‘壹’ 《免疫的非线性模型》pdf下载在线阅读,求百度网盘云资源
《免疫的非线性模型》(漆安慎)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1zsr1N8sscHNp4kkkfRthQg
书名:免疫的非线性模型
作者:漆安慎
出版社:上海科技教育出版社
出版年份:1998-12
页数:175
内容简介:
近来,理论免疫学迅速发展。在这一领域,主要的理论工具是非线性模型.本书简单介绍了免疫的基本知识和有关的非线性数学。本书对许多有趣的免疫学问题,例如独特型网络调节、细胞免疫和体液免疫、免疫细胞受体库、免疫记忆、免疫耐受以及免疫监视抗癌等均应用非线性数学模型进行了讨论。
‘贰’ 《精编免疫学实验指南》pdf下载在线阅读全文,求百度网盘云资源
《精编免疫学实验指南》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1jHG2z8gFpJN8uJkn-3_-OQ
‘叁’ 运动改造大脑《杏仁核》
杏仁核
科普中国 | 本词条由“科普中国”科学网络词条编写与应用工作项目审核
审阅专家魏大勇
杏仁核,又名杏仁体,呈杏仁状,是边缘系统的一部分。是产生情绪,识别情绪和调节情绪,控制学习和记忆的脑部组织,而且研究发现,幼儿自闭症似乎也与扩大的杏仁核有关。
中文名
杏仁核
外文名
amygdala
别名
杏仁体
结构
基底外侧核群和皮质内侧
结构
解剖
功能
研究分析
功能改善
主要神经化学递质:
位置
杏仁核(amygdala),又名杏仁体(amygdaloid body),位于前颞叶背内侧部,海马体和握迟芹侧脑室下角顶端稍前处。主要通过外侧嗅纹、终纹和腹侧杏仁传出通路,与额叶内侧、眶额回、隔区、无名质、视前区、海马体、下丘脑、丘脑、纹状体、颞盖皮质、岛盖皮质、顶盖皮质、颞极、运动皮质及脑干网状结构等段毕有双向交互联系。[1]
结构
一般杏仁核分为两部,即基底外侧核群和皮质内侧群。
皮质内侧核群形成杏仁核的背内侧部。皮质内侧核群包括:①前杏仁区;②外侧嗅束核;③内侧杏仁核;④皮质杏仁核;⑤中央杏仁核。人类的外侧嗅束核最发达。基底外侧核群在人脑是最大且分化最好的部分,它包括:①外侧杏仁核;②基底杏仁核;③副基底杏仁核,其内侧与嗅觉功能区有联系,外侧与屏状核有联系。其背侧的一部被豆状核所遮盖,向后连于尾状核。来自侧嗅纹的纤维,经皮质内侧核群,并没有纤维终于基底外侧核群。
基底外侧核群是杏仁核的非嗅觉功能区,它接受脑干网状结构和梨状区皮质来的纤维旦竖可能还接受颢下回的部分纤维:杏仁核发出的纤维,大部组成终纹:自杏仁核腹侧发出的纤维,向内侧经豆状核腹侧,终于视前内侧核、下丘脑前核、视上核团和腹内侧核。自杏仁核脊侧发出的纤维,向内侧经豆状核腹侧,终于无名质、视前外侧核团和下丘脑区、隔区、斜角核以及嗅结节等。还有部分纤维越过视前区,终于丘脑。
解剖
杏仁核是大脑基底神经核的一个重要核团,为边缘系统的组成部分,含有13个大小不等的核团。按照其位置与功能分为基底外侧核群、皮质内侧核群、杏仁前区和皮质杏仁移行区4部分。杏仁核的传入纤维主要起始于嗅球及嗅前核、基底前脑Meynert核的胆碱能神经元、脑干、中脑脚间核、臂旁核、脑桥兰斑、中脑中缝核及腹侧背盖、下丘脑的腹内侧核、丘脑中线核群及丘脑腹后内侧核等。杏仁核的大部分传出纤维与传入纤维呈往返联系,一般认为杏仁核通过两条路径传出信号:终纹通路,起自皮质内侧核,呈弓形弯于尾核内侧缘与丘脑之间,向前终止于终纹核、下丘脑(尤其是室旁核、视上核)、视前区及隔核;腹侧杏仁核传出径路主要起自基底外侧核,纤维多且散在,有些向内侧止于终纹床核的内侧部;有些向前止于视前区、下丘脑(腹内侧核)、丘脑背内侧核,继而到额前皮质及其他皮质联络区[1]。此外,杏仁核内部还有十分复杂的固有纤维联系。
功能
情绪功能
刺激清醒动物的杏仁核,动物出现“停顿反应”,显得“高度注意”,表现迷惑、焦虑、恐惧、退缩反应或发怒、攻击反应。刺激杏仁首端引起逃避和恐惧,刺激杏仁尾端引起防御和攻击反应。诱发惧—怒反应时伴瞳孔扩大、竖毛、嗥叫等情绪表现。切除杏仁核,动物出现“心理性失明”:通过视觉看到的东西不知是否可以吃,必需放到嘴里才知道;“过度变态”:反复察看、触摸或以口检查各种物体,包括原先所畏惧的活蛇或活鼠;情感性行为发生显着变化或所有的情感反应完全丧失。关于情绪反应的产生机制,有人研究认为存在两条反射通路。(1)刺激—〉丘脑—〉扣带回—〉大脑各区域相应皮质(长通路);(2)刺激—〉丘脑—〉杏仁核(短通路)。长通路的刺激信息经过皮质的精细加工,利于对情绪的控制和采取适当的应对方式,短通路的刺激信息未经皮质的精细加工,速度更快,保证对恐惧刺激作出迅速反应,这对包括人在内的所有生物的生存十分重要。由此可见,杏仁核的主要功能为产生和传入大脑新皮质的各种外界信息相适应的情绪。
学习和记忆
杏仁核是情绪学习和记忆的重要结构。和海马一样,杏仁核对新异刺激出现朝向反应,破坏两侧杏仁核的动物,对新异视觉刺激的朝向反应大为降低,缺乏对恐惧事件的辨识和反应。相反,在杏仁核正常的情况下,当你听说邻居家的狗咬伤了人,见到狗后你会感到恐惧而早早避之,尽管你未曾被它咬过。具有情绪意义的刺激会引起杏仁核电活动的强烈反应,并形成长期的痕迹储存于脑中。因此,触动人情绪反应强烈的事件会给人留下长期的记忆,甚至终身。
联合注意
杏仁核的作用是负责处理面部肌肉和表情,这一功能通常被称为“联合注意”。其作用是当人面对一张脸时,杏仁核会对其进行扫描,辨别它是友好的还是有敌意的,以决定是面对这个人,还是逃避。杏仁核增大的幼儿都存在联合注意方面的问题。
其他功能
杏仁核与其它皮质下中枢一样,也是植物神经中枢,它能调节机体呼吸、心血管、胃肠道等的功能,尤其是情绪刺激伴随的植物神经反应受杏仁核直接调控。除此外,它亦参与调节机体的性活动、摄食及调控下丘脑的作用,从而参与控制和调节垂体激素的分泌,调控神经内分泌系统功能。
