导航:首页 > 文档加密 > des加密

des加密

发布时间:2022-02-15 19:07:41

‘壹’ des加密算法流程图

DES(Data Encryption Standard)满足了国家标准局欲达到的4个目的:提供高质量的数据保护,防止数据未经授权的泄露和未被察觉的修改;具有相当高的复杂性,使得破译的开销超过可能获得的利益,同时又要便于理解和掌握;

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,首先,DES把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,并进行前后置换(输入的第58位换到第一位,第50位换到第2位,依此类推,最后一位是原来的第7位),最终由L0输出左32位,R0输出右32位,根据这个法则经过16次迭代运算后,得到L16、R16,将此作为输入,进行与初始置换相反的逆置换,即得到密文输出。

DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密,如果Mode为加密,则用Key去把数据Data进行加密,生成Data的密码形式作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式作为DES的输出结果。在使用DES时,双方预先约定使用的”密码”即Key,然后用Key去加密数据;接收方得到密文后使用同样的Key解密得到原数据,这样便实现了安全性较高的数据传输。

‘贰’ 关于DES加密算法

数据加密算法
数据加密算法DES
数据加密算法(Data Encryption Algorithm,DEA)的数据加密标准(Data Encryption Standard,DES)是规范的描述,它出自 IBM 的研究工作,并在 1997 年被美国政府正式采纳。它很可能是使用最广泛的秘钥系统,特别是在保护金融数据的安全中,最初开发的 DES 是嵌入硬 件中的。通常,自动取款机(Automated Teller Machine,ATM)都使用 DES。
DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环。
攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用 56 位的密钥,则可能的密钥数量是 2 的 56 次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过 ,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(Advanced Encryption Standard,AES)。
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
IBM 曾对 DES 拥有几年的专利权,但是在 1983 年已到期,并且处于公有范围中,允许在特定条件下可以免除专利使用费而使用。

‘叁’ DES加密 中文乱码

读取的时候使用字节流,加密之后保存到另一个文件也使用字节写进去,解密的时候字节流出来解了之后然后将字节数组使用new String(byte[])来生成String应该就不会出问题了。

‘肆’ DES加密问题

DES对64位二进制数据加密,产生64位密文数据,实际密钥长度为56位(有8位用于奇偶校验,解密时的过程和加密时相似,但密钥的顺序正好相反),这个标准由美国国家安全局和国家标准与技术局来管理。DES的成功应用是在银行业中的电子资金转账(EFT)领域中。现在DES也可由硬件实现,AT&T首先用LSI芯片实现了DES的全部工作模式,该产品称为数据加密处理机DEP。另一个系统是国际数据加密算法(IDEA),它比DES的加密性好,而且计算机功能也不需要那么强。在未来,它的应用将被推广到各个领域。IDEA加密标准由PGP(Pretty Good Privacy)系统使用,PGP是一种可以为普通电子邮件用户提供加密、解密方案的安全系统。在PGP系统中,使用IDEA(分组长度128bit)、RSA(用于数字签名、密钥管理)、MD5(用于数据压缩)算法,它不但可以对你的邮件保密以防止非授权者阅读,还能对你的邮件加以数字签名从而使收信人确信邮件是由你发出。--

‘伍’ DES加密的核心是什么

des对称加密,是一种对称加密算法。
数据加密算法(Data Encryption Algorithm,DEA)是一种对称加密算法,很可能是使用最广泛的密钥系统,特别是在保护金融数据的安全中,最初开发的DEA是嵌入硬件中的。通常,自动取款机(Automated Teller Machine,ATM)都使用DEA。它出自IBM的研究工作,IBM也曾对它拥有几年的专利权,但是在1983年已到期后,处于公有范围中,允许在特定条件下可以免除专利使用费而使用。1977年被美国政府正式采纳。

‘陆’ DES加密算法 优点缺点

优点:DES加密算法密钥只用到了64位中的56位,这样具有高的安全性。

缺点:分组比较短、密钥太短、密码生命周期短、运算速度较慢。

‘柒’ des加密算法(c/c++)

des.h文件:

