⑴ matlab神经网络43个案例分析.pdf
哥们, 这书还真没搜到PDF电子版的, 估计人家就是想用来卖钱的,版权意识特么强。 这么厚的书,又全是干货,才32块,很便宜了,真想要学习,推荐买一本,亚马逊,当当,京东上都有卖。不过就算没买,到神经网络之家、matlabsky、数学中国、matlab中文论坛等一些免费论坛看看贴,一样学习。希望对你有帮助。
⑵ 神经网络的基本原理是什么
神经网络的基本哗慎原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化。基本上,神经网络余虚是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处理分类,就是我们要的输出。
神经网络常见的工具:
以上内容参考:在众多的神经网络工具中,NeuroSolutions始终处于业界领先位置。它是一个可用于windows XP/7高度图乱毁敬形化的神经网络开发工具。其将模块化,基于图标的网络设计界面,先进的学习程序和遗传优化进行了结合。该款可用于研究和解决现实世界的复杂问题的神经网络设计工具在使用上几乎无限制。
以上内容参考:网络-神经网络
⑶ 《深度学习之图像识别核心技术与案例实战》pdf下载在线阅读全文,求百度网盘云资源
《深度学习之图像识别核心技术与案例实战》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1wGMmgT18o8U2Y0uE5C2QfA
⑷ 神经网络设计如何提高精度
增加神经网络训漏仿并练目标,以返迹提高精度要求:
trainParam.goal = 0.01 %0.01表示训练目标误差为大判0.01
⑸ 明年一月股票价格属于逻辑回归问题吗
是的,明年一月股票价格属于逻辑回归问题。逻辑回归这个模型很神奇,虽然它的本质也是回归,但是它是一个分类模型,并且它的名字当中又包含”回归“两个字,未免让人觉得莫名其妙。
如果是初学者,觉得头晕是正常的,没关系,让我们一点点捋清楚。
让我们先回到线性回归,我们都知道,线性回归当中 y = WX + b。我们通过W和b可以求出誉腊X对应的y,这里的y是一个连续值,是回归模型对吧。但如果我们希望这个模型来做分类呢,应该怎么办?很容易想到,我们可以人为地设置阈值对吧,比如我们规定y > 0最后的分类是1,y < 0最后的分类是0。从表面上来看,这当然是可以的,但实际上这样操作会有很多问题。
最大的问题在于如果我们简单地设计一个阈值来做判断,那么会导致最后的y是一个分段函数,而分段函数不连续,使得我们没有办法对它求梯度,为了解决这个问题,我们得找到一个平滑的函数使得既可以用来做分类,又可以解决梯度的问题。
很快,信息学家们找到了这样一个函数,它就是Sigmoid函数,它的表达式是:
.png
它的函数图像如下:
.png
可以看到,sigmoid函数在x=0处取值0.5,在正无穷处极限是1,在负无穷处极限是0,并且函数连续,处处可导。sigmoid的函数值的取值范围是0-1,非常适合用来反映一个事物发生世虚缺的概率。我们认为
σ(x) 表示x发生的概率,那么x不发生的概率就是 1 - σ(x) 。我们把发生和不发生看成是两个类别,那么sigmoid函数就转化成了分类函数,如果 σ(x) > 0.5 表示类别1,否则表示类别0.
到这里就很简单了,通过线性回归我们可以得到
.png
也就是说我们在线性回归模型的外面套了一层sigmoid函数,我们通过计算出不同的y,从而获得不同的概率,最后得到不同的分类结果。
损失函数
下面的推导全程高能,我相信你们看完会三连的(点赞、转发、关注)。
让我们开始吧,我们先来确定一下符号,为了区分,我们把训练样本当中的真实分类命名为y,y的矩阵写成 Y 。同样,单条样本写成 x , x 的矩阵写成 X。单条预测的结果写成 y_hat,所有的预测结果写成Y_hat。
对于单条样本来说,y有两个取值,可能是1,也可能是0,1和0代表两个不同的分类。我们希望 y = 1 的时候,y_hat 尽量大, y = 0 时, 1 - y_hat 尽量大,也就是 y_hat 尽量小,因为它取值在0-1之间。我们用一个式子来统一这两种情况:
.png
我们代入一下,y = 0 时前项搜辩为1,表达式就只剩下后项,同理,y = 1 时,后项为1,只剩下前项。所以这个式子就可以表示预测准确的概率,我们希望这个概率尽量大。显然,P(y|x) > 0,所以我们可以对它求对数,因为log函数是单调的。所以 P(y|x) 取最值时的取值,就是 log P(y|x) 取最值的取值。
.png
我们期望这个值最大,也就是期望它的相反数最小,我们令
.png
这样就得到了它的损失函数:
.png
如果知道交叉熵这个概念的同学,会发现这个损失函数的表达式其实就是交叉熵。交叉熵是用来衡量两个概率分布之间的”距离“,交叉熵越小说明两个概率分布越接近,所以经常被用来当做分类模型的损失函数。关于交叉熵的概念我们这里不多赘述,会在之后文章当中详细介绍。我们随手推导的损失函数刚好就是交叉熵,这并不是巧合,其实底层是有一套信息论的数学逻辑支撑的,我们不多做延伸,感兴趣的同学可以了解一下。
硬核推导
损失函数有了,接下来就是求梯度来实现梯度下降了。
这个函数看起来非常复杂,要对它直接求偏导算梯度过于硬核(危),如果是许久不碰高数的同学直接肝不亚于硬抗苇名一心。
.png
为了简化难度,我们先来做一些准备工作。首先,我们先来看下σ 函数,它本身的形式很复杂,我们先把它的导数搞定。
.png
因为 y_hat = σ(θX) ,我们将它带入损失函数,可以得到,其中σ(θX)简写成σ(θ) :
.png
接着我们求 J(θ) 对 θ 的偏导,这里要代入上面对 σ(x) 求导的结论:
.png
代码实战
梯度的公式都推出来了,离写代码实现还远吗?
