导航:首页 > 文档加密 > idea加密方法

idea加密方法

发布时间:2023-04-06 10:28:53

❶ IDEA加密算法的C语言实现

1、数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。

2、常见加密算法
DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合;
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高;
RC2和 RC4:用变长密钥对大量数据进行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)国际数据加密算法:使用 128 位密钥提供非常强的安全性;
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前 AES 标准的一个实现是 Rijndael 算法;
BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;
其它算法,如ElGamal、Deffie-Hellman、新型椭圆曲线算法ECC等。
比如说,MD5,你在一些比较正式而严格的网站下的东西一般都会有MD5值给出,如安全焦点的软件工具,每个都有MD5。

3、例程:

#include<stdio.h>
#include<process.h>
#include<conio.h>
#include<stdlib.h>
#definemaxim65537
#definefuyi65536
#defineone65536
#defineround8
unsignedintinv(unsignedintxin);
unsignedintmul(unsignedinta,unsignedintb);
voidcip(unsignedintIN[4],unsignedintOUT[4],unsignedintZ[7][10]);
voidkey(unsignedintuskey[9],unsignedintZ[7][10]);
voidde_key(unsignedintZ[7][10],unsignedintDK[7][10]);
voidmain()
{
inti,j,k,x;
unsignedintZ[7][10],DK[7][10],XX[5],TT[5],YY[5];
unsignedintuskey[9];
FILE*fpout,*fpin;
printf(" InputKey");
for(i=1;i<=8;i++)
scanf("%6u",&uskey[i]);
for(i=0;i<9;i++)
uskey[i]=100+i*3;
key(uskey,Z);/*产生加密子密钥*/
de_key(Z,DK);/*计算解密子密钥*/
if((fpin=fopen("ekey.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
for(i=0;i<7;i++)
{
for(j=0;j<10;j++)
fprintf(fpin,"%6u",Z[i][j]);
fprintf(fpin," ");
}
fclose(fpin);

/*XX[1..5]中为明文*/
for(i=0;i<4;i++)XX[i]=2*i+101;
clrscr();
printf("Mingwen%6u%6u%6u%6u ",XX[0],XX[1],XX[2],XX[3]);
if((fpin=(fopen("ideaming.txt","w")))==NULL)
{printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpin,"%6u,%6u,%6u,%6u ",XX[0],XX[1],XX[2],XX[3]);
fclose(fpin);
for(i=1;i<=30000;i++)
cip(XX,YY,Z);/*用密钥Z加密XX中的明文并存在YY中*/
printf(" Mingwen%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
if((fpin=fopen("ideamiwn.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",YY[0],YY[1],YY[2],YY[3]);
fclose(fpout);
for(i=1;i<=30000;i++)
cip(YY,TT,DK);/*encipherYYtoTTwithKeyDK*/
printf(" JieMi%6u%6u%6u%6u ",TT[0],TT[1],TT[2],TT[3]);
if((fpout=fopen("dideaout.txt","w"))==NULL)
{
printf("cannotopenfile!");
exit(EXIT_FAILURE);
}
fprintf(fpout,"%6u%6u%6u%6u ",TT[0],TT[1],TT[2],TT[3]);
fclose(fpout);
}
/*此函数执行IDEA算法中的加密过程*/

voidcip(unsignedintIN[4],unsignedintOUT[4],unsignedintZ[7][10])
{
unsignedintr,x1,x2,x3,x4,kk,t1,t2,a;
x1=IN[0];x2=IN[1];x3=IN[2];x4=IN[3];
for(r=1;r<=8;r++)
{
/*对64位的块进行分组运算*/
x1=mul(x1,Z[1][r]);x4=mul(x4,Z[4][r]);
x2=x2+Z[2][r]&one;x3=(x3+Z[3][r])&one;
/*MA结构的函数*/
kk=mul(Z[5][r],(x1^x3));
t1=mul(Z[6][r],(kk+(x2^x4))&one;
/*随机变换PI*/
x1=x1^t1;x4=x4^t2;a=x2^t2;x2=x3^t1;x3=a;
}
/*输出转换*/
OUT[0]=mul(x1,Z[1][round+1]);
OUT[3]=mul(x4,Z[1][round+1]);
OUT[1]=(x3+Z[2][round+1])&one;
OUT[2]=(x2+Z[3][round+1])&one;
}