#ifndefCRYPTOPP_DES_H

#defineCRYPTOPP_DES_H

#include"cryptlib.h"

#include"misc.h"

NAMESPACE_BEGIN(CryptoPP)

classDES:publicBlockTransformation

{

public:

DES(constbyte*userKey,CipherDir);

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const

{DES::ProcessBlock(inoutBlock,inoutBlock);}

enum{KEYLENGTH=8,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

protected:

staticconstword32Spbox[8][64];

SecBlock<word32>k;

};

classDESEncryption:publicDES

{

public:

DESEncryption(constbyte*userKey)

:DES(userKey,ENCRYPTION){}

};

classDESDecryption:publicDES

{

public:

DESDecryption(constbyte*userKey)

:DES(userKey,DECRYPTION){}

};

classDES_EDE_Encryption:publicBlockTransformation

{

public:

DES_EDE_Encryption(constbyte*userKey)

:e(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=16,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESe,d;

};

classDES_EDE_Decryption:publicBlockTransformation

{

public:

DES_EDE_Decryption(constbyte*userKey)

:d(userKey,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=16,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESd,e;

};

classTripleDES_Encryption:publicBlockTransformation

{

public:

TripleDES_Encryption(constbyte*userKey)

:e1(userKey,ENCRYPTION),d(userKey+DES::KEYLENGTH,DECRYPTION),

e2(userKey+2*DES::KEYLENGTH,ENCRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=24,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESe1,d,e2;

};

classTripleDES_Decryption:publicBlockTransformation

{

public:

TripleDES_Decryption(constbyte*userKey)

:d1(userKey+2*DES::KEYLENGTH,DECRYPTION),e(userKey+DES::KEYLENGTH,ENCRYPTION),

d2(userKey,DECRYPTION){}

voidProcessBlock(constbyte*inBlock,byte*outBlock)const;

voidProcessBlock(byte*inoutBlock)const;

enum{KEYLENGTH=24,BLOCKSIZE=8};

unsignedintBlockSize()const{returnBLOCKSIZE;}

private:

DESd1,e,d2;

};

NAMESPACE_END

#endif

des.cpp文件:

//des.cpp-modifiedbyWeiDaifrom:

/*

*

*circa1987,'s1977

*publicdomaincode.,but

*theactualencrypt/

*Outerbridge'sDEScodeasprintedinSchneier's"AppliedCryptography."

*

*Thiscodeisinthepublicdomain.Iwouldappreciatebugreportsand

*enhancements.

*

*PhilKarnKA9Q,[email protected],August1994.

*/

#include"pch.h"

#include"misc.h"

#include"des.h"

NAMESPACE_BEGIN(CryptoPP)

/*

*Threeofthesetables,theinitialpermutation,thefinal

*,areregularenoughthat

*forspeed,wehard-codethem.They'rehereforreferenceonly.

*Also,,gensp.c,

*tobuildthecombinedSPbox,Spbox[].They'realsoherejust

*forreference.

*/

#ifdefnotdef

/*initialpermutationIP*/

staticbyteip[]={

58,50,42,34,26,18,10,2,

60,52,44,36,28,20,12,4,

62,54,46,38,30,22,14,6,

64,56,48,40,32,24,16,8,

57,49,41,33,25,17,9,1,

59,51,43,35,27,19,11,3,

61,53,45,37,29,21,13,5,

63,55,47,39,31,23,15,7

};

/*finalpermutationIP^-1*/

staticbytefp[]={

40,8,48,16,56,24,64,32,

39,7,47,15,55,23,63,31,

38,6,46,14,54,22,62,30,

37,5,45,13,53,21,61,29,

36,4,44,12,52,20,60,28,

35,3,43,11,51,19,59,27,

34,2,42,10,50,18,58,26,

33,1,41,9,49,17,57,25

};

/*expansionoperationmatrix*/

staticbyteei[]={

32,1,2,3,4,5,

4,5,6,7,8,9,

8,9,10,11,12,13,

12,13,14,15,16,17,

16,17,18,19,20,21,

20,21,22,23,24,25,

24,25,26,27,28,29,

28,29,30,31,32,1

};