不过巧妇难为无米之炊,在我们撸模型之前,我们先试着造一批数据。
我们选择生活中一个很简单的场景——考试。假设每个学生需要参加两门考试,两门考试的成绩相加得到最终成绩,我们有一批学生是否合格的数据。希望设计一个逻辑回归模型,帮助我们直接计算学生是否合格。
为了防止sigmoid函数产生偏差,我们把每门课的成绩缩放到(0, 1)的区间内。两门课成绩相加超过140分就认为总体及格。
.png
这样得到的训练数据有两个特征,分别是学生两门课的成绩,还有一个偏移量1,用来记录常数的偏移量。
接着,根据上文当中的公式,我们不难(真的不难)实现sigmoid以及梯度下降的函数。
.png
这段函数实现的是批量梯度下降,对Numpy熟悉的同学可以看得出来,这就是在直接套公式。
最后,我们把数据集以及逻辑回归的分割线绘制出来。
.png
最后得到的结果如下:
.png
随机梯度下降版本
可以发现,经过了1万次的迭代,我们得到的模型已经可以正确识别所有的样本了。
我们刚刚实现的是全量梯度下降算法,我们还可以利用随机梯度下降来进行优化。优化也非常简单,我们计算梯度的时候不再是针对全量的数据,而是从数据集中选择一条进行梯度计算。
基本上可以复用梯度下降的代码,只需要对样本选取的部分加入优化。
.png
我们设置迭代次数为2000,最后得到的分隔图像结果如下:
.png
当然上面的代码并不完美,只是一个简单的demo,还有很多改进和优化的空间。只是作为一个例子,让大家直观感受一下:其实自己亲手写模型并不难,公式的推导也很有意思。这也是为什么我会设置高数专题的原因。CS的很多知识也是想通的,在学习的过程当中灵感迸发旁征博引真的是非常有乐趣的事情,希望大家也都能找到自己的乐趣。
今天的文章就是这些,如果觉得有所收获,请顺手点个关注或者转发吧,你们的举手之劳对我来说很重要。
相关资源:【原创】R语言对二分连续变量进行逻辑回归数据分析报告论文(代码...
文章知识点与官方知识档案匹配
算法技能树首页概览
33030 人正在系统学习中
打开CSDN,阅读体验更佳
VGG论文笔记及代码_麻花地的博客_vgg论文
VGG论文笔记及代码 VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION 牛津大学视觉组(VGG)官方网站:https://www.robots.ox.ac.uk/~vgg/ Abstract 在这项工作中,我们研究了在大规模图像识别环境中卷积网络深度对其...
...MNIST研究》论文和python代码_通信与逆向那些事的博客_机器...
1、逻辑回归算法 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归、最大熵分类器(MaxEnt)、对数线性分类器等。 使用sklearn.linear_model中的LogisticRegression方法来训练...
两个重要极限的推导
两个重要极限 (1) limθ→0sinθθ=1 (θ为弧度) \underset{\theta \rightarrow 0}{\lim}\frac{\sin \theta}{\theta}=1\ \ \text{(}\theta \text{为弧度)} θ→0limθsinθ=1 (θ为弧度) (2) limx→∞(1+1x)x=e \underset{x\rightarrow \infty}{\lim}\left( 1+\frac{1}{x} \ri
继续访问
两个重要极限及其推导过程
一、 证明:由上图可知, 即 二、 证明:首先证明此极限存在 构造数列 而对于n+1 ...
继续访问
...是多项式回归】Jeff Dean等论文发现逻辑回归和深度学习一样好_qq...
其中,基线 aEWS(augmented Early Warning Score)是一个有 28 个因子的逻辑回归模型,在论文作者对预测患者死亡率的传统方法 EWS 进行的扩展。而 Full feature simple baseline 则是 Uri Shalit 说的标准化逻辑回归。 注意到基线模型(红...
数学模型——Logistic回归模型(含Matlab代码)_苏三有春的博客...
Logistic回归模型是一种非常常见的统计回归模型,在处理大量数据,揭示各自变量如何作用于因变量(描述X与Y之间的关系)时有着十分重要的作用。笔者在写Logit回归模型前参加了一次市场调研比赛,在这次比赛中学到了很多东西,同时发现,许多优秀获...
《神经网络设计》第二章中传递函数
import math #硬极限函数 def hardlim(data): if data < 0: a = 0 else: a = 1 print("fun:hardlim,result:%f"%a) #对称硬极限函数 def hardlims(data): if data < 0: a = -1 e
继续访问
两个重要极限定理推导
两个重要极限定理: limx→0sinxx=1(1) \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 \tag{1} x→0limxsinx=1(1) 和 limx→∞(1+1x)x=e(2) \lim_{x \rightarrow \infty} (1 + \frac{1}{x})^x = e \tag{2} x→∞lim(1+x1)x=e(2) 引理(夹逼定理) 定义一: 如果数列 {Xn}\lbrace X_n \rbrace{Xn},{Yn}
继续访问
【原创】R语言对二分连续变量进行逻辑回归数据分析报告论文(代码...
【原创】R语言对二分连续变量进行逻辑回归数据分析报告论文(代码数据).docx资源推荐 资源评论 鲸鱼算法(WOA)优化变分模态分解(VMD)参数python 5星 · 资源好评率100% 1.python程序 2.有数据集,可直接运行 matlab批量读取excel表格数据...
机器学习--逻辑回归_科技论文精讲的博客
机器学习-逻辑回归分析(Python) 02-24 回归和分类方法是机器学习中经常用到的方法区分回归问题和分类问题:回归问题:输入变量和输出变量均为连续变量的问题;分类问题:输出变量为有限个离散变量的问题。因此分类及回归分别为研究这两类问题...
常见函数极限
limx→0sinx=1\lim_{x\to 0}\frac{\sin}{x}=1x→0limxsin=1 limx→∞(1+1x)x=e\lim_{x\to \infty}(1+\frac{1}{x})^x=ex→∞lim(1+x1)x=e limα→0(1+α)1α=e\lim_{\alpha\to 0}(1+\alpha)^\frac{1}{\alpha}=eα→0lim(...
继续访问
逻辑回归原理及代码实现
公式自变量取值为任意实数,值域[0,1]解释将任意的输入映射到了[0,1]区间,我们在线性回归中可以得到一个预测值,再将该值映射到Sigmoid函数中这样就完成了由值到概率的转换,也就是分类任务预测函数其中,分类任务整合解释对于二分类任务(0,1),整合后y取0只保留,y取1只保留似然函数对数似然此时应用梯度上升求最大值,引入转换为梯度下降任务求导过程参数更新多分类的softmax。............
继续访问
python手写数字识别论文_Python利用逻辑回归模型解决MNIST手写数字识别问...
本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题。分享给大家供大家参考,具体如下: 1、MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几。可以通过TensorFLow下载MNIST手写数据集,...
逻辑回归问题整理_暮雨林钟的博客
逻辑回归问题整理 之前只是简单的接触过逻辑回归,今天针对于最近看论文的疑惑做一个整理; 逻辑回归与极大似然的关系: 逻辑回归的提出主要是在线性问题下为分类问题而提出的; 简单来说,针对于一个二分类问题,我们需要将线性函数映射为一...
