导航:首页 > 文档加密 > python科学计算pdf

python科学计算pdf

发布时间:2023-04-19 14:21:54

A. python背后是一项科技运动

比较官方的说法,python是一种解释型语言,解释型语言是指代码一行一行的解释执行,就好像有个 同声传译 ,你每说一句话,他都能不间断地给你翻译,把你说的话(意指写好的代码)翻译成机器能够理解的语言。对于机器来说,这些翻译后的语言就是机器语言,就是指令,机器收到指令后,就会根据指令执行对应的操作。

与解释型语言相对的,有编译型语言,编译型语言则通过编译器先将代码翻译成机器语言,再交给机器去执行。举个例子,我方主持了一个会议,参会的分别有英国人、俄国人和西班牙人,他们三方都带了自己的同声传译。假如是解释型语言呢,我在开会的时候用一种每个同声传译都听得懂的的语言,也就是一种官方用语。这样我可以不间断地用这种语言来做交流,因为这些翻译人员都会为这三国参会人员同步翻译成目标语言,你应该也注意到了,解释型语言类似于一种通用的语言。而如果是编译型语言呢,我会让我这边的3个翻译人员将我的一份中文演讲稿,分别翻译成英文版的、俄文版的和西班牙语版的,在开会的时候,我只要交给参会的国际友人去翻阅就好了。解释型语言侧重的是一种通用的、能够实时解释翻译的特性,而编译型语言侧重的是有针对性、提前准备的特性。然而,在开会的时候,解释型效率是没有那么高的,因为需要同声传译消耗时间去做翻译,而编译型的效率会高些,因为翻译工作已经在开会前做好了,只需要参会人员理解并且执行就好。


1989年的圣诞节,荷兰程序员Guido van Rossum( 吉多·范罗苏姆 ,以下简称吉多)在家休假无聊,为了打发时间,他开发了一种新的解释型语言。可见,该程序员无聊的时候,就是写代码。因为作者非常喜欢 Monty Python's Flying Circus (巨蟒剧团之飞翔的马戏团,这是英国的一个电视喜剧),就拿python作为这个新语言的名字。我想大家不一定都知道这部喜剧,但是可能都听说过python,可能微信在几天前给你推过python相关的培训广告,可能一些学校已经将掌握python基础概念作为一门选修课,可能你的智能家居里的操作系统有一部分核心代码是用python实现的,可能你的手机里有一个插件也是用python实现的,python现在的应用范围非常广泛,功能也非常强大。

吉多之前在 荷兰数学和计算机科学研究学会 上班,在那里,他为ABC编程语言工作了好多年。 ABC语言长这样的

这是一个函数,你也许看不懂,根据英文单词,或许可以大概猜出点什么。这里只想让你知道,python也差不多长这样,相比较会更容易理解些。

ABC虽然是一门编程语言,它的定位是作为教学或原型设计的工具,是专门为学校老师或者科研人员设计的。ABC的定位决定了它受众不是很广泛,并且它也有使用门槛,对计算机不了解的人,没有经过一段时间的学习,可能根本就上不了手。所以,ABC并不能作为一门通用的编程语言,在业内也无法获得成功。虽然说ABC没有python那么成功,但是ABC可以说是"the mother of python",作者在很多地方都借鉴了ABC,取其精华、取其糟粕。现如今,python是长这样的

可能对于没接触过编程的人来说,它们两不都是一样的,不都是一堆英文字母么,我都看不懂。但是对于初学计算机课程,那些需要学习C语言的人来说,python相比较算是更容易理解了。python非常简短,一些复杂的流程,在C语言中,可能需要几十行代码,但是在python中,可能就只需要几行代码。当然不同的业务场景,可能不是这样的,但是普遍情况下,用python的开发效率是非常高的。python适合快速开发,适合产品快速迭代出新。

1999年1月,也就是语言面世的10年后, 吉多 向DARPA(Defense Advanced Research Projects Agency,美国国防部一个负责科研的下属机构)申请资金。我去翻了下该申请的修订版,修订版在1999年8月份提交,修订版比第一版内容更具有概括性,并且内容翔实,条理清晰,值得翻阅。