/*The(in)famousS-boxes*/

staticbytesbox[8][64]={

/*S1*/

14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,

0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,

4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,

15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

/*S2*/

15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,

3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,

0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,

13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

/*S3*/

10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,

13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,

13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,

1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

/*S4*/

7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,

13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,

10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,

3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

/*S5*/

2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,

14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,

4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,

11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

/*S6*/

12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,

10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,

9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,

4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

/*S7*/

4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,

13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,

1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,

6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

/*S8*/

13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,

1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,

7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,

2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11

};

/*32--boxes*/

staticbytep32i[]={

16,7,20,21,

29,12,28,17,

1,15,23,26,

5,18,31,10,

2,8,24,14,

32,27,3,9,

19,13,30,6,

22,11,4,25

};

#endif

/*permutedchoicetable(key)*/

staticconstbytepc1[]={

57,49,41,33,25,17,9,

1,58,50,42,34,26,18,

10,2,59,51,43,35,27,

19,11,3,60,52,44,36,

63,55,47,39,31,23,15,

7,62,54,46,38,30,22,

14,6,61,53,45,37,29,

21,13,5,28,20,12,4

};

/*numberleftrotationsofpc1*/

staticconstbytetotrot[]={

1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28

};

/*permutedchoicekey(table)*/

staticconstbytepc2[]={

14,17,11,24,1,5,

3,28,15,6,21,10,

23,19,12,4,26,8,

16,7,27,20,13,2,

41,52,31,37,47,55,

30,40,51,45,33,48,

44,49,39,56,34,53,

46,42,50,36,29,32

};

/*EndofDES-definedtables*/

/*bit0isleft-mostinbyte*/

staticconstintbytebit[]={

0200,0100,040,020,010,04,02,01

};

/*Setkey(initializekeyschelearray)*/

DES::DES(constbyte*key,CipherDirdir)

:k(32)

{

SecByteBlockbuffer(56+56+8);

byte*constpc1m=buffer;/*placetomodifypc1into*/

byte*constpcr=pc1m+56;/*placetorotatepc1into*/

byte*constks=pcr+56;

registerinti,j,l;

intm;

for(j=0;j<56;j++){/*convertpc1tobitsofkey*/

l=pc1[j]-1;/*integerbitlocation*/

m=l&07;/*findbit*/

pc1m[j]=(key[l>>3]&/*findwhichkeybytelisin*/

bytebit[m])/*andwhichbitofthatbyte*/

?1:0;/*andstore1-bitresult*/

}

for(i=0;i<16;i++){/*keychunkforeachiteration*/

memset(ks,0,8);/*Clearkeyschele*/

for(j=0;j<56;j++)/*rotatepc1therightamount*/

pcr[j]=pc1m[(l=j+totrot[i])<(j<28?28:56)?l:l-28];

/**/

for(j=0;j<48;j++){/*selectbitsindivially*/

/*checkbitthatgoestoks[j]*/

if(pcr[pc2[j]-1]){

/*maskitinifit'sthere*/

l=j%6;

ks[j/6]|=bytebit[l]>>2;

}

}

/*Nowconverttoodd/eveninterleavedformforuseinF*/

k[2*i]=((word32)ks[0]<<24)

|((word32)ks[2]<<16)

|((word32)ks[4]<<8)

|((word32)ks[6]);

k[2*i+1]=((word32)ks[1]<<24)

|((word32)ks[3]<<16)

|((word32)ks[5]<<8)

|((word32)ks[7]);

}

if(dir==DECRYPTION)//reversekeyscheleorder

for(i=0;i<16;i+=2)

{

std::swap(k[i],k[32-2-i]);

std::swap(k[i+1],k[32-1-i]);

}

}

/**/

/*Ccodeonlyinportableversion*/

//RichardOuterbridge'sinitialpermutationalgorithm

/*

inlinevoidIPERM(word32&left,word32&right)