研究分析
爱荷华大学(University of Iowa)的一项研究惊讶地发现,三个因大脑杏仁核受损而无所畏惧的女性志愿者能够体验到内在的恐惧。这表明杏仁核并不是导致人害怕与惊慌的大脑区域。此前数十年针对人类和动物的研究已证明杏仁核在害怕情绪中起着很重要作用。相关研究发表在近期出版的《自然—神经科学》杂志上。
研究人员对3名大脑杏仁核受损、没有体验过害怕的罕见病患进行了测试。在吸入二氧化碳后,这三名患者呼吸受到刺激,产生害怕情绪并出现了恐慌性攻击行为。其中一名患者小时候体验过害怕,这是其第二次产生害怕的感觉。先前针对该病患以及有类似问题的病人的研究表明杏仁核受损导致病人在各种害怕刺激实验以及威胁生命的创伤事件中,失去了害怕的感觉。Wemmie等人的这项研究表明杏仁核并不是产生害怕情绪所必需的组织结构。
研究人员仍不清楚为何唯独二氧化碳能在杏仁核缺失的情况下刺激产生出害怕的情绪。但是,大多数能引起害怕的事物都是通过视觉与听觉的方式被投射至杏仁核,从而被感受到。相反,高浓度的二氧化碳是被脑干中的受体感受到并导致一系列生理变化的产生,从而可能刺激到包括杏仁核在内的其他大脑区域。
功能改善
据科学家证明苯二氮,对杏仁核功能的改善有很大的好处,从基本电生理学性质,BZ对神经元电活动的影响,咪唑安定实验方面通过试验证明了苯二氮对杏仁核的影响,并且苯二氮一直在镇定剂,麻醉剂,安眠药物方面被广泛利用。“是药三分毒”,任何药物的改善不如食补,酵母、肝、豆类、花生、小麦、胚芽、糙米、燕麦、小米、甘薯、卷心菜及海藻等这些富含维生素B1的食物内含有一点量的苯二氮,也满足了人体对苯二氮的摄入。另外,多吃含维生素C较多的蔬菜、果以及含镁较多的香蕉、葡萄、苹果、橙子等也有利于改善大脑的功能也能很好的改善杏仁核的功能。
主要神经化学递质:
大量实践证明,杏仁核与情感、行为、内脏活动及自主神经功能等有关。其基础在于杏仁核内含有多种神经化学递质。
(1)胆碱类(Acetylcholine)。集中在ABL,与杏仁核点燃过程有关,电刺激可使乙酰胆碱水平上调。杏仁核是惊厥活动涉及的脑区之一,Soman中毒后,脑内乙酰胆碱迅速在末梢区积聚,造成局部脑区的兴奋而诱发惊厥。
(2)单胺类(MAO)。传入纤维来自黑质和腹侧被盖区等部位。这与帕金森病的发病率存在显着的性别差异一致。杏仁核内5-羟色胺(5-HT)能纤维和受体密度降低,增加ABL内5-HT,不仅具有明显的抗抑郁作用,还可使慢波睡眠增加和睡眠加深,由于抑郁症病人常伴有睡眠障碍,抑郁症状缓解后睡眠也转为正常,故有人认为杏仁核中5-HT功能不足可能是二者共同基础之一。
(3)氨基酸类(Amino acid)。兴奋性的谷氨酸和抑制性的GABA之间的协调平衡对杏仁核功能的正常起着重要作用。谷氨酸激活NOS使NO合成增多,NO作用于相邻的突触前神经末梢,激活鸟苷酸环化酶,使cGMP生成增多而产生效应。
(4)一氧化氮(NO)。杏仁核的大部分核团都含有NOS阳性神经元,其中AME和ABL的后部较多。NO与睡眠的关系资料报道有所不同。某些学者分别通过实验,认为NO具有增加觉醒和减少慢波睡眠效应。
(5)环化核苷酸(cGMP)。杏仁核中存有大量阿片受体,激活后可使cGMP浓度升高,而生成减少。杏仁核中注射cGMP可增加觉醒,减少慢波睡眠和总睡眠时间,对快波睡眠无影响,用cGMPase抑制剂引起的效应正好与cGMP相反,说明cGMP对睡眠一觉醒的调控有重要作用。
(6)肽类(peptide)。SOM能神经活性物质可增强海马的LTP,促进学习和记忆,临床一些痴呆症的认知和智力障碍与脑内SOM含量下降有关。SOM能神经系统改变是Alzheimer病的特异性致病机理之一,也有人认为其功能可能是通过作用于乙酸胆碱和去甲肾上腺素这两种神经递质而影响记忆过程的。
大脑中杏仁核有什么作用
目前已知的杏仁核的功能大致可以分为三类:情绪,奖励和记忆。
在情绪方面,杏仁核负责恐惧,悲伤等负面情绪的产生,编码和储存。当外界环境产生可能对生物有威胁的刺激时,杏仁核会被激活,产生相应的情绪,帮助生物识别环境中的危险。其次,当杏仁核发生异常时,患者会感受到更高的焦虑或是恐惧。有研究发现, 边缘性人格障碍患者的左杏仁核活动多于常人,而当他们对中性的人脸进行评分时,会报告感受到更高的威胁感 [1]。
在奖励方面,研究人员发现使用电刺激激活人的左杏仁核,会产生某种愉悦的快感[2]。而这种愉悦感参与了人行为的奖励系统。用简单的话来说,就是杏仁核在产生恐惧的同时也可以产生一些快感,这种快感可以促进某种行为的产生。
在记忆方面,首先杏仁核对情绪的处理本身也涉及情绪记忆的储存[3]。以“一朝被蛇咬,十年怕井绳”为例,当一个人被蛇咬之后,他关于蛇的形状的记忆连同对蛇的恐惧就都变成了一种情绪记忆。而当他下一次再次遇到与蛇有着相似形状的绳子时,他的杏仁核被激活,释放出原来的恐惧记忆,使得他再次受到惊吓。其次,有研究也指出,杏仁核可以帮助长时记忆的加工,巩固大脑其他部位的记忆储存[4]。
除此之外,还有研究发现右杏仁核似乎涉及到人们对于不确定性的容忍性[5]。右杏仁核体积越大,对于不确定性的容忍度越低。
引用:
[1] Donegan NH, Sanislow CA, Blumberg HP, Fulbright RK, Lacadie C, Skudlarski P, Gore JC, Olson IR, McGlashan TH, et al. (December 2003). "Amygdala hyperreactivity in borderline personality disorder: implications for emotional dysregulation". Biological Psychiatry. 54 (11): 1284–93. doi:10.1016/S0006-3223(03)00636-X. PMID 14643096.