/*用高低算法上实现乘法运算*/
unsignedintmul(unsignedinta,unsignedintb)
{
longintp;
longunsignedq;
if(a==0)p=maxim-b;
elseif(b==0)p=maxim-a;
else
{
q=(unsignedlong)a*(unsignedlong)b;
p=(q&one)-(q>>16);
if(p<=0)p=p+maxim;
{
return(unsigned)(p&one);
}

/*通过Euclideangcd算法计算xin的倒数*/
unsignedintinv(unsignedintxin)
{
longn1,n2,q,r,b1,b2,t;
if(xin==0)
b2=0;
else
{n1=maxim;n2=xin;b2=1;b1=0;
do{
r=(n1%n2);q=(n1-r)/n2;
if(r==0)
if(b2<0)b2=maxim+b2;
else
{n1=n2;n2=r;
t=b2;
b2=b1-q*b2;b1=t;
}
}while(r!=0);
}
return(unsignedlongint)b2;
}
/*产生加密子密钥Z*/
voidkey(unsignedintuskey[9],unsignedintZ[7][10])
{
unsignedintS[54];
inti,j,r;
for(i=1;i<9;i++)
S[i-1]=uskey[i];
/*shifts*/
for(i=8;i<54;i++)
{
if(i+2)%8==0)/*对于S[14],S[22],...进行计算*/
S[i]=((S[i-7]<<0)^(S[i-14]>>7)&one;
elseif((i+1)%8==0)/*对于S[15],S[23],...进行计算*/
S[i]=((S[i-15]<<9)^(S[i-14]>>7)&one;
else
S[i]=((S[i-7]<<9)^(S[i-6]>>7)&one;
}
/*取得子密钥*/
for(r=1;r<=round+1;r++)
for(j=1;j<7;j++)
Z[j][r]=S[6*(r-1)+j-1];
}

/*计算解子密钥DK*/
voidde_key(unsignedintZ[7][10],unsignedintDK[7][10])
{
intj;
for(j=1;j<=round+1;j++)
{DK[1][round-j+2]=inv(Z[1][j]);
DK[4][round-j+2]=inv(Z[4][j]);
if(i==1|j==round+1)
{
DK[2][round-j+2]=(fuyi-Z[2][j])&one;
DK[3][round-j+2]=(fuyi-Z[3][j])&one;
}
else
{
DK[2][round-j+2]=inv(Z[3][j]);
DK[3][round-j+2]=inv(Z[2][j]);
}
}
for(j=1;j<=round+1;j++)
{
DK[5][round-j+2]=inv(Z[5][j]);
DK[6][round-j+2]=inv(Z[6][j]);
}

}

❷ 什么是IDEA对称加密算法

国际数据加密算法(IDEA)是上海交通大学教授来学嘉与瑞士学者James Massey联合提出的。它在1990年正式公布并在以后得到增强。这种算法是在DES算法的基础上发展出来的,类似于三重DES。发展IDEA也是因为感到DES具有密钥太短等缺点。IDEA的密钥为128位,这么长的密钥在今后若干年内应该是安全的。

❸ 高分求java的RSA 和IDEA 加密解密算法

RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1

这样最终得到三个数: n d e

设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。

在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。

rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。

<二>实践

接下来我们来一个实践,看看实际的操作:
找两个素数:
p=47
q=59
这样
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,满足e<t并且e和t互素
用perl简单穷举可以获得满主 e*d%t ==1的数d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847

最终我们获得关键的
n=2773
d=847
e=63

取消息M=244我们看看

加密:

c=M**d%n = 244**847%2773
用perl的大数计算来算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d对M加密后获得加密信息c=465

解密:

我们可以用e来对加密后的c进行解密,还原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e对c解密后获得m=244 , 该值和原始信息M相等。

<三>字符串加密

把上面的过程集成一下我们就能实现一个对字符串加密解密的示例了。
每次取字符串中的一个字符的ascii值作为M进行计算,其输出为加密后16进制
的数的字符串形式,按3字节表示,如01F

代码如下:

#!/usr/bin/perl -w
#RSA 计算过程学习程序编写的测试程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;

my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59

my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});

print "N=$N D=$D E=$E\n";

sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);

for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}

sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}

my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";

my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";

my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";