{

word32work;

work=((left>>4)^right)&0x0f0f0f0f;

right^=work;

left^=work<<4;

work=((left>>16)^right)&0xffff;

right^=work;

left^=work<<16;

work=((right>>2)^left)&0x33333333;

left^=work;

right^=(work<<2);

work=((right>>8)^left)&0xff00ff;

left^=work;

right^=(work<<8);

right=rotl(right,1);

work=(left^right)&0xaaaaaaaa;

left^=work;

right^=work;

left=rotl(left,1);

}

inlinevoidFPERM(word32&left,word32&right)

{

word32work;

right=rotr(right,1);

work=(left^right)&0xaaaaaaaa;

left^=work;

right^=work;

left=rotr(left,1);

work=((left>>8)^right)&0xff00ff;

right^=work;

left^=work<<8;

work=((left>>2)^right)&0x33333333;

right^=work;

left^=work<<2;

work=((right>>16)^left)&0xffff;

left^=work;

right^=work<<16;

work=((right>>4)^left)&0x0f0f0f0f;

left^=work;

right^=work<<4;

}

*/

//WeiDai''sinitialpermutation

//algorithm,

//(likeinMSVC)

inlinevoidIPERM(word32&left,word32&right)

{

word32work;

right=rotl(right,4U);

work=(left^right)&0xf0f0f0f0;

left^=work;

right=rotr(right^work,20U);

work=(left^right)&0xffff0000;

left^=work;

right=rotr(right^work,18U);

work=(left^right)&0x33333333;

left^=work;

right=rotr(right^work,6U);

work=(left^right)&0x00ff00ff;

left^=work;

right=rotl(right^work,9U);

work=(left^right)&0xaaaaaaaa;

left=rotl(left^work,1U);

right^=work;

}

inlinevoidFPERM(word32&left,word32&right)

{

word32work;

right=rotr(right,1U);

work=(left^right)&0xaaaaaaaa;

right^=work;

left=rotr(left^work,9U);

work=(left^right)&0x00ff00ff;

right^=work;

left=rotl(left^work,6U);

work=(left^right)&0x33333333;

right^=work;

left=rotl(left^work,18U);

work=(left^right)&0xffff0000;

right^=work;

left=rotl(left^work,20U);

work=(left^right)&0xf0f0f0f0;

right^=work;

left=rotr(left^work,4U);

}

//

voidDES::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

word32l,r,work;

#ifdefIS_LITTLE_ENDIAN

l=byteReverse(*(word32*)inBlock);

r=byteReverse(*(word32*)(inBlock+4));

#else

l=*(word32*)inBlock;

r=*(word32*)(inBlock+4);

#endif

IPERM(l,r);

constword32*kptr=k;

for(unsignedi=0;i<8;i++)

{

work=rotr(r,4U)^kptr[4*i+0];

l^=Spbox[6][(work)&0x3f]

^Spbox[4][(work>>8)&0x3f]

^Spbox[2][(work>>16)&0x3f]

^Spbox[0][(work>>24)&0x3f];

work=r^kptr[4*i+1];

l^=Spbox[7][(work)&0x3f]

^Spbox[5][(work>>8)&0x3f]

^Spbox[3][(work>>16)&0x3f]

^Spbox[1][(work>>24)&0x3f];

work=rotr(l,4U)^kptr[4*i+2];

r^=Spbox[6][(work)&0x3f]

^Spbox[4][(work>>8)&0x3f]

^Spbox[2][(work>>16)&0x3f]

^Spbox[0][(work>>24)&0x3f];

work=l^kptr[4*i+3];

r^=Spbox[7][(work)&0x3f]

^Spbox[5][(work>>8)&0x3f]

^Spbox[3][(work>>16)&0x3f]

^Spbox[1][(work>>24)&0x3f];

}

FPERM(l,r);

#ifdefIS_LITTLE_ENDIAN

*(word32*)outBlock=byteReverse(r);

*(word32*)(outBlock+4)=byteReverse(l);

#else

*(word32*)outBlock=r;

*(word32*)(outBlock+4)=l;

#endif

}

voidDES_EDE_Encryption::ProcessBlock(byte*inoutBlock)const

{

e.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

}

voidDES_EDE_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

e.ProcessBlock(inBlock,outBlock);

d.ProcessBlock(outBlock);

e.ProcessBlock(outBlock);