[2] Murray, Elizabeth A.; et al. (2009). "Amygdala function in positive reinforcement". The Human Amygdala. Guilford Press.
[3] Phelps E A, Anderson A K. Emotional memory: what does the amygdala do?[J]. Current biology, 1997, 7(5): R311-R314.
[4] Maren S (December 1999). "Long-term potentiation in the amygdala: a mechanism for emotional learning and memory" (PDF). Trends in Neurosciences. 22 (12): 561–7. doi:10.1016/S0166-2236(99)01465-4. hdl:2027.42/56238. PMID 10542437.
[5] Kanai R, Feilden T, Firth C, et al. Political orientations are correlated with brain structure in young alts[J]. Current biology, 2011, 21(8): 677-680.
参考
^2 https://www.sciencedirect.com/science/article/abs/pii/S000632230300636X
^2 https://psycnet.apa.org/record/2009-02740-004
^3 https://www.sciencedirect.com/science/article/pii/S0960982206001461
^4 https://www.sciencedirect.com/science/article/abs/pii/S0166223699014654
^5 https://web.archive.org/web/20150105164905/http://www.cell.com/current-biology/abstract/S0960-9822(11)00289-2
‘肆’ 生长因子及受体与癌基因有何关系
生长因子(growth
factor)受体(growth
factor
receptor)
激活的生长因子与受体结合为细胞生长提供正向的信号。我们都知道,癌症一个重要的特征就是不能限制的细胞增殖。
楼主的问题问的很笼统
癌基因有很多种,有的是突变掉生长因子的,比如sis癌基因,突变后的受体叫PDFG,他就是一种不受限制一直处于激活状态的生长因子,也就是说一直发出信号让细胞不停增殖。
有的是突变受体的,受体的激活需要形成一个二聚体(dimer)信塌。
而有的癌症滑伏圆基因如neu,他的蛋白产物为Her2,这个突变的受体的跨膜结构遭到改变,结果就是他可以不结合生长因子,受体也能发生二聚dimeration,这样就不受控制的一直使细胞生长厅码。
还有一个例子是erbB癌症基因,他的产物蛋白石EGF,这种生长因子没有配合基结合位点,就是没信号,他也能自己生成二聚体,从而提供细胞生长信号
‘伍’ 风水方家谈 《风生水起》pdf
:气者,水之母。水者,气之子。气行则水随,而水止则气止,子母同情,水气相逐也。夫溢于地外而有迹者为水,行于地中而无形者为气。表里同用,此造化之妙用,故察地中之气趋东趋西,即其水之或去或来而知之矣。行龙必水辅,气止必有水界。辅行龙者水,故察水之所来而知龙气发源之始;止龙气者亦水,故察水之所交而知龙气融聚之处。”由此可知,山脉和河流都可以统一于 “气”中,寻找生气就是要观察山川的走向。
风水术还认为,气决定人的祸福。有土就有气,人生得于气,人死归于气。郭璞《古本葬经》论述得很详细:“葬者,乘生气也。夫阴阳之气,噫而为风,升而为云,降而为雨。行乎地中而为生气,行乎地中发而生乎万物。人受体于父母,本骸得气,遗体受荫。盖生帆肢者,气之聚凝,结者成骨,死而独留、故葬者,反气内骨,以荫所生之道也。经云:气感而应鬼福及人,是以铜山西喊乱崩,灵钟东应,木华于春,栗芽于室。气行乎地中,其行也,因地之势;其聚也,因势之止。丘陇之骨,冈阜之支,气之所随。经曰:气乘风则散,界水则止,古人聚之使不散,行之使有止。” 这一段话,可谓风水的总纲,而这个总纲的核心是气。由手段话,我们可知风水师对气的总看法:生气是一元运化气,在天则周流六虚,在地则发生万物。天无此则气无以资地,地无此则形无以载。生气藏于地郑轿档中,人不可见,唯循地之理以求之。葬者若能知其所在,使枯骨得以乘之,则能得福。父母骸骨为子孙之本,子孙形体乃父母之枝,本与枝相应,得吉则神灵安、子孙盛,这叫作“气感而应鬼福及人”。。。。。。。
以上内容希望能对你有所帮助。
‘陆’ 质量术语PAF是什么意思
PAF成本模型是在预防鉴定和故障成本(PAF,Prevention,Appraisal and Failure)模型的基础上建立的一种成本模型,用来分析成本要素。
PAF成本模型将成本分为预防成本、评价(鉴定)成本、失效(故障/损失)成本三部分,其中, 1)预防成本:预防故障的工作所需喊谈返的费用;
2)评价(鉴定)成郑饥本:为评定产品或服务是否达到质量要求而进行的试验、检验和检查费用;
3)失效(故障/损失)成本:交货前因产品未能侍消满足规定的质量要求所造成的损失(如:重新提供服务、重新加工、返工、重新试验、报废)的费用或者交货后因产品未能满足规定的质量要求所造成的损失的费用(如产品维护和修理、担保和退货、直接费用和折扣、产品回收费、责任赔偿费)。
‘柒’ 【分子对接】AutoDock
Docking算法需要每个原子带有电荷并且需要标记原子的属性。这些信息通常未包含在PDB文件中。我们需要在对蛋白和小分子的PDB文件预处理,生成PDBQT文件同时包含以上信息和PDB文件中的原子坐标信息。进一步地对于“柔性配体docking”,我们还需要定义配体的柔性部分和刚性部分。所有这些都可以通过软件AutoDock Tools (adt)来完成。
