导航:首页 > 文档加密 > hbasepdf

hbasepdf

发布时间:2023-05-13 13:33:56

⑴ 《分布式实时计算框架原理及实践案例》pdf下载在线阅读全文,求百度网盘云资源

《分布式实时计算框架原理及实践案例》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1mRd2oGCC97YKNMTjSpr37Q

?pwd=yp8k 提取码: yp8k
简介:“授人以鱼不如授人以渔”,本书是作者以此初心写成的,主要参考当前主流分布式实时计算框架Storm的任务分发和Spark Streaming的Mini-Batch设计思想,以及底层实现技术,开源了作者自研的轻量级分布式实时计算框架-Light drte,并且重点介绍设计思想和相关实现技术(Katka/RabbitMQ,Redis/SSDB,GuavaCache,MongoDB,HBase,ES/Solr、Thrift、Avro,Jetty),最后从工程角度向大家介绍完整的个性化推荐系统,并实例介绍light drtc在用户画像实时更新的应用。


⑵ 银行数据仓库体系实践(7)--数据模型设计及流程

        数据仓库作为全行或全公司的数据中心和总线,汇集了全行各系统以及外部数据,通过良好的系统架构可以保证系统稳定性和处理高效性,那如何保障系统数据的完备性、规范性和统一性呢?这里就需要有良好的数据分区和数据模型,那数据分区在第三部分数据架构中已经介绍,本节将介绍如何进行数据模型的设计。

1、各数据分区的模型设计思路:

       数据架构部分中提到了在数据仓库中主要分为以下区域,那各数据区域的主要设计原则如下:

       (1)主数据区:主数据区是全行最全的基础数据区,保留历史并作为整个数据仓库的数据主存储区,后续的数据都可以从主数据区数据加工获得,因此主数据区的数据天然就要保留所有历史数据轨迹。

        1) 近源模型区:主要是将所有入数据仓库的数据表按历史拉链表或事件表(APPEND算法)的方式保留所有历史数据,因此模型设计较简单,只需要基于源系统表结构,对字段进行数据标准化后,增加保留历史数据算法所需要的日期字段即可。

        2)整合模型区:该模型区域按主题方式对数据进行建模,需要对源系统表字段按主题分类划分到不同的主题区域中,并主要按3范式的方式设计表结构,通过主题模型的设计并汇总各系统数据,可以从全行及集团角度进行客户、产品、协议(账户、合同)分析,获得统一视图。比如说,全行有多少客户、有多少产品?通过主题模型事先良好的设计和梳理,可以很快获得相关统计数据。

       主数据区的模型设计按顶层设计(自上而下)为主,兼顾应用需求(自下而上)的方式,即需要有全局视角,也要满足应用需求。那顶层设计主要是需要从全行数据角度对源系统的主要业务数据进行入仓,获得全行客户、业务数据的整体视角,同时又保存所有交易明细数据,满足后续的数据分析需求;应用需求指源系统数据的入仓也需要考虑当前集市、数据应用系统的数据需求,因为数据需求是千变万化的,但是只要保留全面的基础的业务数据,就有了加工的基础,当前的数据需求只是考虑的一部分,更多的需要根据业务经验以及主题模型进行数据入仓和模型设计。

        主数据模型的设计主要自上而下,近源模型层虽然比较简单,但设计步骤和整合模型类型,分为以下几个步骤:

       步骤1:系统信息调研,筛选入仓的系统并深入了解业务数据;

       步骤2:对入仓系统进行表级筛选和字段筛选,并将字段进行初步映射;

        步骤3:根据入仓字段按一定规范设计逻辑模型;

       步骤4:对逻辑模型进行物理化;

       (2)集市区:集市区的设计表结构设计主要按维度模型(雪花模型、星形模型)进行设计,主要是为了方便应用分析,满足数据应用需求,集市区一般以切片的形式保留结果历史数据,但保留期限不会太长,比如只保留月末数据以及当前月份的每日切片数据。

       数据集市需要从数据仓库获得基础数据,对于仓内集市,可以直接访问或通过视图访问,减少数据存储,仓外集市则需要从数据仓库获得批量数据作为基础数据进行存储加工。因此仓外集市还需要设计基础数据的保留策略。

      集市区的设计步骤如下:

       (3)接口区:接口区的设计完全根据数据应用系统的接口方式来进行,一般也是维度模型(事实表+维度表)方式,接口区之前也提到过,不做复杂计算,只做简单关联,可以将复杂计算放到集市或指标汇总层加工。

        (4)指标汇总区:作为集市接口区和主数据区的中间层,主要是提供基于各集市和接口数据的共性需求,基于主模型区数据进行统一加工。即面向所有的应用需求来设计,那中间层一般采用维度模型,按从细粒度到粗粒度的方式逐步汇总。由于各数据应用及集市的需求不断变化,指标汇总区也是不断进行完善,许多一开始在集市的加工由于其它集市或应用也需要,则会从集市转移到指标汇总层。常见的数据就是客户、账户、合同等常用的数据实体的宽表(事实表),统一进行汇总后供各数据应用使用。

        另外指标汇总层也包括共性指标的加工,指标可以通过基础指标配置指标计算加工方式获得衍生指标,那这些基础指标和衍生指标的定义、口径以及加工方式可以由指标管理系统来维护并集成到数据标准系统和元数据管理系统中。

        指标汇总区设计步骤如下:

        (5)非结构化数据存储区:非结构化存储区的设计不仅需要考虑非结构化数据本身的存储,同时需要考虑非结构化数据所带有的结构化属性,因此在设计时主要考虑以下几点:

         1)存储路径规划:是需要将非结构化数据按源系统、类型、日期、外部来源等角度进行存储路径的规划,分门别类,便于管理。

         2)对非结构化数据的元数据建立索引:比如对于凭证的影像,需要有账户、流水号、客户名等相关结构化数据,以便完整描述影像图片的来源,通过对这些结构化数据建立索引,方便查找。

         3)对部分文档内容建立索引:对于部分文档如合同电子版、红头文件PDF需要建立内容索引,以便快速搜索查找文件内容,一般可用支持HADOOP的ElasticSearch来实现。

         4)设立计算区和结果区:由于非结构化数据往往需要使用MAPREDUCE或程序化语言进行处理,也会产生中间临时文件和结果数据,因此需要规划计算区和结果区来存放这些数据。

        (6)历史数据存储区:历史数据区作为历史数据的归档,即包括结构化数据,也包括非结构化数据,对于历史数据除了存储也需要方便查找,历史数据区的规划设计需要考虑非结构化数据存储区的存储、索引设计外,还需要考虑以下几点:

        1)压缩,由于历史数据使用频率低,可以选择压缩率较高的算法,降低存储空间。

         2)容量规划:由于历史数据归档会越来越大,因此需要提前进行容量规划以及历史数据清理。比如10年以上的数据进行删除。

         3)可设计一个管理系统对历史数据进行归档、查找以及管理。

        (7)实时数据区:实时数据区需要使用部分批量数据来和实时流数据进行关联加工,因此可从主数据区获得所需要的数据后进行存放在实时数据区的关联数据区,同时对于加工结果不仅可以推送到KAFKA等消息中间件,同时也可输出到实时数据区的结果区进行保留。

        (8)在线查询区:在线查询区主要在线提供计算结果查询,常用HBASE来实现,设计按照接口来分别存放到不同的HBASE表,字段内容也主要是接口字段内容。HBASE表可以根据应用或者接口类型进行分目录和分用户。由于在线查询区和实时数据区考虑到作业的保障级别以及资源竞争,往往会单独建立一套集群,与批量作业集群进行隔离,在线查询的结果计算可以在批量集群计算后加载到在线查询区。

        后续将分别对主数据区、集市及汇总指标层模型设计进行介绍,敬请关注。

⑶ hadoop课程设计

1. 大数据专业课程有哪些

首先我们要了解java语言和linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

2. hadoop视频教程下载

其实这个课程讲的“微博”项目是《HBase in action》中的例子。其中的源代码都放在 github 上面。

3. 请问哪位有《深入浅出Hadoop实战开发》的视频教程

Hadoop是什么,为什么要学习Hadoop?