该修订版叫 Computer Programming for Everybody ,直译过来,就是针对每个人的计算机编程,翻译为通俗易懂的词——人人编程,人人编程是一种 社会 现象,每个人都有一定的编程能力,并且对计算机有一定的认识,了解软硬件是怎么运转起来的,了解一些软硬件的设计规范,能够通过编程来表达自己的想法,能够通过编程来配置自己的软件,通过编程来控制自己的机器,以改善自己的生活。举个例子,你在某宝买了一个扫地机器人,该机器人支持定义打扫路线,支持设置扫地机器人在需要更换扫把的时候,指示灯显示指定的颜色。你知道扫地机器人可以做什么,有什么操作习惯,这是基于你对一些机器的理解,如果你用过很多软件,或者参与过软件的设计,你大概都知道一些软件可能都有“设置”、“编辑”或“帮助”等菜单键。这种设计思维,或者操作习惯,都是很多软件都有的,有了这种认识之后,你面对很多同类型的软件、或者同类型的产品,就大概能够知道从那里入手,以及对它有什么功能,都有一个初步的期待或者认识。既然大家都了解计算机了,那么计算机的一些概念或者说是理念,可以说是属于常识的一部分,面对一些计算机或者说智能设备,也大概知道从哪里上手使用。我觉得这就是作者要达到的愿景。

该修订版主要有几个目的:

在这里,他想从推广python开始,因为python作为一门适合快速开发的工具,既适合专家,也适合初学者,同时python有一个活跃的且不断增长的用户群体,这个用户群体对他这个申请也非常感兴趣,愿意为之努力。python的用户数多,说明已经在市场得到了一定的认可,并且这个用户群体也愿意为python的发展做贡献,这对于一门编程语言来说,最好不过了。

该提案的 基本论点 部分写得很好,他说他想普及计算机应用,但并非通过介绍新的硬件,或者新软件这种形式,而是通过赋予每个人编程能力来实现。信息技术的发展给了人们各种强大的计算机,它们以桌面电脑、笔记本电脑或者嵌入式系统的形式存在,如果用户在软件设计和实现上有一个通用的认知,那将会极大地促进生产和创造,并且对未来有深远的影响。试想一下,如果你有一种修改和配置软件的能力,并且你可以把你的修改通过社区网站分享其他人,其他人碰到同样的问题的话,就可以参照你的方法。这种能力在紧急的情况下是很重要的,你不必等专家来给你解决问题,你自己就可以尝试解决这些问题。说到这里,你有没有想起贴吧,或者论坛,论坛有很多个板块,不同的领域分不同的板块,假如你想root手机(手机越狱,指解除手机厂商的限制,获取手机的用户最高权限,以实现对手机的某种控制),你可以到论坛上root板块找答案,这种形式可谓跟吉多提到的是一样的。如果你对你的手机或者电脑有更深入的了解,你可以通过编程改善你的输入法,或者改变你的显示器冷暖色等等,这些都是对你生活有帮助的。吉多在这里就是想达到这种状态,简单点说,人人都对计算机有一定的了解,且都有处理计算机问题的能力。

为了实现这个目标,作者制定了5年计划,这个5年计划如下:

5年计划循序渐进,由浅入深。1999年3月,美国国防部对此进行了回应,同意拨款给他。作者的5年计划在1999年底开始实施,虽然想推进5年,但是只收到1年的资金支持。不过,作者还是没有放弃这个项目,一直推进,直到他不再参与python的工作。当时美国国防部对他们提供了多少资金呢,我没看到官方公开的数据。2013年有报道称,DARPA向Continuum Analytics提供3百万美元的支持,让该公司给python开发数据处理以及数据可视化工具。具体数字是否可靠,这个尚不清楚,但管中窥豹,可见美国国防部对该项目表示认可,并提供了资金支持。Continuum Analytics有一个比较有名的工具,叫Anaconda,Anaconda可以理解为是python + 各种科学计算库的工具箱,Anaconda官网有这么一句话

翻译为“Continuum Analytics的Anaconda是使用python的、领先的开源科学计算平台,我们赋予那些正在改变世界的人超能力。”

在查资料的时候,我发现了一个wiki论坛, 该论坛对该项目进行了评价,论坛列出了该项目成功的地方和失败的地方,以及一些 社会 人士的看法。论坛这样总结道,这个项目成功的地方在于:

这个项目失败的地方在于:

回想自己初学python的时候,我觉得这个总结是很公正的。python确实容易入门,有编程基础的人可能只需要一个星期就能掌握python的一些基本语法。相比C语言,python对于初学者是很友好的,很容易让人上手。但是,要深入理解python,并没有这么简单,需要花很多时间去磨练。接手一个使用python的项目,你需要花一些时间精力去熟悉,去摸透里面的逻辑,这对于初学者来说,是无法避免的。 对于一个程序员来说,作者能想象到以后计算机的普及应用,以及用户的认知水平,还有他能够做什么,通过什么来实现,能有这些远大的抱负,这是非常不容易的。西方世界经常说到“change the world,make the world a better place”,作者也确实做到了,他设计的python在计算机世界里扮演者一个非常重要的角色。如果通过 科技 能够改变世界,那么python就是改变世界的其中一步。1980-2000年,美国对 科技 公司是政策扶持、技术扩散,这期间涌现了如IBM、HP、思科等 科技 公司,大家熟知的微软和苹果都是在这期间上市的。python可以说是这个 科技 运动的一个缩影,在 科技 浪潮的推动下,python得到了长足的发展。

很多 科技 或工业相关的网站会根据当年编程语言的流行度做下排名,它们会列出当年在业界最受欢迎的编程语言。其中,IEEE Spectrum 和 TIOBE 的2021年度编程语言是python,如果我还没记错的话,TIOBE的2020年度编程语言也是python。可见python是非常受欢迎的,用现在的话讲,就是“网红”编程语言。现在,很多计算设备上都有python的身影,小到智能家居、手机、智能手表,大到锂电车、工控车床、甚至航天飞机都有python的身影。你可能在浏览网页的时候,右下角弹出一个“7天python入门”的广告,可见python现在还是有很多需求,因为有需求,所以才有人去投广告,才会有人去找培训机构。

作者在给美国国防部的提案中写到,他想跟高中或大学展开合作,设计一些python的课程,针对不同年级,设计不同水平的课程。现在来看,他确实是做到了,现在哈佛、密歇根大学等排名靠前的大学,都有python课程,python在这些大学的CS(计算机科学)课程中应用非常广泛,可以说是作为CS导论的一个教学工具。在一些比较高级的课程,比如数据科学、人工智能等都可以看到python的身影,这是因为学术界以及工业界为python提供了一些处理科学计算和大数据的工具,这也归功于美国国防部的支持。美国有许多编程夏令营,针对不同年龄段有不同的课程,并且也有许多支持python代码的编程竞赛。Google在coursera上有一个面向初学者的课程,该课程叫 Google IT Automation with Python,完成课程大约需要 8 个月,课程建议每周花5小时学习,课程结束后就可以获得Google颁发的证书。可见,不管是工业界,还是教育界,都对python有不同程度的支持。这里打个岔,第一版的Google搜索引擎还是用python写的,作者也在Google工作了一段时间。

现如今,每隔一段时间,就有一个PyCon活动,这个活动汇聚世界各地的开发者,每年都有开发者来展示他们使用python的成功案例,或者表达自己对python的新功能或者缺陷的看法。可见,python用户社区一直都是很活跃的。这让我想到了某新能源 汽车 ,该 汽车 用户有很高的粘性,有一位车主跟我说过,他们有一个微信群,里面有该新能源 汽车 的高管,很多车主乐意在里面指出问题,或者提建议,因为这些高管会对问题或者建议做出相应的反馈。用户愿意提意见,产品经理愿意广开言路,采纳多方建议,实属不易。python社区也差不多如此。

几年前,你是否看过一个新闻,《人工智能“网红”编程语言Python进入山东小学课本》,这是2017年澎湃网的一则新闻,里面讲了python进入了山东省小学六年级教材,作为一门“网红”编程语言,它是否适合低龄学生,这个倒是没细说,但是可见国内有些地方是把编程作为一种比较基础的能力来考量。python往低龄阶段渗透是否合适呢,我在翻资料的时候瞥到韩国高丽大学的一篇论文,论文讲述小学生在学习python的过程中会碰到一些困难,比如经常少打了一些括号,经常拼错单词,经常碰到语法错误,以及对这些现象的看法。还有,南京师范大学有一篇报道,讲述了中学生学习在学习python时,采用面向问题的学习模式,我理解是case by case的教学模式,这种模式有利于学生培养学生的计算机思维,以及帮助他们理解一些计算机相关的概念,解决计算机相关的问题。

python是否适合低龄学生呢,我觉得这个是值得讨论的话题。最后还要问你一句,你会让你的小孩学习python么,从什么时候开始学呢?你的娃因为不知道打多少个括号嚎啕大哭时,你能帮得上忙么?你到时候需要专门请一个程序员来给你的娃做家教么?