机器学习算法-逻辑回归(一):基于逻辑回归的分类预测(代码附详细注释)
1 逻辑回归的介绍和应用 1.1 逻辑回归的介绍 逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。 而对于逻辑回归而且,最为突出的两点就是其模型简单和模型的可解释性强。 逻辑回归模型的优劣势: 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低; 缺点:容易欠拟合,分类精度可能不高 1.2
继续访问
逻辑回归:原理+代码
(作者:陈玓玏) 逻辑回归算是传统机器学习中最简单的模型了,它的基础是线性回归,为了弄明白逻辑回归,我们先来看线性回归。 一、线性回归 假设共N个样本,每个样本有M个特征,这样就产生了一个N*M大小的样本矩阵。令矩阵为X,第i个样本为Xi,第i个样本的第j个特征为Xij。令样本的观测向量为Y,第i个样本的观测值为Yi,那么就会有以下公式: (X+[1]N*1)*W = Y 也就是说,...
继续访问
浅谈逻辑回归_jzhx107的博客
LMSE回归的回归平面受左上角两个绿色样本的影响而向上倾斜。 支持向量机的分离平面只由两个支持向量决定。 另外我们看到,在本例中逻辑回归和支持向量机得到的分离平面很接近,但是支持向量机的推导和训练过程要比逻辑回归复杂很多。所以加州...
论文研究-基于HBase的多分类逻辑回归算法研究.pdf_多分类逻辑回归...
论文研究-基于HBase的多分类逻辑回归算法研究.pdf,为解决在大数据环境下,用于训练多分类逻辑回归模型的数据集可能会超过执行计算的客户端内存的问题,提出了块批量梯度下降算法,用于计算回归模型的系数。将训练数据集存入HBase后,通过设置表...
【机器学习】 逻辑回归原理及代码
大家好,我是机器侠~1 Linear Regression(线性回归)在了解逻辑回归之前,我们先简单介绍一下Linear Regression(线性回归)。线性回归是利用连续性的变量来预估实际数值(比如房价),通过找出自变量与因变量之间的线性关系,确定一条最佳直线,称之为回归线。并且,我们将这个回归关系表示为2 Logistic Regression(...
继续访问
最新发布 【大道至简】机器学习算法之逻辑回归(Logistic Regression)详解(附代码)---非常通俗易懂!
逻辑回归详细推导,附github代码
继续访问
第二重要极限公式推导过程_机器学习——一文详解逻辑回归“附详细推导和代码”...
在之前的文章当中,我们推导了线性回归的公式,线性回归本质是线性函数,模型的原理不难,核心是求解模型参数的过程。通过对线性回归的推导和学习,我们基本上了解了机器学习模型学习的过程,这是机器学习的精髓,要比单个模型的原理重要得多。新关注和有所遗忘的同学可以点击下方的链接回顾一下之前的线性回归和梯度下降的内容。讲透机器学习中的梯度下降机器学习基础——线性回归公式推导(附代码和演示图)回归与分类在机器学习...
继续访问
机器学习之逻辑回归,代码实现(附带sklearn代码,小白版)
用小白的角度解释逻辑回归,并且附带代码实现
继续访问
热门推荐 两个重要极限及相关推导极限
两个重要极限: ①limx→0sinxx=1\lim_{x \to 0}\frac{\sin x}{x} = 1 ②limx→∞(1+1x)x=e\lim_{x \to \infty}(1 + \frac{1}{x})^x = e 关于重要极限①的推导极限可以参考: 无穷小的等价代换 由重要极限②可以推导出: limx→∞(1+1x)x⇒limx→0(1+x)1x=e\lim_{x \t
继续访问
(一)机器学习——逻辑回归(附完整代码和数据集)
什么是逻辑回归? 首先逻辑回归是一种分类算法。逻辑回归算法和预测类算法中的线性回归算法有一定的类似性。简单来讲,逻辑回归,就是通过回归的方法来进行分类,而不是进行预测,比如预测房价等。 逻辑回归解决的问题 先看下面的图,已知平面上分布的红点和蓝点,逻辑回归算法就是解决怎么根据一系列点,计算出一条直线(或者是平面)将平面上的点分成两类,一般的解决方法就是建立一个数学模型,然后通过迭代优化得到一个最优...
继续访问
机器学习:逻辑回归及其代码实现
一、逻辑回归(logistic regression)介绍 逻辑回归,又称为对数几率回归,虽然它名字里面有回归二字,但是它并不像线性回归一样用来预测数值型数据,相反,它一般用来解决分类任务,特别是二分类任务。 本质上,它是一个percetron再加上一个sigmoid激活函数,如下所示: 然后逻辑回归采用的损失函数是交叉熵: ...
继续访问
逻辑回归,原理及代码实现
Ⅰ.逻辑回归概述: 逻辑回归(LR,Logistic Regression)是传统机器学习中的一种分类模型,它属于一种在线学习算法,可以利用新的数据对各个特征的权重进行更新,而不需要重新利用历史数据训练。因此在实际开发中,一般针对该类任务首先都会构建一个基于LR的模型作为Baseline Model,实现快速上线,然后在此基础上结合后续业务与数据的演进,不断的优化改进。 由于LR算法具有简单、高效、易于并行且在线学习(动态扩展)的特点,在工业界具有非常广泛的应用。例如:评论信息正负情感分析(二分类)、用户点
继续访问
逻辑(logistic)回归算法原理及两种代码实现
①简单介绍了逻辑回归的原理 ②介绍了两种代码实现方法
继续访问
由两个重要极限推导常见等价无穷小以及常见导数公式
两个重要极限 第一个重要极限 limx→0xsinx=1 \lim_{x\rightarrow0}\frac{x}{sinx}=1x→0limsinxx=1 第二个重要极限 limx→+∞(1+1x)x=e \lim_{x\rightarrow+\infty}(1+\frac{1}{x})^x=ex→+∞lim(1+x1)x=e 等价无穷小 1. ln(1+x)~x limx→0ln(1+x)x=limx→0ln(1+x)1x=ln(limx→+∞(1+1x)x)=lne=1 \lim_{
继续访问
机器学习——逻辑回归算法代码实现
机器学习——逻辑回归算法代码实现前言一、逻辑回归是什么?二、代码实现1.数据说明2.逻辑回归代码 前言 最近准备开始学习机器学习,后续将对学习内容进行记录,该文主要针对逻辑回归代码实现进行记录!同时也准备建一个群,大家可以进行交流,微信:ffengjixuchui 一、逻辑回归是什么? 逻辑回归概念篇可看博主之前的文章,传送门 二、代码实现 1.数据说明 你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。
⑹ 《神经网络与深度学习讲义》pdf下载在线阅读全文,求百度网盘云资源
《神数姿经网络银毕链与深度学习讲义》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1RJ3mrqg_HR7UBzA1ut8c5g
⑺ 一文读懂神经网络
要说近几年最引人注目的技术,无疑的,非人工智能莫属。无论你是否身处科技互联网行业,随处可见人工智能的身影:从 AlphaGo 击败世界围棋冠军,到无人驾驶概念的兴起,再到科技巨头 All in AI,以及各大高校向社会输送海量的人工智能专业的毕业生。以至于人们开始萌生一个想法:新的革命就要来了,我们的世界将再次发生一次巨芦返变;而后开始焦虑:我的工作是否会被机器取代?我该如何才能抓住这次革命?