Hadoop是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop带有用Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。本课程的讲解是采用linux平台进行模拟讲解,完全基于真实场景进行模拟现实

亮点一:技术点全面,体系完善
本课程在兼顾Hadoop课程知识体系完善的前提下,把实际开发中应用最多、最深、最实用的技术抽取出来,通过本课程,你将达到技术的新高点,进入云计算的美好世界。在技术方面你将彻底掌握基本的Hadoop集群;Hadoop HDFS原理;Hadoop HDFS基本的命令;Namenode的工作机制;HDFS基本配置管理;MapRece原理; HBase的系统架构;HBase的表结构;HBase如何使用MapRece;MapRece高级编程;split的实现详解;Hive入门;Hive结合MapRece;Hadoop的集群安装等众多知识点。

亮点二:基础+实战=应用,兼顾学与练
课程每阶段都安排了实战应用项目,以此方便学生能更快的掌握知识点的应用,如在第一阶段,课程结合HDFS应用,讲解了图片服务器的设计、以及如何利用Java API去对HDFS操作、在第二阶段;课程结合HBase实现微博项目的各种功能,使学员可以活学活用。在第三阶段:HBase和MapRece结合时下了实现话单查询与统计系统,在第四阶段,Hive实战部分,通过实战数据统计系统,使学员在最短的时间内掌握Hive的高级应用。

亮点三:讲师丰富的电信集团云平台运作经验
讲师robby拥有丰富的电信集团工作经验,目前负责云平台的各方面工作,并拥有多年的企业内部培训经验。讲课内容完全贴近企业需求,绝不纸上谈兵。

更多技术亮点参考课程大纲:(本大纲以章节形式命名要为防止某些章节1章节内容超过1课时)

第1章节:
> Hadoop背景
> HDFS设计目标
> HDFS不适合的场景
> HDFS架构详尽分析
> MapRece的基本原理

第2章节
> Hadoop的版本介绍
> 安装单机版Hadoop
> 安装Hadoop集群

第3章节
> HDFS命令行基本操作
> Namenode的工作机制
> HDFS基本配置管理

第4章节
> HDFS应用实战:图片服务器(1) - 系统设计
> 应用的环境搭建 php + bootstrap + java
> 使用Hadoop Java API实现向HDFS写入文件

第5章节
> HDFS应用实战:图片服务器(2)
> 使用Hadoop Java API实现读取HDFS中的文件
> 使用Hadoop Java API实现获取HDFS目录列表
> 使用Hadoop Java API实现删除HDFS中的文件

第6章节
> MapRece的基本原理
> MapRece的运行过程
> 搭建MapRece的java开发环境
> 使用MapRece的java接口实现WordCount

第7章节
> WordCount运算过程分析
> MapRece的biner
> 使用MapRece实现数据去重
> 使用MapRece实现数据排序
> 使用MapRece实现数据平均成绩计算

第8章节
> HBase详细介绍
> HBase的系统架构
> HBase的表结构,RowKey,列族和时间戳
> HBase中的Master,Region以及Region Server

第9章节
> 使用HBase实现微博应用(1)
> 用户注册,登陆和注销的设计
> 搭建环境 struts2 + jsp + bootstrap + jquery + HBase Java API
> HBase和用户相关的表结构设计
> 用户注册的实现

第10章节
> 使用HBase实现微博应用(2)
> 使用session实现用户登录和注销
> “关注"功能的设计
> “关注"功能的表结构设计
> “关注"功能的实现