https://zh.wikipedia.org/wiki/Python%E8%BB%9F%E9%AB%94%E5%9F%BA%E9%87%91%E6%9C%83

https://www.python.org/psf/

https://www.computerworld.com/article/2711690/python-gets-a-big-data-boost-from-darpa.html

https://legacy.python.org/doc/essays/omg-darpa-mcc-position/

https://legacy.python.org/doc/essays/blurb/

https://www.python.org/doc/essays/cp4e/

http://wiki.c2.com/?

https://koreauniv.pure.elsevier.com/en/publications/an-analysis-of-the-difficulties-of-elementary-school-students-in-

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.771221/full

https://zh.wikipedia.org/wiki/%E7%BB%88%E8%BA%AB%E4%BB%81%E6%85%88%E7%8B%AC%E8%A3%81%E8%80%85

https://gvanrossum.github.io//

http://neopythonic.blogspot.com/2016/04/kings-day-speech.html

https://www.artima.com/intv/guido.html

https://www.htsec.com/jfimg/colimg/upload/20200113/68981578882847978.pdf

B. python的科学计算有什么用

Python用在科学计算领域有两大好处:

  1. 强大的胶水功能,可以粘合其他的第三方库,处理任何碰到的问题;

  2. 批量处理的功能,省去很多时间,提高工作效率;

补充知识:

  1. Python是一种面向对象枣高的、动态的程序设计语言,具有非常简洁而清晰的语法,既可以用于快速开发程序脚本,也可以用于开发大规模的软件,特别适合于完成各种高层任务;

  2. 随着NumPy、SciPy、matplotlib、ETS等众多程序库的开发,Python越来越适合于做科学计算。与科学计算领域最流行的商业软件MATLAB相比,Python是一门真正的通用程序设计语言,比MATLAB所采用的雀岩握脚本语言的应用范围更广泛,有更多程序库的支持,适用于Windows和Linux等多种平台,完全免费并且开放源码。虽然MATLAB中的某些高级功能目顷庆前还无法替代,但是对于基础性、前瞻性的科研工作和应用系统的开发,完全可以用Python来完成。

C. 《Python程序设计(第3版)》pdf下载在线阅读,求百度网盘云资源

《Python程序设计(第3版)》([美] John Zelle)电子书网盘下载免费在线阅读

链接:https://pan..com/s/18zLT9wJqcc7rnhLHu48O5A

提取码:rf93

书名:Python程序设计(第3版)

作者:[美] John Zelle

译者:王海鹏

豆瓣评分:7.3

出版社:人民邮电出版社

出版年份:2018-1-12

页数:344

内容简介:

本书是面向大学计算机科学专业第一门程的教材。本书以Python语言为工具,采用相当传统的方法,强调解决问题、设计和编程是计算机科学的核心技能。

全书共13章,包含两个附录。第1章到第5章介绍计算机与程序、编写简单程序、数字计算、对象和图形、字符串处理等基础知识。第6章到第8章介绍函数、判断结构、循环结构和布尔值等话题。第9章到第13章着重介绍一些较为高级的程序设计方法,包括模拟与设计、类、数据集合、面向对象设计、算法设计与递归等。附录部分给出了Python快速参考和术语表。每一章的末尾配有丰富的练习,包括复习问题、讨论和编程联系等多种形式,帮助读者巩固该章的知识和技能。

D. 谁有利用python进行数据分析 pdf 的中文 完整版的,求发一下

链接:

提取码:z8fs复制这段内容后打开网络网盘手机App,操作更方便哦

作品简介:

Python由荷兰数学和计算机科学研究学会的GuidovanRossum于1990年代初设计,作为一门叫做ABC语言的替代品。

E. 如何用 Python 科学计算中的矩阵替代循环

因为在Mathematica中使用循环确实是低效的。。。。。。
深层次的原因涉及到Mathematica的底层实现所以我不太懂,但是至少从下面几个例子可以看出Mathematica里确实有很多比循环更好的方法

求和
首先举一个最简单的求和例子,求的值。为了测试运行时间取n=10^6
一个刚接触Mathematica的同学多半会这样写

sum = 0;
For[i = 1, i <= 10^6, i++,
sum += Sin[N@i]];
(*其中N@i的作用是把整数i转化为浮点数,类似于C里的double*)
sum