人工智能背后的核心技术是深度神经网络(Deep Neural Network),大概是一年前这个时候,我正在回老家的高铁上学习 3Blue1Brown 的 Neural Network 系列视频课程,短短 4 集 60 多分钟的时间,就把神经网络从 High Level 到推导细节说得清清楚楚,当时的我除了获得新知的兴奋之外,还有一点新的认知,算是给头脑中的革命性的技术泼了盆冷水:神经网络可以解决一些复杂的、以前很难通过写程序来完成的任务——例如图像、语音识别等,但它的实现机制告诉我,神经网络依然没有达到生物级别的智能,短期内期待它来取代人也是不可能的。
一年后的今天,依然在这个春运的时间点,将我对神经网络的理解写羡哗悔下来,算是对这部分知识的一个学习笔记,运气好的话,还可以让不了解神经网络的同学了解起来。
维基网络这样解释 神经网络 :
这个定义比较宽泛,你甚至还可以用它来定义其它的机器学习算法,例如之前我们一起学习的逻辑回归和 GBDT 决策树。下面我们具体一点,下图是一个逻辑回归的示意图:
其中 x1 和 x2 表示输入,w1 和 w2 是模型的参数,z 是一个线性函数:
接着我们对 z 做一个 sigmod 变换(图中蓝色圆),得到输出 y:
其实,上面的逻辑回归就可以看成是一个只有 1 层 输入层 , 1 层 输出层 的神经网络,图中容纳数字的圈儿被称作 神经元 ;其中,层与层之间的连接 w1、w2 以及 b,是这个 神经网络的参数 ,层之间如果每个神经元之间都保持着连接,这样的层被称为 全连接层 (Full Connection Layer),或 稠密层 (Dense Layer);此外,sigmoid 函数又被称作 激活函数 (Activation Function),除了 sigmoid 外,常用的激活函数还有 ReLU、tanh 函数等,这些函数都起到将线性函数进行非线性变换的作用。我们还剩下一个重要的概念: 隐藏层 ,它需要把 2 个以上的逻辑回归叠加起来加以说明:
如上兄正图所示,除输入层和输出层以外,其他的层都叫做 隐藏层 。如果我们多叠加几层,这个神经网络又可以被称作 深度神经网络 (Deep Neural Network),有同学可能会问多少层才算“深”呢?这个没有绝对的定论,个人认为 3 层以上就算吧:)
以上,便是神经网络,以及神经网络中包含的概念,可见,神经网络并不特别,广义上讲,它就是
可见,神经网络和人脑神经也没有任何关联,如果我们说起它的另一个名字—— 多层感知机(Mutilayer Perceptron) ,就更不会觉得有多么玄乎了,多层感知机创造于 80 年代,可为什么直到 30 年后的今天才爆发呢?你想得没错,因为改了个名字……开个玩笑;实际上深度学习这项技术也经历过很长一段时间的黑暗低谷期,直到人们开始利用 GPU 来极大的提升训练模型的速度,以及几个标志性的事件:如 AlphaGo战胜李世石、Google 开源 TensorFlow 框架等等,感兴趣的同学可以翻一下这里的历史。
就拿上图中的 3 个逻辑回归组成的神经网络作为例子,它和普通的逻辑回归比起来,有什么优势呢?我们先来看下单逻辑回归有什么劣势,对于某些情况来说,逻辑回归可能永远无法使其分类,如下面数据:
这 4 个样本画在坐标系中如下图所示
因为逻辑回归的决策边界(Decision Boundary)是一条直线,所以上图中的两个分类,无论你怎么做,都无法找到一条直线将它们分开,但如果借助神经网络,就可以做到这一点。
由 3 个逻辑回归组成的网络(这里先忽略 bias)如下:
观察整个网络的计算过程,在进入输出层之前,该网络所做的计算实际上是:
即把输入先做了一次线性变换(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一个非线性变换(sigmoid),得到 [x1', x2'] ,(线性变换的概念可以参考 这个视频 )。从这里开始,后面的操作就和一个普通的逻辑回归没有任何差别了,所以它们的差异在于: 我们的数据在输入到模型之前,先做了一层特征变换处理(Feature Transformation,有时又叫做特征抽取 Feature Extraction),使之前不可能被分类的数据变得可以分类了 。
我们继续来看下特征变换的效果,假设 为 ,带入上述公式,算出 4 个样本对应的 [x1', x2'] 如下:
再将变换后的 4 个点绘制在坐标系中:
显然,在做了特征变换之后,这两个分类就可以很容易的被一条决策边界分开了。
所以, 神经网络的优势在于,它可以帮助我们自动的完成特征变换或特征提取 ,尤其对于声音、图像等复杂问题,因为在面对这些问题时,人们很难清晰明确的告诉你,哪些特征是有用的。
在解决特征变换的同时,神经网络也引入了新的问题,就是我们需要设计各式各样的网络结构来针对性的应对不同的场景,例如使用卷积神经网络(CNN)来处理图像、使用长短期记忆网络(LSTM)来处理序列问题、使用生成式对抗网络(GAN)来写诗和作图等,就连去年自然语言处理(NLP)中取得突破性进展的 Transformer/Bert 也是一种特定的网络结构。所以, 学好神经网络,对理解其他更高级的网络结构也是有帮助的 。
上面说了,神经网络可以看作一个非线性函数,该函数的参数是连接神经元的所有的 Weights 和 Biases,该函数可以简写为 f(W, B) ,以手写数字识别的任务作为例子:识别 MNIST 数据集 中的数字,数据集(MNIST 数据集是深度学习中的 HelloWorld)包含上万张不同的人写的数字图片,共有 0-9 十种数字,每张图片为 28*28=784 个像素,我们设计一个这样的网络来完成该任务:
把该网络函数所具备的属性补齐:
接下来的问题是,这个函数是如何产生的?这个问题本质上问的是这些参数的值是怎么确定的。
在机器学习中,有另一个函数 c 来衡量 f 的好坏,c 的参数是一堆数据集,你输入给 c 一批 Weights 和 Biases,c 输出 Bad 或 Good,当结果是 Bad 时,你需要继续调整 f 的 Weights 和 Biases,再次输入给 c,如此往复,直到 c 给出 Good 为止,这个 c 就是损失函数 Cost Function(或 Loss Function)。在手写数字识别的列子中,c 可以描述如下:
可见,要完成手写数字识别任务,只需要调整这 12730 个参数,让损失函数输出一个足够小的值即可,推而广之,绝大部分神经网络、机器学习的问题,都可以看成是定义损失函数、以及参数调优的问题。