=====准备受体蛋白=======
注:在windows下,我们可以手动枣樱颤选择,或者利用Excel的筛选功能。在linux下,使用命令egrep "^(ATOM|TER)" 1hsg.pdb >1hsg_prot.pdb
2. 启动AutoDockTools
3. 依次点选File-ReadMolecule-1hsg_prot.pdb加载蛋白分子。
按住左键拖动旋转分子结构;点击中键滚动缩放;按住右键移动晶体位置。
4. 更改展示方式:依次点选Color-By Atom Type-All Geometries-OK。
5. 加氢:晶体结构中通常缺少氢原子的坐标 (因为氢原子电子少,且质子核对电子吸引能力弱,因此很难定位,具体见http://www.uh.e/~chembi/ChemSocRev_Jones_critical.pdf)。但是在docking过程中,氢原子尤其是极性氢原子对计算静电作用是必须的。因此我们需要给蛋白加上氢原子,依次点选Edit-Hydrogen-Add-Polar only-OK。这时氢原子会以白颂渣色短线形式出现。
6. 存储对蛋白的每个原子所做的修改和原子类型判断:依次点选Grid-Macromolecule-Choose-1HSG_protein-Slect Molecule。ADT会弹出一个信息框包含程序所做的处理,比如合并非极性氢原子,计算原子局部电荷和判断原子类型,并提示保存Save-1hsg_prot.pdbqt。打开文件,查看最后两列,分别为每个原子的电量和类型 。如下图所示分别是原始的pdb文件和新生成的pdbqt文件。
7. 在受体蛋白定义配体结合的3D搜索空间: 如果我们事先不知道结合位点,理论上可以定义一个长方体盒子包含整个蛋白或者随便一个特定区域 。
依次点选Grid-Grid box将会在蛋白上画出一个长方体,并且有一个弹出框。在弹出框中,拖拽刻度线查看长方体的变化,完成设置。
在这个例子中,我们知道结合位点,就选取以其为中心的一个小空间。设置Spacing (angstrom)为1埃 (这实际是一个换算系数, 相当于步长; 默认为0.375,是C-C单凳败键长度的1/4,最大为1。spacing值与(各个维度上的点的数目+1)的乘机就是长方体Grid box的大小)。在我们调整的过程中,可以看到随着这个数值的变大,立方体也被放大了。另外我们设置x,y,z center为16,25,4,number of points in (x,y,z)-dimension为30,30,30(最大为126,必须为偶数,AutoDock会自动再每一维再加一个点)。记下我们设置的这些点,下面会用到。
在刻度转盘处点击右键会弹出一个窗口,输入数字回车即可设置GRID的中心坐标和大小。较大的number of points in (xyz)-dimension和较小的Spacing会增加搜索的精度,同时需要花费更多的计算时间。
8. 设置受体的柔性残基:在ADT中依次点选Flexible Resies-Input-Choose Macromolecule-1hsg_prot; select-select from string-Resie: ARG8-Add-Dismiss, 8号ARG氨基酸残基就被选中了。
再依次点选Flexible Resies-Choose Torsions in Currently Selected Resies将选择的残基标记为柔性残基并设置可扭转的数量。在分子显示窗口中分别点击两个残基上CA和CB原子之间的建,使之变为非扭转的(紫色显示),这样两个残基中的32个键中有6个是可扭转的。这里设置配体的柔性残基或者使CA-CB的键为刚性都是可选操作。
Flexible Resies-Output-Save Flexible PDBQT保存柔性残基文件。Flexible Resies-Output-Save Rigid PDBQT保存柔性残基文件。
9. 关掉grid和删除protein:Grid Options-File-Close w/out saving; Edit-Delete-Delete Molecule-1hsg_prot-Continue。
=====准备配体=====
蛋白结构类似,配体的结构也缺少氢原子,我们需要添加氢原子并且定义哪些键是可以旋转的以用于柔性docking。从PDB结构中提取配体的原子位置。indinavir的配体残基名字为MK1,以HETATM开头的行表示非核心多聚体的成分 (heteroatoms)。
Linux系统下,运行grep "^HETATM.*MK1" 1hsg.pdb >indinavir.pdb
Windows系统下,直接拷贝到文件indinavir.pdb
3. 将结构读入ADT;依次点选File-ReadMolecule-indinavir.pdb;Color-By Atom Type-All Geometreies-OK。
4. 晶体结构中通常缺少氢原子 (因为氢原子电子少,且质子核对电子吸引能力弱,因此很难定位)。但是在docking过程中,氢原子,尤其是极性氢原子对计算静电作用是必须的。因此我们需要给配体加上氢原子,Edit-Hydrogen-Add-Polar only-OK(之所以选择Polar only是因为vina的官方视频里面是这么选择的)。这时氢原子会以白色短线形式出现。
5. 在ADT中定义此化合物为配体,以便ADT为其计算局部电荷(partialcharges)和设置可旋转配体键。依次点选Ligand-input-Choose-indinavir-Select Molecule for AutoDock4。这时会有一个弹出框显示ADT所做的操作,包括合并非极性氢(只在添加了的情况下)、计算电荷电量和设置旋转键。然后点选Ligand-Output-Save as PDBQT存储结果。
6. 查看ADT检测出的旋转键,依次点选Ligand-TorsionTree-Choose Torsions,可以看到Number of rotatable bonds=14/32。
====准备docking的配置文件====