为了便于计时用Mole封装一下,运行时间是2.13秒,如下图

然后一个有一定Mathematica经验的同学多半会知道同样作为循环的Do速度比For快,于是他可能会这么写
然后一个有一定Mathematica经验的同学多半会知道同样作为循环的Do速度比For快,于是他可能会这么写

sum = 0;
Do[sum += Sin[N@i], {i, 1, 10^6}];
sum

如下图,用时1.37秒,比For快了不少

当然了知道Do速度比For快的同学不太可能不知道Sum函数,所以上面其实是我口胡的,他应该会这么写

Sum[Sin[N@i], {i, 1, 10^6}]

如下图,同样的结果,只用了不到0.06秒

如果这位同学还知道Listable属性并且电脑内存不算太小的话,他也可能会这么写

Tr@Sin[N@Range[10^6]]

如下图,只用了不到0.02秒,速度超过For循环的100倍

当然了这只是一个最简单的例子,而且如果数据量更大的话最后一种方法就不能用了。但是这也足以说明在求和时用循环是低效的,无论是内置的Sum函数还是向量化运算,在效率上都远远高于循环
(这部分模仿了不同程序员如何编写阶乘函数这篇文章,强烈推荐对Mathematica有兴趣的同学去看看)

迭代
接下来举一个迭代的例子,(即Logistic map),取,为了测试运行时间同样取n=10^6
还是先用For循环的做法

x = 0.5;
For[i = 1, i <= 10^6, i++,
x = 3.5 x (1 - x);
];
x

如下图,运行时间2.06秒

(Do循环和For类似,篇幅所限这里就不写了,有兴趣的同学可以自行尝试)
(Do循环和For类似,篇幅所限这里就不写了,有兴趣的同学可以自行尝试)
然后看看内置的Nest函数

Nest[3.5 # (1 - #) &, 0.5, 10^6]

如下图,用时0.02秒,又是将近两个数量级的效率差异

当然了Nest的使用涉及到纯函数,对于Mathematica初学者来说可能有些难以理解,而且一些比较复杂的迭代不太容易写成Nest的形式,但是在迭代时Nest(还包括Fold)的效率确实要好于循环
当然了Nest的使用涉及到纯函数,对于Mathematica初学者来说可能有些难以理解,而且一些比较复杂的迭代不太容易写成Nest的形式,但是在迭代时Nest(还包括Fold)的效率确实要好于循环
遍历列表
依然举一个简单的例子:求一个列表中偶数的个数。为测试生成10^6个1到10之间的随机整数

list = RandomInteger[{1, 10}, 10^6];
(*生成10^6个随机整数*)

如果用For循环的话代码是这样的

num = 0;
For[i = 1, i <= 10^6, i++,
If[EvenQ@list[[i]], num++]
];
num

如下图,用时1.73秒

保留上面的思路,单纯的将For循环改为Scan (相当于没有返回结果的Map),代码如下

num = 0;
Scan[If[EvenQ@#, num++] &, list];
num

如下图,用时0.91 秒

(Do循环用时1.00秒左右,篇幅所限就不传图了)

摒弃循环的思路,用其他内置函数写

Count[list, _?EvenQ] // AbsoluteTiming
(*直接用Count数出list中偶数的个数*)
Count[EvenQ /@ list, True] // AbsoluteTiming
(*用Map对list中的每个数判断是否偶数,然后用Count数出结果中True的个数*)
Select[list, EvenQ] // Length // AbsoluteTiming
(*选取list中的所有偶数,然后求结果列表长度*)
Count[EvenQ@list, True] // AbsoluteTiming
(*利用EvenQ的Listable属性直接判断list的每个数是否偶数,然后数出结果中True的个数*)
Sum[Boole[EvenQ@i], {i, list}]
(*对list中的每个元素判断是否偶数,将结果相加*)

结果如下图

这个遍历的例子举得不算特别恰当,但也能说明一些问题了:Mathematica中内置了许多神奇的函数,其中大部分只要使用得当效率都比循环高(而且不是一点半点)。就算非要用循环,也要记得(任何能用Do代替For的时候)
这个遍历的例子举得不算特别恰当,但也能说明一些问题了:Mathematica中内置了许多神奇的函数,其中大部分只要使用得当效率都比循环高(而且不是一点半点)。就算非要用循环,也要记得(任何能用Do代替For的时候)
Do比For快
,(遍历列表时)
Scan比Do快
用向量(矩阵)运算代替循环
这个例子来自如何用 Python 科学计算中的矩阵替代循环? - Kaiser 的回答,我只是把代码从Python翻译成了Mathematica而已。选这个例子是因为它有比较明确的物理意义,而且效率对比非常明显
代码如下