第11章节
> 使用HBase实现微博应用(3)
> “发微博"功能的设计
> “发微博"功能的表结构设计
> “发微博"功能的实现
> 展现整个应用的运行

第12章节
> HBase与MapRece介绍
> HBase如何使用MapRece

第13章节
> HBase应用实战:话单查询与统计(1)
> 应用的整体设计
> 开发环境搭建
> 表结构设计

第14章节
> HBase应用实战:话单查询与统计(2)
> 话单入库单设计与实现
> 话单查询的设计与实现

第15章节
> HBase应用实战:话单查询与统计(3)
> 统计功能设计
> 统计功能实现

第16章节
> 深入MapRece(1)
> split的实现详解
> 自定义输入的实现
> 实例讲解

第17章节
> 深入MapRece(2)
> Rece的partition
> 实例讲解

第18章节
> Hive入门
> 安装Hive
> 使用Hive向HDFS存入结构化数据
> Hive的基本使用

第19章节
> 使用MySql作为Hive的元数据库
> Hive结合MapRece

第20章节
> Hive应用实战:数据统计(1)
> 应用设计,表结构设计

第21章节
> Hive应用实战:数据统计(2)
> 数据录入与统计的实现

4. 哪个课程题库有hadoop的题

这是在一个平衡Hadoop集群中,为数据节点/任务追踪器提供的规格:
在一个磁盘阵列中要有12到24个1~4TB硬盘
2个频率为2~2.5GHz的四核、六核或八核CPU
64~512GB的内存
有保障的千兆或万兆以太网(存储密度越大,需要的网络吞吐量越高)
名字节点角色负责协调集群上的数据存储,作业追踪器协调数据处理(备用的名字节点不应与集群中的名字节点共存,并且运行在与之相同的硬件环境上。)。Cloudera客户购买在RAID1或10配置上有足够功率和级磁盘数的商用机器来运行名字节点和作业追踪器。

NameNode也会直接需要与群集中的数据块的数量成比列的RAM。一个好的但不精确的规则是对于存储在分布式文件系统里面的每一个1百万的数据块,分配1GB的NameNode内存。于在一个群集里面的100个DataNodes而言,NameNode上的64GB的RAM提供了足够的空间来保证群集的增长。我们也把HA同时配置在NameNode和JobTracker上,
这里就是为NameNode/JobTracker/Standby NameNode节点群的技术细节。驱动器的数量或多或少,将取决于冗余数量的需要。
4–6 1TB 硬盘驱动器 采用 一个 JBOD 配置 (1个用于OS, 2个用于文件系统映像[RAID 1], 1个用于Apache ZooKeeper, 1个用于Journal节点)
2 4-/16-/8-核心 CPUs, 至少运行于 2-2.5GHz
64-128GB 随机存储器
Bonded Gigabit 以太网卡 or 10Gigabit 以太网卡
记住, 在思想上,Hadoop 体系设计为用于一种并行环境。

5. 大数据的课程都有哪些

大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。所以大数据的课程内容,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。

6. hadoop 集群教程

要教程?不明白你这个啥意思

7. 有哪些好的hadoop学习资料

1."Hadoop.Operations.pdf.zip"//vdisk.weibo/s/vDOQs6xMAQH62
2."Hadoop权威指南(中文版)(带书签).pdf"Hadoop权威指南(中文版)(带书签).pdf
3."[Hadoop权威指南(第2版)].pdf"[Hadoop权威指南(第2版)].pdf
4."hadoop权威指南第3版2012.rar"hadoop权威指南第3版2012.rar

5.《Hadoop技术内幕:深入解析HadoopCommon和HDFS.pdf"《Hadoop技术内幕:深入解析Hadoop Common和HDFS.pdf
6."Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf"Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf

7."Hadoop实战.pdf"Hadoop实战.pdf
8."Hadoop实战-陆嘉恒(高清完整版).pdf"Hadoop实战-陆嘉恒(高清完整版).pdf
9."Hadoop实战(第2版).pdf"Hadoop实战(第2版).pdf
10."HadoopinAction.pdf"Hadoop in Action.pdf

11"Hadoop in practice.pdf"Hadoop in practice.pdf
12"HadoopThe.Definitive.Guide,3Ed.pdf"Hadoop The.Definitive.Guide,3Ed.pdf
13."O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf"O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf

14."hadoop入门实战手册.pdf"hadoop入门实战手册.pdf
15."Hadoop入门手册.chm"Hadoop入门手册.chm

16."windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc"windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc
17"在Windows上安装Hadoop教程.pdf"在Windows上安装Hadoop教程.pdf

18."Hadoop源代码分析(完整版).pdf"Hadoop源代码分析(完整版).pdf
19."hadoop-api.CHM"hadoop-api.CHM

20."HBase-Hadoop@小米.pptx" HBase-Hadoop@小米.pptx
21."但彬-Hadoop平台的大数据整合.pdf"但彬-Hadoop平台的大数据整合.pdf

22."QCon2013-罗李-Hadoop在阿里.pdf"QCon2013-罗李
23."网络hadoop计算技术发展.pdf"网络hadoop计算技术发展.pdf
24."QCon-吴威-基于Hadoop的海量数据平台.pdf"QCon-吴威-基于Hadoop的海量数据平台.pdf
25."8步安装好你的hadoop.docx"8步安装好你的hadoop.docx
26."hadoop运维经验分享.ppsx"hadoop运维经验分享.ppsx