docking配置文件包含了输入的受体(蛋白)、配体(化合物)和搜索参数的信息,为一个文本文件,名字任意,可以为conf.txt,内容如下
receptor = 1hsg_prot.pdbqt
ligand = indinavir.pdbqt
num_modes = 50
out = dockingResult.pdbqt
log = docking.log
center_x = 16
center_y = 25
center_z = 4
size_x = 30
size_y = 30
size_z = 30
seed = 2009
receptor和ligand为输入文件的名字,与conf.txt在同一目录下; out为输出文件的名字;log为输出日志文件的名字。centerhe和size定义搜索空间的位置和大小。num_modes设置最多显示的结合模型,鉴于只输出符合能量值要求的结果,最后输出的结合模型数量可能少于这一数值。seed设置随机数生成的种子,可以为任意整数。如果想重现之前的分析结果就需要使用相同的seed。
====Docking 小分子化合物indinavir到HIV-1蛋白酶======
使用AutoDockVina执行docking预测。
在windows命令行提示符或linux终端下运行命令
vina--config conf.txt,大概需要几分钟时间。
2. 输出结果包含两个文件,构象文件dockingResult.pdbqt和日志文件docking.log。
dockingResult.pdbqt: 包含所有docking的模式,通常第一个为结合最好的构象,但如果前几个能量值相差不大时也有例外。
docking.log: 日志文件,包含结合能量值(第一列,越低越稳定,默认由低到高排序,所以第一个为最好的构象)、每个构象与第一个构象的距离、每个构象与第一个构象的差别。
====用PyMOL可视化docking结果====
打开PyMOL,依次点选File-Open文件类型选择All Files-选取结果dockingResult.pdbqt文件、原始蛋白和配体的pdb文件、原教程的pdbqt文件。
这个是原始的蛋白受体和配体信息:
受体蛋白信息:
配体信息:
预测的配体信息:
‘捌’ 7. 基因工程载体
特殊用途载体
载体(Vectors)DNA:1)独立的一个包括启动子(promoter)、编码区(encoding region)和终止子(terminator)的基因,or 组成基因的某个含碰元件,一般是不可以进入受体细胞的;2)采用理化方法进入细胞后,也不容易在受体细胞内维持。所以,通过不同途径能将承载的外源DNA片段带入受体细胞,并在其中得以维持的DNA分子称为基因工程载体。
载体(Vectors)定义:在基因工程操作中,把能携带外源DNA进入受体细胞的DNA分子叫载体。
多克隆位点(multiple cloning site)ori复制起始点遗传标记pUCMCSAmpr运送外源基因高效转入受体细胞2、为外源基因提供复制能力或整合能力3、为外源基因的扩增或表达提供条件
载体的功能运送外源基因高效转入受体细胞为外源基因提供复制能力或整合能力为外源基因的扩增或表达提供必要的条件
目的基因能否有效转入受体细胞,并在其中维持高效表达,在很大程度上决定于载体。
基因工此老辩程对载体的要求(1)在宿主细胞内能独立复制,ori。(2)有选择性标记Ampr、Tetr、Kanr等。
(3)多克隆位点:外源基因插入的单一限制酶位点。(4)分子量小,可容纳较大的外源基因片段。(5)拷贝数多,方便外源基因在细胞内大量扩增。外源DNA插入其中不影响载体的复制且切点是单一的,这样可将多个外源DNA 片段插入其中。避免基因的非控制性扩散。(6)具有对受体细胞的可转移性。(7)具有较好的安全性,不能任意转移。
大肠杆菌质粒载体pBR322结构图克隆位点克隆位点遗传标记基因复制起点
载体的种类按功能分类克隆载体克隆一个基因或DNA片断表达载体用于一个基因的蛋白表达整合载体把一个基因插入到染色体组中
表达载体用于一个基因的蛋白表达整合载体把一个基因插入到染色体组中按来源分类质粒载体噬菌体载体柯斯质粒载体人工染色体载体00
载体的种类和特征质粒* 受体细胞结构插入片断举例E.coli 环状<8kb pUC18/19 , T-载体等λ噬菌体线状
EMBL系列,λ gt系列丝状噬菌体及噬菌粒<10 kbM13mp系列粘粒载体35- 45kbpJB8,c2RB, pcoslEMBL, pWE15/16, pCVBAC (Bacterial Artificial Chromosome)≈300 kbPel oBAC系列YAC (Yeast Artificial chromosome )酵母细胞线性染色体kbMAC (Mammalian Artificial Chromosome)哺乳类细胞>1000 kb病毒载体动物细胞SV40 载体,昆虫杆状病毒载体穿梭载体和细菌pSVK3质粒,PBV, Ti质粒
第一节克隆载体1. 质粒载体(plasimid vectors)2. 噬菌体载体(phage vectors)
第一节克隆载体1. 质粒载体(plasimid vectors)2. 噬菌体载体(phage vectors)3. 柯斯质粒载体(cosmid vectors)4. 人工染色体载体(B/Y/HAC)
质粒的生物学特性(1)质粒的概念的裸露的环状双链DNA分子,比病毒更简单。
质粒是一种广泛从在于细菌细胞中染色体以外的能自主的复制的裸露的环状双链DNA分子,比病毒更简单。并不是寄主生长所必需的,但可以赋予寄主某些抵御外界环境因素不利影响的能力(带有抗性基因等)。
(2)质粒的大小差异很大,最小的只有1kb,只能编码中等大小的2-3种蛋森缺白质分子,最大的达到200kb。质粒的生存在寄主细胞中“友好”地“借居”,它可以赋予寄主一些非染色体控制的遗传性状,以利于寄主的生存。比如,对抗菌素的抗性,对重金属的抗性等。(3)质粒的生存
严紧型复制控制的质粒(stringent plasmid)(拷贝数少,为1-5个)