AbsoluteTiming[
n = 100;
u = unew = SparseArray[{{1, _} -> 1}, {n, n}] // N // Normal;
For[k = 1, k <= 3000, k++,
For[i = 2, i < n, i++,
For[j = 2, j < n, j++,
unew[[i, j]] =
0.25 (u[[i + 1, j]] + u[[i - 1, j]] + u[[i, j + 1]] +
u[[i, j - 1]])
]
];
u = unew;
];
u1 = u;
]
(*用三重循环,迭代3000次*)
ArrayPlot[u1, DataReversed -> True, ColorFunction -> "TemperatureMap"]
(*用ArrayPlot绘图*)

AbsoluteTiming[
n = 100;
u = SparseArray[{{1, _} -> 1}, {n, n}] // N // Normal;
Do[
u[[2 ;; -2, 2 ;; -2]] =
0.25 (u[[3 ;; -1, 2 ;; -2]] + u[[1 ;; -3, 2 ;; -2]] +
u[[2 ;; -2, 3 ;; -1]] + u[[2 ;; -2, 1 ;; -3]]),
{k, 1, 3000}];
u2 = u;
]
(*用矩阵运算,迭代3000次*)
ArrayPlot[u2, DataReversed -> True, ColorFunction -> "TemperatureMap"]
(*用ArrayPlot绘图*)

运行结果For循环用时136秒,矩阵运算用时不足0.5秒,且两者答案完全一样。在算法完全相同的情况下两种写法有着超过200倍的效率差距
(图片太长了这里就不直接显示了,链接放在下面)
http://pic4.mg.com/_b.png

===========================我是结尾的分隔线===============================
这个答案其实从一开始就跑题了,还写了这么长的目的就在于希望让大家切实地感受到循环的低效并安利一下Mathematica中其它高效的方法。正如wolray的答案中说的,既然选择了使用Mathematica就应该多利用些MMA独有的美妙函数,毕竟如果只是用循环的话C和Fortran之类的语言效率比MMA不知高到哪里去了。。。。。。

然我也不是让大家就不用循环了,毕竟很多时候循环的直观性和易读性带来的便利远远比那点效率重要。只是希望大家在循环之前能稍稍想一下,自己的目的是不是
一定要用循环?可不可以用内置函数代替循环?就像上面的几个例子,将循环换成内置函数程序的简洁性和效率都大幅提高,长此以往相信你一定会爱上MMA的~

题外话——关于用编译提速循环

MMA中如果一定要使用循环又对效率有一定要求的话,可以选择使用编译,效率能有极大的提高。比如上面的第4个例子使用Complie编译过后的Do循环
用时只有1.86秒,速度提升了将近100倍。如果电脑中有C编译器的话还可以在Compile中加入CompilationTarget ->
"C"选项,速度还能有所提升。编译过后的代码如下:

In[10]:= cf = Compile[{{n, _Integer}, {times, _Integer}},
Mole[{u},
u = ConstantArray[0., {n, n}];
u[[1]] = ConstantArray[1., n];
Do[
Do[u[[i, j]] =
0.25 (u[[i + 1, j]] + u[[i - 1, j]] + u[[i, j + 1]] +
u[[i, j - 1]]),
{i, 2, n - 1}, {j, 2, n - 1}
], {k, 1, times}];
u
]
];
u3 = cf[100, 3000]; // AbsoluteTiming
ArrayPlot[u3, DataReversed -> True, ColorFunction -> "TemperatureMap"]

Out[11]= {1.86055, Null}

前3个例子也都可以通过编译提速很多,这里就不放代码了,有兴趣的同学可以自己动手试一试,如果遇到问题欢迎在评论中与我交流。
需要注意的是编译有很多注意事项,这里推荐一篇写的很好的教程,编译中常见的问题里面都有很好的讲解:怎样编译(Compile)/编译的通用规则/学会这6条,你也会编译
但是一般来讲编译很麻烦,而且再怎么编译效率也很难赶上直接用C,所以个人并不特别建议MMA初学者学习编译。

F. 《python科学计算第二版张若愚》pdf下载在线阅读全文,求百度网盘云资源

《python科学计算第二版张若愚》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1PTV2fC43VVO9_CIcUL10Cw