27."PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar"PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar
28."Hadoop2.0基本架构和发展趋势.pdf"Hadoop 2.0基本架构和发展趋势.pdf
29."Hadoop与大数据技术大会PPT资料.rar"Hadoop与大数据技术大会PPT资料.rar
30."Hadoop2011云计算大会.rar"Hadoop2011云计算大会.rar

⑷ 《R的极客理想工具篇》pdf下载在线阅读全文,求百度网盘云资源

《R的极客理想工具篇》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1X_qPaqbLang6f48J-21o4A

?pwd=y5wg 提取码:y5wg
简介:R的极客理想·工具篇书中内容早烂涉及计算机、互联网、数据库、大数据、绝伏统计、金融等领域,详细并睁携总结了R语言在实际使用时与Java、MySQL、Redis、MongoDB、Cassandra、Hadoop、Hive、HBase等技术综合运用的解决方案,具有实战性及可操作性强等特点。

⑸ 《HBase权威指南5中文版》pdf下载在线阅读全文,求百度网盘云资源

《HBase权威指南5中文版》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1akGkc0w946hLEfysNa9iVQ

?pwd=6ddr 提取码: 6ddr
简介:探讨了如何通枣仿铅过使用与HBase高度集成的Hadoop将HBase的可伸缩性变得简单;把大型数据集分布到相对廉价的商业服务器集群中;使用本地Java客户端,或者通过提供了REST、凳好Avro和Thrift应用编程接口的网关服务器来访问HBase;了解HBase架构的细节大洞,包括存储格式、预写日志、后台进程等;在HBase中集成MapRece框架;了解如何调节集群、设计模式、拷贝表、导入批量数据和删除节点等。

⑹ 《Elasticsearch服务器开发(第2版)》pdf下载在线阅读,求百度网盘云资源

《Elasticsearch服务器开发(第2版)》([波兰] Rafa. Ku. Marek Rogoziński)电子书网盘下载免费在线阅读

资源链接:

链接: https://pan..com/s/1o90QvY-Gq5JYRUCFx1gBdg

提取码: gmif

书名:Elasticsearch服务器开发(第2版)

作者:[波兰] Rafa. Ku. Marek Rogoziński

译者:蔡建斌

豆瓣评分:6.1

出版社:人民邮电出版社

出版年份:2015-3

页数:292

内容简介:

本书介绍了Elasticsearch这个优秀的全文检索和分析引擎从安装和配置到集群管理的各方面知识。本书这一版不仅补充了上一版中遗漏的重要内容,并且所有示例和功能均基于Elasticsearch服务器1.0版进行了更新。你可以从头开始循序渐进地学习本书,也可以查阅具体功能解决手头问题。

作者简介:

作者简介:

Rafał Kuć

solr.pl网站联合创始人,现为Sematext集团顾问和软件工程师,专注于Apache Lucene、Solr、Elasticsearch和Hadoop等开源技术。Rafał拥有超过12年的多领域软件经验,其中既包括银行软件又包括电子商务产品。Rafał也是Apache Solr 3.1 Cookbook等技术图书的作者,并且一直是Lucene Eurocon、Berlin Buzzwords、ApacheCon和Lucene Revolution等会议的演讲嘉宾。

Marek Rogoziński

solr.pl网站联合创始人,拥有10年以上的软件架构师和顾问从业经验,专门研究基于Solr和Elasticsearch等开源搜索引擎的解决方案,以及Hadoop、HBase和Twitter Storm等用于大数据分析的软件。

译者简介:

蔡建斌

敏捷践行者,擅长Scrum/XP/Kanban等敏捷实践,现在英孚教育全球研发中心任Technical Lead,除了50%时间写代码以外,业务需求分析、前后端架构设计、性能调优、自动化测试、流程改进、发布运维、代码评审……无所不为,只为开发出更好的软件。爱好围棋,弈城4段5段之间跳跃。目标:工作上有所不为;爱好上添加一项健身。Email:[email protected]