(4)质粒的自主复制性质粒能利用寄主细胞的DNA复制系统进行自主复制。质粒DNA上的复制子结构决定了质粒与寄主的对应关系。根据在每个细胞中的分子数(拷贝数)多寡,质粒可分为两大复制类型:严紧型复制控制的质粒(stringent plasmid)(拷贝数少,为1-5个)松弛型复制控制的质粒(relaxed)(拷贝数多,可达10-200个拷贝)因此,作为载体的质粒应该是松弛型的。
(5)质粒的不相容性两个质粒在同一宿主中不能共存的现象称质粒的不相容性。具有不相容性的质粒组成的群体称为不相容群,一般具有相同的复制子。
(6)质粒的可转移性在天然条件下,很多天然质粒都可通过细菌接合作用从一种宿主细胞内转移到另外一种宿主内,这种转移依赖于质粒上的tra基因产物。Conjugative plasmid 接合型质粒(自我转移的质粒):质粒可从一个细胞自发转移到另一个细胞。Non Conjugative plasmid 非接合型质粒(不能自我转移的质粒):由于失去控制细菌配对和自我转移的基因,质粒不能从一个细胞自发的转移到另一个细胞。基因工程一般只能利用非接接合型质粒,保证分子操作过程中质粒在细胞中的稳定性。
Tra protein from conjugative plasmid
bom siteMob genemob mRNAMob proteinopenrecipient cellhelper plasmid即mob基因的产物可打开非接合质粒的bom 位点(oriT位点),借助接合质粒tra基因的产物,使非接合质粒被动迁移到受体细胞中,这种现象称为迁移作用(mobilization)。
质粒DNA的tra基因E.Coli产生菌毛宿主与受体细胞结合遗传物在细胞之间转移(指令)(迁移)大肠杆菌接合(conjunction)
(7)携带特殊的遗传标记野生型的质粒DNA上往往携带一个或多个遗传标记基因,这使得寄主生物产生正常生长非必需的附加性状,包括:物质抗性抗生素、重金属离子、毒性阴离子、有机物物质合成抗生素、细菌毒素、有机碱这些标记基因对DNA重组分子的筛选具有重要意义
遗传标记基因定义:在基因工程中使用与选择重组体DNA转化细胞的基因1. 指示外源DNA分子(载体或重组分子)是否进入宿主细胞2. 指示外源DNA分子是否插入载体分子形成了重组子标记基因的作用
标记基因的种类1. 抗性标记基因(可直接用于选择转化子)
a. 抗生素抗性基因: Apr ,Tcr ,Cmr,Kanr,G418r,Hygr ,Neorb. 重金属抗性基因: Cur ,Znr ,Cdrc. 代谢抗性基因: TK,抗除草剂基因2. 营养标记基因(可直接用于选择转化子)主要是参与氨基酸,核苷酸及其他必需营养物合成酶类的基因,这类基因在酵母转化中使用最频繁,如TRP1,URA3,LEU2,HIS4等。3. 生化标记基因其表达产物可催化某些易检测的生化反应,如lacZ,GUS,CAT4. 噬菌斑
1.四环素抗性基因(Tcr)Tetracycline 可结合在核糖体30s亚基中的一种蛋白质分子上,抑制核糖体的转位过程。四环素抗性基因编码一种399 AAs蛋白质,与细菌细胞膜结合,阻止四环素分子进入细菌细胞。2.氨苄青霉素抗性基因(Apr)Ampicillin可抑制细菌细胞膜上参与细胞壁合成酶类的活性。Apr抗性基因编码一种分泌到细菌细胞周间质的酶,催化β-内酰胺环的水解,使氨苄青霉素失活。3. 氯霉素抗性基因(Cmr)Chlorophenicol可结合在核糖体50 S亚基上,阻止蛋白质合成。Cmr基因编码氯霉素乙酰转移酶,使氯霉素乙酰化,导致乙酰化的氯霉素不能结合在核糖体上。4. 卡那霉素(Kanr), 新霉素(Neor)和G418抗性(G418r)基因Kanamycin,Neomycin和G418均属脱氧链霉胺氨基葡萄糖苷类抗生素,可结合在核糖体上阻止蛋白质的合成。来自转座子Tn5和Tn903的Kanr抗性基因均可使这类抗生素磷酸化,使之不能进入细胞内。20
质粒的存在形式有超螺旋、开环双螺旋和线状双螺旋三种。
(8)质粒的存在形式质粒的存在形式有超螺旋、开环双螺旋和线状双螺旋三种。双螺旋共价闭合环(超螺旋)线状双螺旋(两个裂口)开环双螺旋(一个裂口)
质粒空间构型与电泳速率同一质粒尽管分子量相同,不同的构型电泳迁移率不同:scDNA最快、l DNA次之、ocDNA最慢。OC L SC
天然质粒的局限性天然存在的野生型质粒由于分子量大、拷贝数低、单一酶切位点少、遗传标记不理想等缺陷,不能满足克隆载体的要求,因此往往需要以多种野生型质粒为基础进行人工构建。
质粒载体的命名原则人工组建的质粒人工组建的质粒的第一个字母是质粒英文名字(plasmid)的第一个字符p,用小写。p后有2个字母是大写,表示质粒的作者和实验室名称,再其后为质粒的编号。如pBR322,字母p代表质粒,BR是构建该质粒的研究人员的姓名,322代表…构建的一系质粒的编号。
质粒载体的发展概况第一阶段(1977年前)天然质粒和重组质粒的利用,如pSC101, ColE1, pCR, pBR313和pBR322。第二阶段增大载体容量(降低载体长度),建立多克隆位点区和新的遗传标记基因。如pUC系列载体。第三阶段完善载体功能以满足基因工程克隆中的不同要求,如M13mp系列载体,含T3,T7,sp6启动子载体,表达型载体及各种探针型载体。
质粒载体的构建质粒构建基本策略1.加入合适的选择标记基因,如两个以上,易于选择转化体2.增加或减少合适的酶切位点,便于重组
3.缩短长度,提高导入效率,增加装载量4.改变复制子,变严紧为松弛,变少拷贝为多拷贝5.根据基因工程的特殊要求加装特殊的基因元件
1、选择合适的出发质粒: Ori、选择标记、MCS
质粒构建原则1、选择合适的出发质粒: Ori、选择标记、MCS2、正确获得构建质粒载体的元件:酶切、PCR3、组装合适的选择标记基因4、选择合适的启动子5、提高外源DNA的容量灭活一些有害基因,比如与质粒移动有关的基因,或影响质粒复制的负调控基因等。6、需要灭活初始质粒上的某些编码基因7、达到预期目的前提下,构建过程应力求简单
质粒载体:作为基因工程载体,质粒至少应该具备复制的起始区、选择标记基因区、多克隆位点等部分。
质粒载体的分类人工构建的质粒根据其功能和用途可分成如下几类:高拷贝质粒突变拷贝数控制基因拷贝数1000-3000 扩增基因