}

voidDES_EDE_Decryption::ProcessBlock(byte*inoutBlock)const

{

d.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

}

voidDES_EDE_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

d.ProcessBlock(inBlock,outBlock);

e.ProcessBlock(outBlock);

d.ProcessBlock(outBlock);

}

voidTripleDES_Encryption::ProcessBlock(byte*inoutBlock)const

{

e1.ProcessBlock(inoutBlock);

d.ProcessBlock(inoutBlock);

e2.ProcessBlock(inoutBlock);

}

voidTripleDES_Encryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

e1.ProcessBlock(inBlock,outBlock);

d.ProcessBlock(outBlock);

e2.ProcessBlock(outBlock);

}

voidTripleDES_Decryption::ProcessBlock(byte*inoutBlock)const

{

d1.ProcessBlock(inoutBlock);

e.ProcessBlock(inoutBlock);

d2.ProcessBlock(inoutBlock);

}

voidTripleDES_Decryption::ProcessBlock(constbyte*inBlock,byte*outBlock)const

{

d1.ProcessBlock(inBlock,outBlock);

e.ProcessBlock(outBlock);

d2.ProcessBlock(outBlock);

}

NAMESPACE_END

程序运行如下:

‘捌’ DES加密算法

特点
分组比较短、密钥太短、密码生命周期短、运算速度较慢。
编辑本段基本原理
入口参数有三个:key、data、mode。 key为加密解密使用的密钥,data为加密解密的数据,mode为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,key用于对数据加密,当模式为解密模式时,key用于对数据解密。实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。 DES( Data Encryption Standard)算法,于1977年得到美国政府的正式许可,是一种用56位密钥来加密64位数据的方法。虽然56位密钥的DES算法已经风光不在,而且常有用Des加密的明文被破译的报道,但是了解一下昔日美国的标准加密算法总是有益的,而且目前DES算法得到了广泛的应用,在某些场合,仍然发挥着余热。
编辑本段密钥生成
取得密钥
从用户处取得一个64位(本文如未特指,均指二进制位))长的密码key ,去除64位密码中作为奇偶校验位的第8、16、24、32、40、48、56、64位,剩下的56位作为有效输入密钥.
等分密钥
表1. DES加密算法
57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 50 44 36 表2. 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 把在1步中生成的56位输入密钥分成均等的A,B两部分,每部分为28位,参照表1和表2把输入密钥的位值填入相应的位置. 按照表1所示A的第一位为输入的64位密钥的第57位,A的第2位为64位密钥的第49位,...,依此类推,A的最后一位最后一位是64位密钥的第36位。
密钥移位
表3. i 1 2 3 4 5 6 7 8 DES加密算法
ǿ 1 1 2 2 2 2 2 2 i 9 10 11 12 13 14 15 16 ǿ 1 2 2 2 2 2 2 1 DES算法的密钥是经过16次迭代得到一组密钥的,把在1.1.2步中生成的A,B视为迭代的起始密钥,表3显示在第i次迭代时密钥循环左移的位数. 比如在第1次迭代时密钥循环左移1位,第3次迭代时密钥循环左移2位. 第9次迭代时密钥循环左移1位,第14次迭代时密钥循环左移2位. 第一次迭代: A(1) = ǿ(1) A B(1) = ǿ(1) B DES加密算法
第i次迭代: A(i) = ǿ(i) A(i-1) B(i) = ǿ(i) B(i-1)
实现接口函数的介绍
1 int des(char *data, char *key,int readlen) 参数: 1.存放待加密明文的内存指针(长度为readlen,可能经过填充; 2.存放用户输入的密钥内存的指针 3.待加密明文的长度(8字节的倍数) 功能: 生成加密密钥,把待加密的明文数据分割成64位的块,逐块完成16次迭代加密,密文存放在data所指向的内存中. 2 int Ddes(char *data, char *key,int readlen) 参数: 1.存放待解密文的内存指针(长度为readlen,可能经过填充; 2.存放用户输入的密钥内存的指针 3.待解密文的长度( 8字节的倍数) 功能: 生成解密密钥,把待解密文分割成64位的块,逐块完成16次迭代解密,解密后的明文存放在data所指向的内存中. 3 int des3(char *data, char *key, int n ,int readlen) 参数: 1.存放待加密明文的内存指针(长度为readlen,可能经过填充; 2.存放用户输入的密钥内存的指针 DES加密算法