在手写识别任务中,我们既可以使用交叉熵(Cross Entropy)损失函数,也可以使用 MSE(Mean Squared Error)作为损失函数,接下来,就剩下如何调优参数了。
神经网络的参数调优也没有使用特别的技术,依然是大家刚接触机器学习,就学到的梯度下降算法,梯度下降解决了上面迭代过程中的遗留问题——当损失函数给出 Bad 结果时,如何调整参数,能让 Loss 减少得最快。
梯度可以理解为:
把 Loss 对应到 H,12730 个参数对应到 (x,y),则 Loss 对所有参数的梯度可以表示为下面向量,该向量的长度为 12730:
$$
abla L(w,b) = left[
frac{partial L}{partial w_1},
frac{partial L}{partial w_2},...,
frac{partial L}{partial b_{26}}
ight] ^ op
$$
所以,每次迭代过程可以概括为
用梯度来调整参数的式子如下(为了简化,这里省略了 bias):
上式中, 是学习率,意为每次朝下降最快的方向前进一小步,避免优化过头(Overshoot)。
由于神经网络参数繁多,所以需要更高效的计算梯度的算法,于是,反向传播算法(Backpropagation)呼之欲出。
在学习反向传播算法之前,我们先复习一下微积分中的链式法则(Chain Rule):设 g = u(h) , h = f(x) 是两个可导函数,x 的一个很小的变化 △x 会使 h 产生一个很小的变化 △h,从而 g 也产生一个较小的变化 △g,现要求 △g/△x,可以使用链式法则:
有了以上基础,理解反向传播算法就简单了。
假设我们的演示网络只有 2 层,输入输出都只有 2 个神经元,如下图所示:
其中 是输入, 是输出, 是样本的目标值,这里使用的损失函数 L 为 MSE;图中的上标 (1) 或 (2) 分别表示参数属于第 (1) 层或第 (2) 层,下标 1 或 2 分别表示该层的第 1 或 第 2 个神经元。
现在我们来计算 和 ,掌握了这 2 个参数的偏导数计算之后,整个梯度的计算就掌握了。
所谓反向传播算法,指的是从右向左来计算每个参数的偏导数,先计算 ,根据链式法则
对左边项用链式法则展开
又 是输出值, 可以直接通过 MSE 的导数算出:
而 ,则 就是 sigmoid 函数的导数在 处的值,即
于是 就算出来了:
再来看 这一项,因为
所以
注意:上面式子对于所有的 和 都成立,且结果非常直观,即 对 的偏导为左边的输入 的大小;同时,这里还隐含着另一层意思:需要调整哪个 来影响 ,才能使 Loss 下降得最快,从该式子可以看出,当然是先调整较大的 值所对应的 ,效果才最显着 。
于是,最后一层参数 的偏导数就算出来了
我们再来算上一层的 ,根据链式法则 :
继续展开左边这一项
你发现没有,这几乎和计算最后一层一摸一样,但需要注意的是,这里的 对 Loss 造成的影响有多条路径,于是对于只有 2 个输出的本例来说:
上式中, 都已经在最后一层算出,下面我们来看下 ,因为
于是
同理
注意:这里也引申出梯度下降的调参直觉:即要使 Loss 下降得最快,优先调整 weight 值比较大的 weight。
至此, 也算出来了
观察上式, 所谓每个参数的偏导数,通过反向传播算法,都可以转换成线性加权(Weighted Sum)计算 ,归纳如下:
式子中 n 代表分类数,(l) 表示第 l 层,i 表示第 l 层的第 i 个神经元。 既然反向传播就是一个线性加权,那整个神经网络就可以借助于 GPU 的矩阵并行计算了 。
最后,当你明白了神经网络的原理,是不是越发的认为,它就是在做一堆的微积分运算,当然,作为能证明一个人是否学过微积分,神经网络还是值得学一下的。Just kidding ..
本文我们通过
这四点,全面的学习了神经网络这个知识点,希望本文能给你带来帮助。
参考:
⑻ 人工智能时代,神经网络的原理及使用方法 | 微课堂
人工智能时代已经悄然来临,在计算机技术高速发展的未来,机器是否能代替人脑?也许有些读者会说,永远不可能,因为人脑的思考包含感性逻辑。事实上,神经网络算法正是在模仿人脑的思考方式。想不想知道神经网络是如何“思考”的呢?下面我向大家简单介绍一下神经网络的原理及使用方法。
所谓人工智能,就是让机器具备人的思维和意识。人工智能主要有三个学派——行为主义、符号主义和连接主义。
行为主义是基于控制论,是在构建感知动作的控制系统。理解行为主义有个很好的例子,就是让机器人单脚站立,通过感知要摔倒的方向控制两只手的动作,保持身体的平衡,这就构建了一个感知动作控制系统。
符号主义是基于算数逻辑和表达式。求解问题时,先把问题描述为表达式,再求解表达式。如果你在求解某个问题时,可以用if case这样的条件语句,和若干计算公式描述出来,这就使用了符号主义的方法,比如“专家系统”。符号主义可以认为是用公式描述的人工智能,它让计算机具备了理性思维。但是人类不仅具备理性思维,还具备无法用公式描述的感性思维。比如,如果你看过这篇推送,下回再见到“符号主义”几个字,你会觉得眼熟,会想到这是人工智能相关的知识,这是人的直觉,是感性的。
连接主义就是在模拟人的这种感性思维,是在仿造人脑内的神经元连接关系。这张图给出了人脑中的一根神经元,左侧是神经元的输入,“轴突”部分是神经元的输出。人脑就是由860亿个这样的神经元首尾相接组成的网络。
神经网络可以让计算机具备感性思维。我们首先理解一下基于连接主义的神经网络设计过程。这张图给出了人类从出生到24个月神经网络的变化:
随着我们的成长,大量的数据通过视觉、听觉涌入大脑,使我们的神经网络连接,也就是这些神经元连线上的权重发生了变化,有些线上的权重增强了,有些线上的权重减弱了。
我们要用计算机仿出这些神经网络连接关系,让计算机具备感性思维。
首先需要准备数据,数据量越大越好,以构成特征和标签对。如果想识别猫,就要有大量猫的图片和这张图片是猫的标签构成特征标签对,然后搭建神经网络的网络结构,再通过反向传播优化连接的权重,直到模型的识别准确率达到要求,得到最优的连线权重,把这个模型保存起来。最后用保存的模型输入从未见过的新数据,它会通过前向传播输出概率值,概率值最大的一个就是分类和预测的结果。