?pwd=tbff 提取码:tbff
简介:《Python 科学计算(第2版)》详细介绍Python科学计算中常用的扩展库NumPy、SciPy、matplotlib、Pandas、SymPy、TTK、Mayavi、OpenCV、Cython,涉及数值计算、界面制作、三维可视化、图像处理、提高运算效率等多方面的内容。

G. 《python宝典宋强》pdf下载在线阅读全文,求百度网盘云资源

《python宝典宋强》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1QZ7VGHM_QXksml-5hcJkgA

?pwd=6v75 提取码:6v75
简介:Python是目前流行的脚本语言之一。《Python宝典》由浅入深、循序渐进地为读者讲解了如何使用Python进行编程开发。《Python宝典》内容共分三篇,分为入门篇、高级篇和案例篇。

入门篇包括Python的认识和安装、开发工具简介、Python基本语法、数据结构与算法、多媒体编程、系统应用、图像处理和GUI编程等内容。高级篇包括用Python操作数据库、进行Web开发、

网络编程、科学计算、多线程编程等内容。案例篇选择了3个案例演示了Python在Windows系统优化、大数据处理和游戏开发方面的应用。

《Python宝典》针对Python的常用扩展模块给出了详细的语法介绍,并且给出了典型案例,通过对《Python宝典》的学习,读者能够很快地使用Python进行编程开发。

《Python宝典》适合Python初学者、程序设计人员、编程爱好者、本科及大专院校学生,以及需要进行对科学的计算的工程人员阅读。

H. python中有哪些简单的算法

首先谢谢邀请,

python中有的算法还是比较多的?

python之所以火是因为人工智能的发展,人工智能的发展离不开算法!

感觉有本书比较适合你,不过可惜的是这本书没有电子版,只有纸质的。

这本书对于算法从基本的入门到实现,循序渐进的介绍,比如里面就涵盖了数学建模的常用算法。

第 1章从数学建模到人工智能

1.1数学建模1.1.1数学建模与人工智能1.1.2数学建模中的常见问题1.2人工智能下的数学1.2.1统计量1.2.2矩阵概念及运算1.2.3概率论与数理统计1.2.4高等数学——导数、微分、不定积分、定积分

第2章 Python快速入门

2.1安装Python2.1.1Python安装步骤2.1.2IDE的选择2.2Python基本操作2.2.1第 一个小程序2.2.2注释与格式化输出2.2.3列表、元组、字典2.2.4条件语句与循环语句2.2.5break、continue、pass2.3Python高级操作2.3.1lambda2.3.2map2.3.3filter

第3章Python科学计算库NumPy

3.1NumPy简介与安装3.1.1NumPy简介3.1.2NumPy安装3.2基本操作3.2.1初识NumPy3.2.2NumPy数组类型3.2.3NumPy创建数组3.2.4索引与切片3.2.5矩阵合并与分割3.2.6矩阵运算与线性代数3.2.7NumPy的广播机制3.2.8NumPy统计函数3.2.9NumPy排序、搜索3.2.10NumPy数据的保存

第4章常用科学计算模块快速入门

4.1Pandas科学计算库4.1.1初识Pandas4.1.2Pandas基本操作4.2Matplotlib可视化图库4.2.1初识Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib绘图案例4.3SciPy科学计算库4.3.1初识SciPy4.3.2SciPy基本操作4.3.3SciPy图像处理案例第5章Python网络爬虫5.1爬虫基础5.1.1初识爬虫5.1.2网络爬虫的算法5.2爬虫入门实战5.2.1调用API5.2.2爬虫实战5.3爬虫进阶—高效率爬虫5.3.1多进程5.3.2多线程5.3.3协程5.3.4小结

第6章Python数据存储

6.1关系型数据库MySQL6.1.1初识MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初识NoSQL6.2.2Python操作MongoDB6.3本章小结6.3.1数据库基本理论6.3.2数据库结合6.3.3结束语

第7章Python数据分析

7.1数据获取7.1.1从键盘获取数据7.1.2文件的读取与写入7.1.3Pandas读写操作7.2数据分析案例7.2.1普查数据统计分析案例7.2.2小结

第8章自然语言处理

8.1Jieba分词基础8.1.1Jieba中文分词8.1.2Jieba分词的3种模式8.1.3标注词性与添加定义词8.2关键词提取8.2.1TF-IDF关键词提取8.2.2TextRank关键词提取8.3word2vec介绍8.3.1word2vec基础原理简介8.3.2word2vec训练模型8.3.3基于gensim的word2vec实战