#EOF

测试一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦点(xfocus)
N=2773 D=847 E=63
原始串:安全焦点(xfocus)
加密串:
解密串:安全焦点(xfocus)

<四>提高

前面已经提到,rsa的安全来源于n足够大,我们测试中使用的n是非常小的,根本不能保障安全性,
我们可以通过RSAKit、RSATool之类的工具获得足够大的N 及D E。
通过工具,我们获得1024位的N及D E来测试一下:

n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951

d=0x10001

e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965

设原始信息
M=

完成这么大数字的计算依赖于大数运算库,用perl来运算非常简单:

A) 用d对M进行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

即用d对M加密后信息为:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

B) 用e对c进行解密如下:

m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"

(我的P4 1.6G的机器上计算了约5秒钟)

得到用e解密后的m= == M

C) RSA通常的实现
RSA简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用RSA 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。

最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。

----------------------------------------------------------

一个简单的RSA算法实现JAVA源代码:

filename:RSA.java

/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;

/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {

/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;

/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;

/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");

private BigInteger myKey;

private BigInteger myMod;

private int blockSize;

public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}

public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}

/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}

/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

public void decodeFile (String filename) {

FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}

BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));

if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}

/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}

/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;

while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);

s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}

return a;
}

}

在这里提供两个版本的RSA算法JAVA实现的代码下载:

1. 来自于 http://www.javafr.com/code.aspx?ID=27020 的RSA算法实现源代码包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar

2. 来自于 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的实现:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代码包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 编译好的jar包

另外关于RSA算法的php实现请参见文章:
php下的RSA算法实现

关于使用VB实现RSA算法的源代码下载(此程序采用了psc1算法来实现快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar

RSA加密的JavaScript实现: http://www.ohdave.com/rsa/

❹ 【前端】常用加密方法

• JavaScript 加密后传输(具体可以参考后面的常见加密方法)
• 浏览器插件内进行加密传输
• Https 传输

在加密算法中又分为对称加密和非对称加密。

对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥加密.也就是加密和解密都是用同一个密钥,这种方法在密码学中叫做对称加密算法.

对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES的加密性好,而且对计算机功能要求也没有那么高.

常见的对称加密算法有DES、3DES、Blowfish、IDEA、RC4、RC5、RC6和AES

注意: 因为前端的透明性,对于登录密码等敏感信息,就不要使用JavaScript来进行对称加密. 因为别人可以从前端得到密匙后,可以直接对信息进行解密!

非对称加密算法需要两个密钥:公钥(publickey)和私钥(privatekey)。 公钥与私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密;如果用私钥对数据进行加密,那么只有用对应的公钥才能解密。 因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公钥向其它方公开;得到该公钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。甲方只能用其专用密钥解密由其公钥加密后的任何信息。

常见的非对称加密算法有:RSA、ECC(移动设备用)、Diffie-Hellman、El Gamal、DSA(数字签名用)

❺ 用Java实现IDEA数据加密解密

随着Internet的迅速发展,电子商务的浪潮势不可挡,日常工作和数据传输都放在Internet网上进行传输,大大提高了效率,降低了成本,创造了良好的效益。但是,由于Internet网络协议本身存在着重要的安全问题(IP包本身并不继承任何安全特性,很容易伪造出IP包的地址、修改其内容、重播以前的包以及在传输途中拦截并查看包的内容),使网上的信息传输存在巨大的安全风险电子商务的安全问题也越来越突出。加密是电子商务中最主要的安全技术,加密方法的选取直接影响电子商务活动中信息的安全程度,在电子商务系统中,主要的安全问题都可以通过加密来解决。数据的保密性可通过不同的加密算法对数据加密来实现。

对我国来讲,虽然可以引进很多的外国设备,但加密设备不能依靠引进,因为它涉及到网络安全、国家机密信息的安全,所以必须自己研制。当前国际上有许多加密算法,其中DES(Data Encryption Standard)是发明最早的用得最广泛的分组对称加密算法,DES用56位蜜钥加密64位明文,输出64位密文,DES的56位密钥共有256 种可能的密钥,但历史上曾利用穷举攻击破解过DES密钥,1998年电子边境基金会(EFF)用25万美元制造的专用计算机,用56小时破解了DES的密钥,1999年,EFF用22小时完成了破解工作,使DES算法受到了严重打击,使它的安全性受到严重威胁。因为JAVA语言的安全性和网络处理能力较强,本文主要介绍使用IDEA(Internation Data Encryption Algorithm )数据加密算法在Java环境下实现数据的安全传输。