我们举个例子来感受一下神经网络的设计过程。鸢尾花可以分为三类:狗尾鸢尾、杂色鸢尾和佛吉尼亚鸢尾。我们拿出一张图,需要让计算机判断这是哪类鸢尾花。人们通过经验总结出了规律:通过测量花的花萼长、花萼宽、花瓣长、花瓣宽分辨出鸢尾花的类别,比如花萼长>花萼宽,并且花瓣长/花瓣宽>2,则可以判定为这是第一种,杂色鸢尾。看到这里,也许有些读者已经想到用if、case这样的条件语句来实现鸢尾花的分类。没错,条件语句根据这些信息可以判断鸢尾花分类,这是一个非常典型的专家系统,这个过程是理性计算。只要有了这些数据,就可以通过条件判定公式计算出是哪类鸢尾花。但是我们发现鸢尾花的种植者在识别鸢尾花的时候并不需要这么理性的计算,因为他们见识了太多的鸢尾花,一看就知道是哪种,而且随着经验的增加,识别的准确率会提高。这就是直觉,是感性思维,也是我们这篇文章想要和大家分享的神经网络方法。
这种神经网络设计过程首先需要采集大量的花萼长、花萼宽、花瓣长、花瓣宽,和它们所对应的是哪种鸢尾花。花萼长、花萼宽、花瓣长、花瓣宽叫做输入特征,它们对应的分类叫做标签。大量的输入特征和标签对构建出数据集,再把这个数据集喂入搭建好的神经网络结构,网络通过反向传播优化参数,得到模型。当有新的、从未见过的输入特征,送入神经网络时,神经网络会输出识别的结果。
展望21世纪初,在近十年神经网络理论研究趋向的背景下,神经网络理论的主要前沿领域包括:
一、对智能和机器关系问题的认识进一步增长。
研究人类智力一直是科学发展中最有意义,也是空前困难的挑战性问题。人脑是我们所知道的唯一智能系统,具有感知识别、学习、联想、记忆、推理等智能。我们通过不断 探索 人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,这样可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。
神经网络是由大量处理单元组成的非线性、自适应、自组织系统,是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境——问题——目的”,有极大的诱惑力与压力,它的发展方向将是把基于连接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机地结合起来。
二、神经计算和进化计算的重大发展。
计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断 探索 新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息 社会 ,对信息的获取、处理和传输问题,对网络路由优化问题,对数据安全和保密问题等等将有新的要求,这些将成为 社会 运行的首要任务。因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,例如大范围计算机网络的自组织功能实现就要进行进化计算。
人类的思维方式正在转变,从线性思维转到非线性思维神经元,神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性。我们在计算智能的层次上研究非线性动力系统、混沌神经网络以及对神经网络的数理研究,进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。
以上就是有关神经网络的相关内容,希望能为读者带来帮助。
以上内容由苏州空天信息研究院谢雨宏提供。
⑼ 我对MATLAB面向对象编程很感兴趣,请问哪位有《MATLAB面向对象编程——从入门到设计》电子版 谢谢了
这本书,我没有,但是我又这些,有你有用的吗?找找看!
MATLAB6工程计算及应用.txt
MATLAB与数学实验(第2版).pdf
应用Web和MATLAB的信号与系统基础(第二版).pdf
MATLAB 语言即学即会.PDF
MATLAB 电子仿真与应用33.PDF
MATLAB 神经网络工具箱函数.PDF
MATLAB 神经网络工具箱应用简介.PDF
MATLAB 神经网络应用设计.PDF
MATLAB 程序设计.PDF
MATLAB 程序设计与实例应用.PDF
MATLAB 程序设计与应用3.PDF
MATLAB 程序设计教程.PDF
MATLAB 程序设计语言.PDF
MATLAB 程式设计与应用.PDF
MATLAB 符号数学工具箱应用简介.PDF
MATLAB 语言与控制系统仿真.PDF
MATLAB 语言与数学建模.PDF
Matlab和Maple系统在力学教学中的应用.pdf
Matlab.programming.for.engineers.(2001).pdf
MATLAB.pdf
MATLAB5_x与科学计算.pdf
MATLAB6.0数学手册.pdf
MATLAB 3.PDF
MATLAB 5.3精彩编程及高级应用.PDF
MATLAB 5.3精要、编程及高级应用.PDF
MATLAB 5.x入门与提高.pdf
MATLAB 5.X应用与技巧.PDF
MATLAB 5.X手册.PDF
MATLAB 5.语言与程序设计.PDF
MATLAB 5_1实用指南.PDF
MATLAB 5_3学习教程.PDF
MATLAB 5_3实例教程.PDF
MATLAB 5_3实例详解.PDF
MATLAB 5_3实用教程.PDF
MATLAB 5_3应用指南.PDF
MATLAB 5_3精要、编程及高级应用.PDF
MATLAB 5_X入门与应用.PDF
MATLAB 5_X工具箱使用技巧与实例.PDF
MATLAB 5_X应用与技巧.PDF
MATLAB 5_X程序设计语言.PDF
MATLAB 6 数学建模基础教程.PDF
MATLAB 6.5辅助小波分析与应用.PDF
MATLAB 6_1基础及应用技巧.PDF
MATLAB 6_1实用指南(上册).PDF
MATLAB 6_1实用指南(下册).PDF
MATLAB 6_1最新应用祥解.PDF
MATLAB 6_X图像处理.PDF
MATLAB 6_X符号运算及其应用.PDF
MATLAB 6实例教程.PDF
MATLAB 6数学手册.PDF
MATLAB 6时尚创作百例含1CD.PDF
MATLAB 6科学运算完整解决方案.PDF
MATLAB 7及工程问题解决方案.PDF
MATLAB 7实用指南(上册).PDF
MATLAB 7实用指南(下册).PDF
MATLAB 下的数字信号处理示例…….PDF
MATLAB 与SIMULINK工程应用.PDF
MATLAB 与外部程序接口.PDF
MATLAB 与数学实验.PDF
MATLAB 与通信仿真.PDF
MATLAB 人工神经元网络小例子.PDF
MATLAB 仿真技术与应用.PDF
MATLAB 信号处理.PDF
MATLAB 信号处理详解.PDF
MATLAB 偏微分方程工具箱应用简介.PDF
MATLAB 原理与工程应用.PDF
MATLAB 及其在理工课程中的应用指南.PDF