第9章从回归分析到算法基础

9.1回归分析简介9.1.1“回归”一词的来源9.1.2回归与相关9.1.3回归模型的划分与应用9.2线性回归分析实战9.2.1线性回归的建立与求解9.2.2Python求解回归模型案例9.2.3检验、预测与控制

第10章 从K-Means聚类看算法调参

10.1K-Means基本概述10.1.1K-Means简介10.1.2目标函数10.1.3算法流程10.1.4算法优缺点分析10.2K-Means实战

第11章 从决策树看算法升级

11.1决策树基本简介11.2经典算法介绍11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系数11.2.5小结11.3决策树实战11.3.1决策树回归11.3.2决策树的分类

第12章 从朴素贝叶斯看算法多变193

12.1朴素贝叶斯简介12.1.1认识朴素贝叶斯12.1.2朴素贝叶斯分类的工作过程12.1.3朴素贝叶斯算法的优缺点12.23种朴素贝叶斯实战

第13章 从推荐系统看算法场景

13.1推荐系统简介13.1.1推荐系统的发展13.1.2协同过滤13.2基于文本的推荐13.2.1标签与知识图谱推荐案例13.2.2小结

第14章 从TensorFlow开启深度学习之旅

14.1初识TensorFlow14.1.1什么是TensorFlow14.1.2安装TensorFlow14.1.3TensorFlow基本概念与原理14.2TensorFlow数据结构14.2.1阶14.2.2形状14.2.3数据类型14.3生成数据十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成随机数14.4TensorFlow实战

希望对你有帮助!!!


贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!

I. 《Python金融实战》pdf下载在线阅读,求百度网盘云资源

《Python金融实战》([美] Yuxing Yan)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1qUDSnJtaIAu14GL_tyXo2w 提取码:d1iz

书名:Python金融实战

作者:[美] Yuxing Yan

译者:张少军

豆瓣评分:6.6

出版年份:2017-6

页数:320

内容简介:Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要数据分析和处理大量数据的金融领域得到了广泛而迅速的应用,并且成为越来越多专业人士**的编程语言之一。

本书通过12章内容介绍了Python在金融领域的应用,从Python的安装、基础语法,再到一系列简单的编程示例,本书循序渐进地引导读者学习Python。同时,本书还结合Python的各个模块以及金融领域中的期权价格、金融图形绘制、时间序列、期权定价模型、期权定价等内容,深度揭示了Python在金融行业中的应用技巧。

本书适合金融、会计等相关专业的高校师生阅读,也适合金融领域的研究人员和从业人员参考学习。对于有一定计算机编程基础,但想要从事金融行业的读者,本书也是不错的参考用书。

作者简介:严玉星,毕业于麦吉尔大学,获金融学博士学位。他有着丰富的教学经验,教授过各类本科学位和研究生学位的金融课程,如金融建模、期权和期货、投资组合理论、定量财务分析、企业融资和金融数据库等。他曾在8所全球知名的大学任教:两所在加拿大,一所在新加坡,5所在美国。

严博士一直活跃于学术研究的前沿,他的研究成果在多个国际学术期刊发表。此外,他还是财务数据方面的专家。在新加坡南洋理工大学任教时,他曾为博士生讲授一门名为“金融数据库入门”的课程。

J. 谁有有《利用Python进行数据分析》pdf 谢谢

利用Python进行数据分析第二版.pdf
http://qiniu.jplayer.top/利用python数据分析第二版-中文版&英文版.zip

阅读全文

与python科学计算pdf相关的资料

热点内容
python编程计算平均分 浏览:676
加密数字货币市值查询 浏览:690
时尚商圈app怎么样 浏览:582
stacklesspython教程 浏览:136
用命令行禁用135端口 浏览:210
linux防火墙编程 浏览:625
pdf阅读器删除 浏览:979
考研人如何缓解压力 浏览:822
买电暖壶哪个app便宜 浏览:505
洛克王国忘记服务器了怎么办 浏览:782
为什么cf登录服务器没反应 浏览:695
服务器如何获取文件列表 浏览:672
creo五轴编程光盘 浏览:14
苹果app网络验证在哪里 浏览:14
博科清空命令 浏览:384
简爱英文pdf 浏览:376
cnc编程有前途吗 浏览:586
联想app怎么联网 浏览:722
linuxftp命令登录 浏览:1000
android获取图片缩略图 浏览:646