一、IDEA数据加密算法

IDEA数据加密算法是由中国学者来学嘉博士和着名的密码专家 James L. Massey 于1990年联合提出的。它的明文和密文都是64比特,但密钥长为128比特。IDEA 是作为迭代的分组密码实现的,使用 128 位的密钥和 8 个循环。这比 DES 提供了更多的 安全性,但是在选择用于 IDEA 的密钥时,应该排除那些称为“弱密钥”的密钥。DES 只有四个弱密钥和 12 个次弱密钥,而 IDEA 中的弱密钥数相当可观,有 2 的 51 次方个。但是,如果密钥的总数非常大,达到 2 的 128 次方个,那么仍有 2 的 77 次方个密钥可供选择。IDEA 被认为是极为安全的。使用 128 位的密钥,蛮力攻击中需要进行的测试次数与 DES 相比会明显增大,甚至允许对弱密钥测试。而且,它本身 也显示了它尤其能抵抗专业形式的分析性攻击。

二、Java密码体系和Java密码扩展

Java是Sun公司开发的一种面向对象的编程语言,并且由于它的平台无关性被大量应用于Internet的开发。Java密码体系(JCA)和Java密码扩展(JCE)的设计目的是为Java提供与实现无关的加密函数API。它们都用factory方法来创建类的例程,然后把实际的加密函数委托给提供者指定的底层引擎,引擎中为类提供了服务提供者接口在Java中实现数据的加密/解密,是使用其内置的JCE(Java加密扩展)来实现的。Java开发工具集1.1为实现包括数字签名和信息摘要在内的加密功能,推出了一种基于供应商的新型灵活应用编程接口。Java密码体系结构支持供应商的互操作,同时支持硬件和软件实现。Java密码学结构设计遵循两个原则:(1)算法的独立性和可靠性。(2)实现的独立性和相互作用性。算法的独立性是通过定义密码服务类来获得。用户只需了解密码算法的概念,而不用去关心如何实现这些概念。实现的独立性和相互作用性通过密码服务提供器来实现。密码服务提供器是实现一个或多个密码服务的一个或多个程序包。软件开发商根据一定接口,将各种算法实现后,打包成一个提供器,用户可以安装不同的提供器。安装和配置提供器,可将包含提供器的ZIP和JAR文件放在CLASSPATH下,再编辑Java安全属性文件来设置定义一个提供器。Java运行环境Sun版本时,提供一个缺省的提供器Sun。

三、Java环境下的实现

1.加密过程的实现

void idea_enc( int data11[], /*待加密的64位数据首地址*/ int key1[]){
int i ;
int tmp,x;
int zz[]=new int[6];
for ( i = 0 ; i < 48 ; i += 6) { /*进行8轮循环*/
for(int j=0,box=i;j<6;j++,box++){
zz[j]=key1[box];
}
x = handle_data(data11,zz);
tmp = data11[1]; /*交换中间两个*/
data11[1] = data11[2];
data11[2] = tmp;
}
tmp = data11[1]; /*最后一轮不交换*/
data11[1] = data11[2];
data11[2] = tmp;
data11[0] = MUL(data11[0],key1[48]);
data11[1] =(char)((data11[1] + key1[49])%0x10000);
data11[2] =(char)((data11[2] + key1[50])%0x10000);
data11[3] = MUL(data11[3],key1[51]);
}

2.解密过程的实现

void key_decryExp(int outkey[])/*解密密钥的变逆处理*/
{ int tmpkey[] = new int[52] ;
int i;
for ( i = 0 ; i < 52 ; i++) {
tmpkey[i] = outkey[ wz_spkey[i] ] ;/*换位*/
}
for ( i = 0 ; i < 52 ; i++) {
outkey[i] = tmpkey[i];
}
for ( i = 0 ; i < 18 ; i++) {
outkey[wz_spaddrever[i]] = (char)(65536-outkey[wz_spaddrever[i]]) ;/*替换成加法逆*/
}
for ( i = 0 ; i < 18 ; i++){
outkey[wz_spmulrevr[i]] =(char)(mulInv(outkey[wz_spmulrevr[i]] ));/*替换成乘法逆*/
}
}

