏览:353
android公网ip 浏览:613
要塞1地图放哪个文件夹 浏览:850
凡科建站怎么弄服务器 浏览:939
苹果手机怎么设置app播放 浏览:202
下载网站源码用什么浏览器 浏览:241
六线谱pdf 浏览:156
linuxmysqlsock 浏览:239
人教版数学pdf下载 浏览:460
文档安全加密系统 浏览:492
数控铣床编程简单数字 浏览:788
编程电缆如何重启 浏览:121
myqq命令行发消息 浏览:365
日产逍客怎么使用app升窗 浏览:503
安卓系统怎么快速删除微信内容 浏览:653