3.用户指定进行多少层加密 4.待加密明文的长度(8字节的倍数) 功能: 生成加密密钥,把待加密的明文分割成64位的块,把第i-1层加密后的密文作为第i层加密的明文输入,根据用户指定的加密层数进行n层加密,最终生成的密文存放在data所指向的内存中. 说明: 用户仅仅输入一条密钥,所有的加密密钥都是由这条密钥生成. 4 int Ddes3(char *data, char*key, int n ,int readlen) 参数: 1.存放待解密文的内存指针(长度为readlen,可能经过填充; 2.存放用户输入的密钥内存的指针 3.用户指定进行多少层解密 4.待解密文的长度(8字节的倍数) 功能: 生成解密密钥,把待解密文分割成64位的块,把第i-1层解密后的"明文"作为第i层解密的密文输入,根据用户指定的解密层数进行n层解密,最终生成的明文存放在data所指向的内存中. 说明: 用户仅仅输入一条密钥,所有的解密密钥都是由这条密钥生成. 5 int desN(char*data,char**key,int n_key,int readlen) 参数: 1.存放待加密明文的内存指针(长度为readlen,可能经过填充; 2.存放用户输入的密钥内存的指针 3.用户指定了多少条密钥 4.待加密明文的长度(8字节的倍数) 功能: DES加密算法生成加密密钥,把待加密的明文分割成64位的块,把第i-1层加密后的密文作为第i层加密的明文输入,根据用户指定的加密层数进行n层加密,最终生成的密文存放在data所指向的内存中. 说明: 这里用户通过输入的密钥条数决定加密的层数,每轮16次迭代加密所使用的加密密钥是由用户自定的对应密钥生成. 6 int DdesN(char*data,char**key,intn_key,int readlen) 参数: 1.存放待解密文的内存指针(长度为readlen,可能经过填充; 2.存放用户输入的密钥内存的指针 3.用户指定了多少条密钥 4.待解密文的长度(8字节的倍数) 功能: 生成解密密钥,把待解密文分割成64位的块,把第i-1层解密后的”明文”作为第i层解密的密文输入,根据用户指定的解密层数进行n层解密,最终生成的明文存放在data所指向的内存中. 说明: 这里用户通过输入的密钥条数决定解密的层数,每轮16次迭代加密所使用的解密密钥是由用户自定的对应密钥生成. DES加密算法-实现的介绍 利用算法核心代码封装的接口函数编写了一个针对文本文件的加密解密工具。选择把密文以16进制的形式写入文件的方法.当然也可以直接写入文件. 例: DES加密算法
密文为:12345678 在内存中显示为: 31 32 33 34 35 36 37 38 那么就把以3132333435363738的形式写入文件. 为了解密的方便,密文中的每个字节用两个字节表示,也即在内存中显示为0x9A的内容,就以9A的形式写入文件中.当内存中显示的内容为0x0?(?代表0~F)形式时,需要以0?的形式写入文件. 这样可以避开前面提及的问题,只是在解密时先按照两两组合的原则,顺序把从文件中读取的数据转换成待解的密文. 例: 读出的数据是: 3132333435363738 那么复原的过程: 31->1 32->2 33->3 …. 38->8 最终得真正的密文12345678,这样就可以调用DES算法解密函数从密文得到明文. DES算法是对固定大小(64位)的数据块进行加密解密操作的,对于那些不够64位的数据块需要采用填充机制补位到64位长,为了方便使用,数据位的填充是对用户而言是透明的,利用该工具进行加密解密操作时,用户只需输入操作的类型、读取数据的文件名、写入操作结果的文件名、密钥等信息.
编辑本段操作思路
#define READFILESIZE 512 步骤: 1.从文件中读取READFILESIZE个字节的数据 2.,如果从文件中读出的数据少于READFILESIZE个,以0补足,然后根据用户指定的类型对这READFILESIZE个字节的数据进行操作. 3.判断文件是否结束,没有则执行步骤1 4.把加密后的文件实际长度添加到密文的末尾 5.结束 采用一次只从文件读取READFILESIZE个字节是在为了防止由于需要加密或解密的文件太大导致内存不够的情况出现。 DES加密算法-注意事项 DES算法的加密密钥是根据用户输入的密码生成的,该算法把64位密码中的第8位、第16位、第24位、第32位、第40位、第48位、第56位、第64位作为奇偶校验位,在计算密钥时要忽略这8位.如果输入的密码只是在这8位上有区别的话,那么操作后的结果将是一样的. 例: 输入的密码为wuzhenll,密钥的16进制表示为77 75 7A 68 65 6E 6C 6C 任意改变这64位数据的奇偶校验位,可以得到16个不同的密码, 把8个奇偶检验位全取反后: w->v u->t z->{ h->i e->d n->o l->m 形成新密码:vt{idomm 表面上新密码和原密码迥然不同,但是由于他们仅在奇偶校验位上有区别,所以用这两个密码进行加密解密操作得到的结果是一样的. 笔者建议使用安全系数较高的多密钥加密解密方案. 此外用户输入的密码的长度不受限制,当输入的密码长度为0时,使用缺省64位密码;当输入的密码长度大于8字节时,输入密码的前8个字节为有效密码. 该工具提供6种不同的操作类型: 1:一层加密; 2:一层解密; 3:N层单密钥加密; 4:N层单密钥解密; 5:N层多密钥加密; 6:N层多密钥解密; 这六种操作是对称使用的,例如:加密明文时选择一层加密,解密时对密文使用一层解密