MATLAB 及其在电路与控制理论中的应用.PDF
MATLAB 及在电子信息类课程中的应用.PDF
MATLAB 命令大全.PDF
MATLAB 图像处理命令.PDF
MATLAB 图形图像.PDF
MATLAB 图形技术——绘图及图形用户接口.PDF
MATLAB 在工程数学上的应用.PDF
MATLAB 在理论力学教学中的应用.PDF
MATLAB 在电信工程中的应用.PDF
MATLAB 基础及数学软件.PDF
MATLAB 外部接口编程.PDF
MATLAB 实用教程.PDF
MATLAB 小波分析工具箱原理与应用.PDF
MATLAB 工具箱应用.PDF
MATLAB 工具箱应用指南:信息工程篇.PDF
MATLAB 工具箱应用指南:控制工程篇.PDF
MATLAB 工具箱应用指南——应用数学篇.PDF
MATLAB 工程数学.PDF
MATLAB 工程数学应用.PDF
MATLAB 工程数学解题指导.PDF
MATLAB 工程计算及应用.PDF
MATLAB 应用图像处理.PDF
MATLAB 应用程序接口.PDF
MATLAB 应用程序接口用户指南.PDF
MATLAB 扩展编程含盘.PDF
MATLAB 控制系统设计.PDF
MATLAB 教程.PDF
MATLAB 数值计算与编程.PDF
MATLAB 数据处理与应用.PDF
MATLAB 数理统计工具箱应用简介.PDF
MATLAB 方法.PDF
MATLAB 模糊逻辑工具箱函数.PDF
MATLAB 模糊逻辑工具箱的分析与应用.PDF
MATLAB 电子仿真与应用.PDF
MATLAB 语言工具箱——TOOLBOX实用指南.PDF
MATLAB 语言应用系列书MATLAB 科学图形构建基础与应用(6_X).PDF
MATLAB 语言程序设计·MATLAB 语言程序设计:5_2版.PDF
MATLAB 语言程序设计教程.PDF
MATLAB 语言精要及动态仿真工具SIMULINK.PDF
MATLAB 进阶(含SIMULINK).PDF
MATLAB 频谱分析.PDF
MATLAB 高级编程.PDF
MATLAB 高级语言及其在控制系统中的应用.PDF
MATLAB与C_C++混合编程.PDF
MATLAB仿真应用详解.pdf
MATLAB仿真应用详解1.pdf
MATLAB及在电子信息课程中的应用 (第3版).pdf
MATLAB数学计算范例教程.pdf
MATLAB程序设计与应用……第一版.pdf
MATLAB程序设计与应用……第二版.pdf
MATLAB语言——演算纸式的科学工程计算语言.PDF
基于MATLAB 的系统分析与设计——时频分析.PDF
基于MATLAB 6_X的系统分析与设计:神经网络.PDF
基于MATLAB 6_X的系统分析与设计:虚拟现实.PDF
基于MATLAB _SIMULINK的系统仿真技术与应用.PDF
基于MATLAB 的系统分析与设计:图像处理.PDF
基于MATLAB 的系统分析与设计:模糊系统.PDF
基于MATLAB 的系统分析与设计——信号处理.PDF
基于MATLAB 的系统分析与设计——小波分析.PDF
基于MATLAB 的系统分析与设计——控制系统.PDF
精通MATLAB 综合辅导与指南.PDF
精讲多练MATLAB .PDF
精通MATLAB 5.PDF
精通MATLAB 5:综合辅导与指南.PDF
精通MATLAB 6.PDF
《 MATLAB 5.2使用手册 》.pdf
⑽ 神经网络(Neural Network)
(1)结构:许多树突(dendrite)用于输入,一个轴突 (axon)用于输出。
(2)特性:兴奋性和传导性。兴奋性是指当信号量超过某个阈值时,细胞体就会被激活,产生电脉冲。传导性是指电脉冲沿着轴突并通过突触传递到其它神经元。
(3)有两种状态的机器:激活时为“是”,不激活时为“否”。神经细胞的状态取决于从其他神经细胞接收到的信号量,以及突触的性质(抑制或加强)。
(1)神经元——不重要
① 神经元是包含权重和偏置项的 函数 :接收数据后,执行一些计算,然后使用激活函数将数据限制在一个范围内(多数情况下)。
② 单个神经元:线性可分的情况下,本质是一条直线, ,这条直线将数据划分为两类。而线性分类器本身就是一个单层神经网络。
③ 神经网络:非线性可分的情况下,神经网络通过多个隐层的方法来实现非线性的函数。
(2)权重/参数/连接(Weight)——最重要
每一个连接上都有一个权重。一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。
(3)偏置项(Bias Units)——必须
① 如果没有偏置项,所有的函数都会经过原点。
② 正则化偏置会导致欠拟合:若对偏置正则化,会烂猛导致激活变得更加简单,偏差就会上升,学习的能力就会下降。
③ 偏置的大小度量了神经元产生激励(激活)的难易程度。
(1)定义:也称为转换函数,是一种将输入 (input) 转成输出 (output) 的函数。
(2)作用:一般直线拟合的精确度要比曲线差很多,引入激活嫌亏函数能给神经网络 增加一些非线性 的特性。
(3)性质:
① 非线性:导数不是常数,否则就退化成直线。对于一些画一条直线仍然无法分开的问题,非线性可以把直线变弯,就能包罗万象;
② 可微性:当优化方法是基于梯度的时候,处处可导为后向传播算法提供了核心芹历神条件;
③ 输出范围:一般限定在[0,1],使得神经元对一些比较大的输入会比较稳定;
④ 非饱和性:饱和就是指,当输入比较大的时候输出几乎没变化,会导致梯度消失;
⑤ 单调性:导数符号不变,输出不会上蹿下跳,让神经网络训练容易收敛。
(1)线性函数 (linear function)—— purelin()
(2)符号函数 (sign function)—— hardlim()
① 如果z值高于阈值,则激活设置为1或yes,神经元将被激活。
② 如果z值低于阈值,则激活设置为0或no,神经元不会被激活。
(3)对率函数 (sigmoid function)—— logsig()
① 优点:光滑S型曲线连续可导,函数阈值有上限。
② 缺点:❶ 函数饱和使梯度消失,两端梯度几乎为0,更新困难,做不深;
❷ 输出不是0中心,将影响梯度下降的运作,收敛异常慢;
❸ 幂运算相对来讲比较耗时
(4)双曲正切函数(hyperbolic tangent function)—— tansig()
① 优点:取值范围0中心化,防止了梯度偏差
② 缺点:梯度消失现象依然存在,但相对于sigmoid函数问题较轻
(5)整流线性单元 ReLU 函数(rectified linear unit)