高拷贝质粒突变拷贝数控制基因拷贝数 扩增基因低拷贝质粒来自pSC101 拷贝数小于10 表达某些毒性基因温敏质粒在不同温度下表现出拷贝数、整合等不同性质测序质粒含有测序通用引物互补序列和多酶接头polylinker整合质粒装有整合促进基因及位点便于外源基因的整合穿梭质粒装有针对两种不同受体的复制子便于基因克隆表达质粒装有强化外源基因表达的转录、翻译、纯化的元件探针质粒装有报告基因便于启动子等元件的克隆筛选
质粒载体的分类(1)高拷贝数的质粒载体ColE1、pMB1、pMB9 松弛型质粒。具有低分子量、高拷贝数的优点。
具有氯霉素扩增效应:每个细胞的拷贝数1000-3000个!用途:适合大量增殖克隆基因、或需要表达大量的基因产物。
(2)低拷贝数的质粒载体(3)温控的质粒载体由pSC101派生来的载体。特点是拷贝数低。pLG338、pLG339等
适合于克隆含量过高对寄主代谢有害的基因。减少蛋白质产物对寄主细胞的毒害。(3)温控的质粒载体一些低拷贝基因是温度敏感型,如pBEU1、pBEU2温度低(<37 oC),拷贝数很少;温度增加(>40 oC),拷贝数很快增加到>1000个。
(4)插入失活型质粒载体如pDF41、pDF42、pBR322。无抗生素抗性抗生素抗性
载体的克隆位点位于其某一个选择性标记基因内部。外源DNA片段插入会导致选择记号基因(如tetr、ampr、cmr等)失活。如pDF41、pDF42、pBR322。外源DNA无抗生素抗性抗生素抗性
质粒载体具有直接选择记号并赋予寄主细胞相应的表型。只有带有选择标记基因的转化菌细胞才能在选择培养基上生长。
(5)正选择的质粒载体质粒载体具有直接选择记号并赋予寄主细胞相应的表型。只有带有选择标记基因的转化菌细胞才能在选择培养基上生长。可大大降低需要筛选的转化子的数量,从而减轻实验的工作量,提高了选择的敏感性。通过选择具这种表型特征的转化子,便可大大降低需要筛选的转化子的数量只有带有选择标记基因的转化菌细胞才能在选择培养基上生长。目前通用的绝大部分质粒载体都是正选择载体。具有直接选择记号并赋予寄主细胞相应的表型,直接选择转化后的细胞,提高了选择的敏感性。注意启动子的性质,终止子、起始密码、终止密码的阅读正确。并能在大肠杆菌细胞中正常转录并转译成相应蛋白质的克隆载体特称为表达载体(expression vectors)。一种典型的大肠杆菌表达型质粒载体(图4-11)的主要组成部分,包括大肠杆菌的启动子及操纵全点序列、多克隆位点、转录及转译信号、质粒载体的复制起点及抗菌素抗性基因。
经典的大肠杆菌质粒载体pSC101质粒载体天然质粒,属严紧型低拷贝质粒。9.09 kb。四环素抗性Tetr。
ColE1天然质粒,属松弛型、高拷贝质粒,6.6Kb。有氯霉素扩增效应,每个细胞拷贝
大肠杆菌素(colicin)E1和对E1免疫的基因(immE1)
选择标记大肠杆菌素(colicin)E1和对E1免疫的基因(immE1)colicin E1能杀死不含ColE1 质粒的菌,形成噬菌斑。•colicin E1能杀死不含ColE1 质粒的菌,形成“噬菌斑”。•唯一的克隆位点EcoR I 正好位于这个基因的内部。可以通过插入失活筛选。
③不被其他细菌的colicin E1所杀死的原因
ceaimmkil结构基因免疫基因溶菌基因②杀死不含有ColE1细菌的原因cea + kil基因产物产生菌对细菌素有自身免疫性大肠杆菌所产生的细菌素称为大肠菌素(colicin),它除作用于某些型别的大肠杆菌外,还能作用于亲缘关系相近的志贺菌、沙门氏菌、克雷伯氏菌和巴氏杆菌等。③不被其他细菌的colicin E1所杀死的原因imm基因
EcoR I位于E1内部,插入外源DNA导致E1失活,使受体菌不能合成E(ColE1-),但仍表现出对E1免疫型(ImmE1+)。
唯一的克隆位点EcoR IEcoR I位于E1内部,插入外源DNA导致E1失活,使受体菌不能合成E(ColE1-),但仍表现出对E1免疫型(ImmE1+)。Colicin E1外源DNA无Colicin用对外源colicin E1的免疫性和自身不能合成colicin E1作选择,操作非常繁杂。
pBR322:人工构建载体p:质粒;BR:质粒两位主要构建者姓氏的第一个字母;322:实验编号三个亲本质粒:
pSF2124pMB1pSC101三个亲本质粒:pMB1:出发质粒(ColE1)pSF2124: AmprpSC101: Tetr把pBR322用限制性内切酶切去某片段,换上合用的表达组件,就可以构建成工作所需的新载体。4.36kb的环状双链DNA,碱基序列已经全部清楚。许多实用的质粒载体都是在pBR322的基础上改建而成。可见其原型质粒在使用上有优点。
3个会导致Ampr基因失活9个导致Tetr基因失活氨苄青霉素和四环素抗性24个单一克隆位点。
pBR322的优点①双抗生素抗性选择标记抗生素抗性基因的插入失活效应是检测重组体质粒的有效方法,分两次先后选择:没有获得载体的寄主细胞®在Amp或Tet中都死亡。获得重组载体的寄主细胞®在Amp或Tet其中之一中死亡。
不含质粒载体含有空质粒载体含有重组质粒载体AmpAmp+Tet
pBR322重组克隆的筛选重组克隆的“插入失活”筛选方法pBR322—→插入在Tetr中,基因型为Tets 、Ampr——→在含有氨卞青霉素培养基上可生长,在含有四环素培养基上不生长;pBR322—→插入在Ampr中,基因型为Tetr 、Amps、——→在含有氨卞青霉素培养基上不生长,在含有四环素培养基可生长;而在两种抗生素培养基上都生长的是非重组型。这种在一个基因位点中插入外源DNA片段,从而使该基因活性丧失的现象叫插入失活。
②分子小,克隆能力大③高拷贝数④安全⑤具有较多的单一酶切位点(24种)
长度4363bp,易于纯化,可以携带6-8Kb的外源DNA片段。③高拷贝数氯霉素扩增之后,每个细胞可1000~3000copies④安全失去了转移蛋白基因mob(mobilization)。不能通过接合转移。载体越小越好。>10kb的DNA在纯化过程中容易断裂。缺失流动基因(mob)。这样,质粒就不会从一个细菌接触转移到⑤具有较多的单一酶切位点(24种)
pBR322的缺点保留了转移蛋白(mob)的作用位点。能够被ColK质粒编码的mob蛋白识别,如果再有F质粒的参与,就有可能转移!