‘玖’ 在DES加密里边,ECB和CBC有什么区别

一、优点不同:

ECB模式

1、简单;

2、有利于并行计算;

3、误差不会被传送;

CBC模式:

1、不容易主动攻击,安全性好于ECB,适合传输长度长的报文,是SSL、IPSec的标准。

二、缺点不同:

ECB模式

1、不能隐藏明文的模式;

2、可能对明文进行主动攻击;

CBC模式:

1、不利于并行计算;

2、误差传递;

3、需要初始化向量IV

三、概念不同

1、ECB模式又称电子密码本模式:Electronic codebook,是最简单的块密码加密模式,加密前根据加密块大小(如AES为128位)分成若干块,之后将每块使用相同的密钥单独加密,解密同理。

2、密码分组链接(CBC,Cipher-block chaining)模式,由IBM于1976年发明,每个明文块先与前一个密文块进行异或后,再进行加密。在这种方法中,每个密文块都依赖于它前面的所有明文块。同时,为了保证每条消息的唯一性,在第一个块中需要使用初始化向量IV。

(9)des加密扩展阅读:


1976年,IBM发明了密码分组链接(CBC,Cipher-block chaining)模式。在CBC模式中,每个明文块先与前一个密文块进行异或后,再进行加密。在这种方法中,每个密文块都依赖于它前面的所有明文块。同时,为了保证每条消息的唯一性,在第一个块中需要使用初始化向量。

若第一个块的下标为1,则CBC模式的加密过程为:

Ci = Ek (P ⊕ Ci-1), C0 = IV.

而其解密过程则为:

Pi = Dk (Ci) ⊕Ci-1, C0 = IV.

CBC是最为常用的工作模式。它的主要缺点在于加密过程是串行的,无法被并行化,而且消息必须被填充到块大小的整数倍。解决后一个问题的一种方法是利用密文窃取。

注意在加密时,明文中的微小改变会导致其后的全部密文块发生改变,而在解密时,从两个邻接的密文块中即可得到一个明文块。因此,解密过程可以被并行化,而解密时,密文中一位的改变只会导致其对应的明文块完全改变和下一个明文块中对应位发生改变,不会影响到其它明文的内容。



‘拾’ 什么是DES加密

一种对称加密算法,DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。

阅读全文

与des加密相关的资料

热点内容
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163