① 优点:❶ 分段线性函数,它的非线性性很弱,因此网络做得很深;
❷ 由于它的线性、非饱和性, 对于随机梯度下降的收敛有巨大的加速作用;
② 缺点:❶ 当x<0,梯度都变成0,参数无法更新,也导致了数据多样化的丢失;
❷ 输出不是0中心
(6)渗漏型整流线性单元激活函数 Leaky ReLU 函数
① 优点:❶ 是为解决“ReLU死亡”问题的尝试,在计算导数时允许较小的梯度;
❷ 非饱和的公式,不包含指数运算,计算速度快。
② 缺点:❶ 无法避免梯度爆炸问题; (没有体现优于ReLU)
❷ 神经网络不学习 α 值。
(7)指数线性单元 ELU (Exponential Linear Units)
① 优点:❶ 能避免“死亡 ReLU” 问题;
❷ 能得到负值输出,这能帮助网络向正确的方向推动权重和偏置变化;
❸ 在计算梯度时能得到激活,而不是让它们等于 0。
② 缺点:❶ 由于包含指数运算,所以计算时间更长;
❷ 无法避免梯度爆炸问题; (没有体现优于ReLU)
❸ 神经网络不学习 α 值。
(8)Maxout(对 ReLU 和 Leaky ReLU的一般化归纳)
① 优点:❶ 拥有ReLU的所有优点(线性和不饱和)
❷ 没有ReLU的缺点(死亡的ReLU单元)
❸ 可以拟合任意凸函数
② 缺点 :参数数量增加了一倍。难训练,容易过拟合
(9)Swish
① 优点:❶ 在负半轴也有一定的不饱和区,参数的利用率更大
❷ 无上界有下界、平滑、非单调
❸ 在深层模型上的效果优于 ReLU
每个层都包含一定数量的单元(units)。增加层可增加神经网络输出的非线性。
(1)输入层:就是接收原始数据,然后往隐层送
(2)输出层:神经网络的决策输出
(3)隐藏层:神经网络的关键。把前一层的向量变成新的向量,让数据变得线性可分。
(1)结构:仅包含输入层和输出层,直接相连。
(2)作用:仅能表示 线性可分 函数或决策,且一定可以在有限的迭代次数中收敛。
(3)局限:可以建立与门、或门、非门等,但无法建立更为复杂的异或门(XOR),即两个输入相同时输出1,否则输出0。 (“AI winter”)
(1)目的:拟合某个函数 (两层神经网络可以逼近任意连续函数)
(2)结构:包含输入层、隐藏层和输出层 ,由于从输入到输出的过程中不存在与模型自身的反馈连接,因此被称为“前馈”。 (层与层之间全连接)
(3)作用: 非线性 分类、聚类、预测等,通过训练,可以学习到数据中隐含的知识。
(4)局限:计算复杂、计算速度慢、容易陷入局部最优解,通常要将它们与其他网络结合形成新的网络。
(5)前向传播算法(Forward Propagation)
① 方法:从左至右逐级依赖的算法模型,即网络如何根据输入X得到输出Y,最终的输出值和样本值作比较, 计算出误差 。
② 目的:完成了一次正反向传播,就完成了一次神经网络的训练迭代。通过输出层的误差,快速求解对每个ω、b的偏导,利用梯度下降法,使Loss越来越小。
② 局限:为使最终的误差达到最小,要不断修改参数值,但神经网络的每条连接线上都有不同权重参数,修改这些参数变得棘手。
(6)误差反向传播(Back Propagation)
① 原理:梯度下降法求局部极值
② 方法:从后往前,从输出层开始计算 L 对当前层的微分,获得各层的误差信号,此误差信号即作为修正单元权值的依据。计算结束以后,所要的两个参数矩阵的 梯度 就都有了。
③ 局限:如果激活函数是饱和的,带来的缺陷就是系统迭代更新变慢,系统收敛就慢,当然这是可以有办法弥补的,一种方法是使用 交叉熵函数 作为损失函数。
(1)原理:随着网络的层数增加,每一层对于前一层次的抽象表示更深入。在神经网络中,每一层神经元学习到的是前一层神经元值的更抽象的表示。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。
(2)方法:ReLU函数在训练多层神经网络时,更容易收敛,并且预测性能更好。
(3)优点:① 易于构建,表达能力强,基本单元便可扩展为复杂的非线性函数
② 并行性号,有利于在分布是系统上应用
(4)局限:① 优化算法只能获得局部极值,性能与初始值相关
② 调参理论性缺乏
③ 不可解释,与实际任务关联性模糊
(1)原理:由手工设计卷积核变成自动学习卷积核
(2)卷积(Convolutional layer): 输入与卷积核相乘再累加 (内积、加权叠加)
① 公式:
② 目的:提取输入的不同特征,得到维度很大的 特征图(feature map)
③ 卷积核:需要训练的参数。一般为奇数维,有中心像素点,便于定位卷积核
④ 特点:局部感知、参数变少、权重共享、分层提取
(3)池化(Pooling Layer):用更高层的抽象表达来表示主要特征,又称“降采样”
① 分类: 最大 (出现与否)、平均(保留整体)、随机(避免过拟合)
② 目的:降维,不需要训练参数,得到新的、维度较小的特征
(4)步长(stride):若假设输入大小是n∗n,卷积核的大小是f∗f,步长是s,则最后的feature map的大小为o∗o,其中
(5)填充(zero-padding)
① Full模式:即从卷积核(fileter)和输入刚相交开始做卷积,没有元素的部分做补0操作。
② Valid模式:卷积核和输入完全相交开始做卷积,这种模式不需要补0。
③ Same模式:当卷积核的中心C和输入开始相交时做卷积。没有元素的部分做补0操作。
(7)激活函数:加入非线性特征
(8)全连接层(Fully-connected layer)
如果说卷积层、池化层和激活函数层等是将原始数据映射到隐层特征空间(决定计算速度),全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用(决定参数个数)。
参考:
[1] 神经网络(入门最详细)_ruthy的博客-CSDN博客_神经网络算法入门
[2] 神经网络(容易被忽视的基础知识) - Evan的文章 - 知乎
[3] 人工神经网络——王的机器
[4] 如何简单形象又有趣地讲解神经网络是什么? - 舒小曼的回答 - 知乎
[5] 神经网络15分钟入门!足够通俗易懂了吧 - Mr.括号的文章 - 知乎
[6] 神经网络——最易懂最清晰的一篇文章_illikang的博客-CSDN博客_神经网络
[7] 直觉化深度学习教程——什么是前向传播——CSDN
[8] “反向传播算法”过程及公式推导(超直观好懂的Backpropagation)_aift的专栏-CSDN
[9] 卷积、反卷积、池化、反池化——CSDN
[10] 浙大机器学习课程- bilibili.com