PBR322的改进①删除mob识别位点(如质粒pBR327、pAT153等)。pAT153:从pBR322上切去HaeII片断,既除去了mob识别位点,又增加质粒的拷贝数。
②改造EcoR I 位点pBR325:使EcoRI 也成为插入失活型位点。在pBR322位点上接入一段来自噬菌体PICm的HaeII酶切片断(带有氯霉素抗性基因cmlr)。cmlr上也带一个EcoRI位点。
pUC系列载体在pBR322的基础上改造而成。属正选择载体。pUC7、pUC8、pUC9、pUC10、pUC11、pUC18、pUC19
加入一个在5端带有10个多克隆位点的基因lacZ’
(1)元件来源a .ori来自pBR322质粒的复制起点b. 标记基因(ampr):pBR322的Ampr基因
Lacz基因编码的半乳糖苷酶是四聚体。Lacz’基因含有lacz基因的前59个密码子,a序列,编码a肽。c. lacz’基因:大肠杆菌lac操纵子DNA区段,编码β-半乳糖苷酶a-肽链,是LacZ氨基端的一个片段.载体用于可编码半乳糖苷酶羧基端部分序列的宿主细胞。d. MCS 多克隆位点。
(2)克隆位点具有MCS(多克隆位点)区段:位于lacZ’基因的5’端。10个连续的单一限制酶切位点,但它不破坏该基因功能。
有mcs的存在,lacz’基因仍然能编码a肽。如果外源基因插入此mcs区,该基因失活。
x-gal:5-溴-4-氯-3-吲哚-β-D-半乳糖苷,为生色底物,半乳糖苷酶+ x-gal 蓝色
菌落蓝白选择的原理:IPTG:异丙基-β-D-硫代半乳糖苷,乳糖类似物,又称为安慰诱导物,可代替乳糖诱导乳糖操纵子结构基因的表达,即可诱导lacz’所编码的半乳糖苷酶氨基末端片段(α-肽)的合成。x-gal:5-溴-4-氯-3-吲哚-β-D-半乳糖苷,为生色底物,半乳糖苷酶+ x-gal蓝色x-gal水解后呈现蓝色
α-互补:pUC类载体带有lacz’基因,编码半乳糖苷酶氨基端片段(α-肽),此片段与宿主细胞所编码的羧基端半乳糖苷酶实现基因内互补,形成有功能的半乳糖苷酶,称α-互补。
α-互补(α-complementation)α-互补是指lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶(β -galactosidase ,由1024 个氨基酸组成)阴性的突变体之间实现互补。α-互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的。大肠杆菌的乳糖lac 操纵子中的lacZ 基因编码β-半乳糖苷酶,如果lacZ 基因发生突变,则不能合成有活性的β-半乳糖苷酶。例如,lacZ△M15 基因是缺失了编码β-半乳糖苷酶中第个氨基酸的lacZ 基因,无酶学活性。对于只编码N-端140 个氨基酸的lacZ 基因(称为lacZ'),其产物也没有酶学活性。但这两个无酶学活性的产物混合在一起时,可恢复β-半乳糖苷酶的活性,实现基因内互补。
菌落蓝白斑选择的原理:在基因克隆时,细菌在含有IPTG和x-gal的培养基中进行培养。IPTG诱导质粒的lacz’基因产生α-肽,同时诱导细菌产生半乳糖苷酶的羧基端片段。两种片段形成有功能的半乳糖苷酶,从而使x-gal水解,产生蓝色物质,使非重组菌落呈现蓝色。当外源基因插到质粒的多克隆位点后,使lacz’失活,不能表达α-肽,破坏了互补作用,细胞内无有活性半乳糖苷酶,使带有重组质粒的细菌将产生白色菌落。
互补显色反应
a 具有更小的相对分子质量和更高的拷贝数,平均每个细胞可达500-700个拷贝
PUC载体的优点:a 具有更小的相对分子质量和更高的拷贝数,平均每个细胞可达个拷贝b 具有MCS片段,可把具有两种不同粘性末端的外源DNA片段直接克隆到pUC类载体上。2.6kbc 可以用组织化学方法检测重组体(蓝白斑筛选).
pGEM载体总长度为2743bp 含有一个氨卞青霉素抗性编码基因和一个lacZ’编码基因
一段含有EcoR I、Sat I、Kpn I、Ava I、Sma I、BamH I、XbaI、Sall、AccI、Hinc I、Pst II、Sph I和Hind II等识别序列的多克隆位点。此序列结构几乎与pUC18克隆载体的完全一样。
pGEM系列与pUC系列之间的主要差别pGEM具有两个来自噬菌体的启动子,即T7启动子和SP6启动子,它们为RNA聚合酶的附着作用提供了特异性的识别位点。由于这两个启动子分别位于Lac z’基因中多克隆位点区的两侧,故若在反应体系中加入纯化的识别T7或SP6启动子的RNA聚合酶,便可将已克隆的外源基因在体外转录出相应的mRNA。质粒载体pGEM-3Z和pGEM-4Z在结构上基本相似,两者之间的差别仅仅在于SP6和T7这两个启动子的位置互换、方向相反而已。pGEM 系列与pUC 系列之间的主要差别是,它具有两个来自噬菌体的启动子,即T7 启动子和SP6 启动子,它们为RNA 聚合酶的附着提供特异性识别位点。由于这两个启动子分别位于lacZ‘ 基因中多克隆位点区的两侧,若在反应体系中加入纯化的T7 或SP6 RNA 聚合酶,便可以将已经克隆的外源基因在体外转录出相应的mRNA 。质粒载体pGEM-3Z 和pGEM-4Z 在结构上基本相似,两者之间的差别仅仅在于SP6 和T7 这两个启动子的位置互换、方向相反而已。
pGEM-3Z:多拷贝装有多克隆位点(MCS)正选择颜色标记lacZ’ 装有两个噬菌体的强启动子用于外源基因的高效表达
注意:T7和SP6启动子特异性地由噬菌体DNA编码的RNA聚合酶所识别,因此相应的受体菌必须表达噬菌体RNA聚合酶,如:E.coli BL21(DE3)等
穿梭质粒载体这种质粒分子上含有两个亲缘关系不同的复制子结构以及相应的选择性标记基因,因此能在两种不同种属的受体细胞中复制并检测,例如既能在原核生物中复制,又能在真核生物中复制的载体。这类载体既具有细菌质粒的复制原点及选择标记基因,还有真核生物的自主复制序列(ARS)以及选择标记性状通常穿梭载体在细菌中用于克隆,扩增克隆的基因,在酵母菌中用于基因表达分析.穿梭载体(shuttle vector)是指含有两个亲缘关系不同的复制子,能在两种不同的生物中复制的。例如既能在原核生物中复制,又能在真核生物中复制的载体.这类载体不仅具有细菌质粒的复制原点及选择标记基因,还有真核生物的自主复制序列(ARS)以及选择标记性状,具有多克隆位点.通常穿梭载体在细菌中用于克隆,扩增克隆的基因,在酵母菌中用于基因表达分析.61
用Taq酶的PCR产物3’端加上了一个A。根据这一特点研制出一种线性质粒,其5’端突出的T,它们之间可以连接,即TA克隆。
When it comes to treating diseases like cancer, modern medicine has an impressive arsenal. And one of its most versatile weapons are Y-shaped proteins called monoclonal antibodies. Our immune systems already proce their own antibodies (plasma cell), they come in billions of variations, each matching a specific target, such as a particular toxin, bacteria or virus. When they bind to their target, they send a signal, this bacterium is now marked for destruction. These naturally- proced antibodies are pretty effective. In the 1970s, scientist figured out how to mass proce them.