四、总结

在实际应用中,我们可以使用Java开发工具包(JDK)中内置的对Socket通信的支持,通过JCE中的Java流和链表,加密基于Socket的网络通信.我们知道,加密/解密是数据传输中保证数据完整性的常用方法,Java语言因其平台无关性,在Internet上的应用非常之广泛.使用Java实现基于IDEA的数据加密传输可以在不同的平台上实现并具有实现简洁、安全性强等优点。

❻ IDEA加密算法适合iOSAPP开发吗

1、Spongy Castle
Spongy Castle 允许安卓开发者在应用程序中使用任意版本的 BouncyCastle 类库。SpongyCastle 就是对最新版本的 BouncyCastle 进行了简单地重新打包 。

2、Bouncy Castle
Bouncy Castle 是一个广泛使用的类库。它提供了一个轻量级的密码学 API,也是一个 Java 密码扩展(JCE)的提供者。安卓平台已经内置了一个精简过的老版本 Bouncy Castle 。

3、Conceal
Conceal既可以进行认证,也可以进行加密,同时默认也提供了密钥管理功能。

4、AeroGear Crypto
AeroGear Crypto 支持可认证的对称加密,椭圆曲线加密,基于密码的秘钥推导。它也提供了算法的显式设定。 不仅是Android,同样适用于 iOS,Windows Phone 和 Cordova 。

5、Keyczar
Keyczar 是一组开源工具包,用 Java,Python 和 C++ 语言实现。它支持对称加密和费堆成加密两种鉴权方式。 Keyczar基于JCE构建,使用了Spongy Castle的安全提供程序。

6、OpenSSL
OpenSSL 是一个实现了 SSL 和 TLS 协议以及通用密码库的开源工具包。OpenSSL 移植到了包括安卓在内的很多平台。

目前市面上有很多第三方提供加固的平台, 如果新应用发布前需要扫描或者加固的话,可以先试试的,例如腾讯御安全,建议先去扫描测试下。

❼ idea加密算法属于什么密码体制

在对称密钥体制中,它的加密密钥与解密密钥的密码体制是相同的,且收发双方必须共享密钥,对称密码的密钥是保密的,没有密钥,解密就不可行,知道算法和若干密文不足以确定密钥。公钥密码体制中,它使用不同的加密密钥和解密密钥,且加密密钥是向公众公开的,而解密密钥是需要保密的,发送方拥有加密或者解密密钥,而接收方拥有另一个密钥。两个密钥之一也是保密的,无解密密钥,解密不可行,知道算法和其中一个密钥以及若干密文不能确定另一个密钥。
优点:对称密码技术的优点在于效率高,算法简单,系统开销小,适合加密大量数据。对称密钥算法具有加密处理简单,加解密速度快,密钥较短,发展历史悠久等优点。
缺点:对称密码技术进行安全通信前需要以安全方式进行密钥交换,且它的规模复杂。公钥密钥算法具有加解密速度慢的特点,密钥尺寸大,发展历史较短等特点。

❽ 十大常见密码加密方式

一、密钥散列

采用MD5或者SHA1等散列算法,对明文进行加密。严格来说,MD5不算一种加密算法,而是一种摘要算法。无论多长的输入,MD5都会输出一个128位(16字节)的散列值。而SHA1也是流行的消息摘要算法,它可以生成一个被称为消息摘要的160位(20字节)散列值。MD5相对SHA1来说,安全性较低,但是速度快;SHA1和MD5相比安全性高,但是速度慢。

二、对称加密

采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密。对称加密算法中常用的算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK等。

三、非对称加密

非对称加密算法是一种密钥的保密方法,它需要两个密钥来进行加密和解密,这两个密钥是公开密钥和私有密钥。公钥与私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密。非对称加密算法有:RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。

四、数字签名

数字签名(又称公钥数字签名)是只有信息的发送者才能产生的别人无法伪造的一段数字串,这段数字串同时也是对信息的发送者发送信息真实性的一个有效证明。它是一种类似写在纸上的普通的物理签名,但是在使用了公钥加密领域的技术来实现的,用于鉴别数字信息的方法。