⑺ hbase虚拟分布式模式需要多少个节点

Copyright © 1999-2020, CSDN.NET, All Rights Reserved

登录
HBase实战+权威指南
《HBase实战》是一本基于经验提炼而成的指南,它教给读者...在HBase中集成用于海量并行数据处理任务的Hadoop的MapRece框架;助你了解如何调节集群、设计模式、拷贝表、导入批量数据、删除节点以及其他更多的任务等。
HBase
hbase权威指南
《HBase权威指南》探讨了如何通过使用与...在HBase中集成MapRece框架;了解如何调节集群、设计模式、拷贝表、导入批量数据和删除节点等。 《HBase权威指南》适合使用HBase进行数据库开发的高级数据库研发人员阅读
hbase
浅谈HBase的数据分布_weixin_34337381的博客-CSDN博客
本文从数据分布问题展开,介绍HBase基于Range的分布策略与region的调度问题,详细讨论了rowkey的比较规则及其应用,希望能够加深用户对HBase数据分布机制和rowkey的理解,...
Hbase 超详细架构解析_weixin_33767813的博客-CSDN博客
注意:client访问hbase上的数据时不需要Hmaster的参与,因为数据寻址访问zookeeper和HregionServer,而数据读写访问HregionServer。Hmaster仅仅维护table和region的元数据信...
Apress - Pro Hadoop
这两个函数由程序员提供给系统,下层设施把Map和Rece操作分布在集群上运行,并把结果存储在GFS上。 3、BigTable。一个大型的分布式数据库,这个数据库不是关系式的数据库。像它的名字一样,就是一个巨大的表格...
Hadoop
分布式协调工具-ZooKeeper实现动态负载均衡
在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高...
Hbase概念详解_fenglei0415的博客-CSDN博客
所以,HBase在表的设计上会有很严格的要求。架构上,HBase是分布式数据库的典范,这点比较像MongoDB的sharding模式,能根据键值的大小,把数据分布到不同的存储节点上...
面试题_HBase_qq_40822132的博客-CSDN博客
物理模型:整个hbase表会拆分成多个region,每个region记录着行键的起始点保存在不同的节点上,查询时就是对各个节点的并行查询,当region很大时使用.META表存储各个...
论文研究-文本挖掘中一种基于参数估计的语句分块方案研究.pdf
该方法要求生成并存储大量词组频率数据,并在每次迭代时支持计算节点快速访问数据。实验评估表明,该方案显着降低了远程数据库查询次数,其端到端应用运行时间要比只基于HBase的原始分布式部署快出6倍。
数据集 参数估计 文本挖掘 幂律
2017最新大数据架构师精英课程
57_hadoop伪分布模式8 I/ e; `1 Y$ b+ p1 R5 ^ 58_编写分发脚本-xcall-rsync1 X% G: Y' Q; }5 I$ [ 59_hadoop完全分布式-hdfs体验 60_hadoop的架构原理图 61_临时文件 62_hadoop的简单介绍, p5 P$ @+ O2 V. p } 63_...
Hbase史上最详细原理总结_二十-CSDN博客
表在行的方向上分割为多个Region; Region是Hbase中分布式存储和负载均衡的最小单元,不同Region分布到不同RegionServer上。 Region按大小分割的,随着数据增多,Region...
分布式开源数据库_HBase入门介绍_aa_maple的博客-CSDN博客

阅读全文

与hbasepdf相关的资料

热点内容
词法分析编译原理论文 浏览:267
电脑文件夹还原方法 浏览:526
安卓包如何成为文档 浏览:944
继承类如何实例化python 浏览:767
逆战加密武器钥匙 浏览:261
php取小数后两位 浏览:354
单片机编程魔法师 浏览:834
帝豪gs怎么下载影视app软件 浏览:511
程序员去山中泡温泉 浏览:38
安卓手机怎么恢复出厂系统版本 浏览:361
高三倒计时缓解压力 浏览:621
一捏就变形的解压玩具怎么折 浏览:198
易融贷app借钱怎么 浏览:941
单片机侧重点 浏览:869
江苏惠普服务器虚拟化设计云主机 浏览:649
在欧拉app好猫充电桩怎么申请 浏览:451
反编译代码教程 浏览:800
linuxio阻塞 浏览:973
8脚单片机pic 浏览:821
如何看彩色涂鸦遮住的字安卓 浏览:688