五、直接明文保存

早期很多这样的做法,比如用户设置的密码是“123”,直接就将“123”保存到数据库中,这种是最简单的保存方式,也是最不安全的方式。但实际上不少互联网公司,都可能采取的是这种方式。

六、使用MD5、SHA1等单向HASH算法保护密码

使用这些算法后,无法通过计算还原出原始密码,而且实现比较简单,因此很多互联网公司都采用这种方式保存用户密码,曾经这种方式也是比较安全的方式,但随着彩虹表技术的兴起,可以建立彩虹表进行查表破解,目前这种方式已经很不安全了。

七、特殊的单向HASH算法

由于单向HASH算法在保护密码方面不再安全,于是有些公司在单向HASH算法基础上进行了加盐、多次HASH等扩展,这些方式可以在一定程度上增加破解难度,对于加了“固定盐”的HASH算法,需要保护“盐”不能泄露,这就会遇到“保护对称密钥”一样的问题,一旦“盐”泄露,根据“盐”重新建立彩虹表可以进行破解,对于多次HASH,也只是增加了破解的时间,并没有本质上的提升。

八、PBKDF2

该算法原理大致相当于在HASH算法基础上增加随机盐,并进行多次HASH运算,随机盐使得彩虹表的建表难度大幅增加,而多次HASH也使得建表和破解的难度都大幅增加。

九、BCrypt

BCrypt 在1999年就产生了,并且在对抗 GPU/ASIC 方面要优于 PBKDF2,但是我还是不建议你在新系统中使用它,因为它在离线破解的威胁模型分析中表现并不突出。

十、SCrypt

SCrypt 在如今是一个更好的选择:比 BCrypt设计得更好(尤其是关于内存方面)并且已经在该领域工作了 10 年。另一方面,它也被用于许多加密货币,并且我们有一些硬件(包括 FPGA 和 ASIC)能实现它。 尽管它们专门用于采矿,也可以将其重新用于破解。

❾ 文件加密怎么加密文件

具体操作步骤如下:
1、右键点击要加密的文件,点击添加到压缩文件,点击添加密码,输入密码,再次输入密码以确认,然后点击确认
2、点击立即压缩,等待压缩完成删除原文件,双击压缩文件,可以看到必须要验证密码才能提取文件
文件加密是一种根据要求在操作系统层自动地对写入存储介质的数据进行加密的技术。包括WINDOWS自带的文件加密功能等。文件加密按加密途径可分为两类:一类是WINDOWS系统自带的文件加密功能,一类是采用加密算法实现的商业化加密软件。WINDOWS系统加密方法有五种,商业化的加密软件又分为驱动级加密和插件级加密;如果按加密算法又可分为三类:对称IDEA算法、非对称RSA算法、不可逆AES算法。
简单文件加密方法:
创建
1、在运行中输入cmd,回车
2、切换到想要建立文件夹的硬盘分区,如D盘输入:d:回车
3、输入md新建文件夹..回车,注意文件夹名后有2个小数点,D盘下面就有了一个名为新建文件夹。的文件夹它是既不能进入又不能被删除的!
删除
1、在运行中输入cmd,回车。
2、输入:D:回车然后输入rd新建文件夹..回车,即可删除,当然删除前请确认里面的文件都是不需要的,不要删错了。
查看
1、在运行中输入cmd,回车
2、在命令行窗口中输入startD:新建文件夹../这里一定要是文件夹的绝对路径,否则无法打开即可打开此文件夹。

阅读全文

与idea加密方法相关的资料

热点内容
pdfplus 浏览:577
汇编O命令 浏览:970
plt转pdf 浏览:364
魔兽60宏命令大全 浏览:478
php志愿者网站源码 浏览:874
贸易pdf 浏览:497
dbug命令 浏览:351
开逛app如何加好友 浏览:960
ftpdos命令下载文件 浏览:75
华为如何打开语音服务器 浏览:243
python中的idle 浏览:1000
五轴联动数控编程 浏览:965
换一台电脑如何远程云服务器 浏览:133
阿里云怎么买云服务器 浏览:665
java提取文字 浏览:97
阿里云服务器同人账号问题 浏览:421
5分钟解压轴题 浏览:341
安卓桌面二级文件夹 浏览:188
eps文档加密 浏览:261
手机怎么做pdf 浏览:162