A. 数学电子书2GB
楼主你说的这个我以前下过,现在电脑上还都保存的有。是北大图书馆系列吧1.7G多似乎是。不过现在电驴上却是不好搜。我记得当时是在某个资源的回复里面看见的。
看看这个是不是你想要的:http://www.verycd.com/groups/@u2985955/244500.topic
http://www.verycd.com/groups/@g2012987/250450.topic
还有个名字叫《未完成》的,不过基本都是重复啊。
你要的书我基本都有,看看能不能发给你
B. 求本线性代数 pdf
给你答案其实是在害你,给你知识点,如果还不会再来问我
线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
关于线性方程组的解,有三个问题值得讨论:
(1)、方程组是否有解,即解的存在性问题;
(2)、方程组如何求解,有多少个解;
(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
(1)、把某个方程的k倍加到另外一个方程上去;
(2)、交换某两个方程的位置;
(3)、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为阶梯形方程组。
由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。
可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
系数矩阵和增广矩阵。
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。
利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容
C. 《线性代数与解析几何》PDF版 北方交通大学出版社 By陈治中
《线性代数与解析几何》PDF版 北方交通大学出版社 By陈治中
WP: https://545c.com/file/24592629-439403763
ZL: http://24592629.d.yyupload.com/down/24592629/理工教材/线性代数与解析几何-陈治中-北京交通大学出版社.pdf
内容简介 · · · · · ·
《线性代数与解析几何》将线性代数与空间解析几何有机地融合在一起,用代数方法解决几何问题,同时空间几何又为代数理论提供几何背景。全书共分8章:行列式、矩阵、空间解析几何、n维向量、线性方程组求解、相似变换与二次型、二次曲面、线性空间与线性变换、基本代数理论。每一章都配套有相应数量的例题和习题,以适应分层次教学的需求,也为其他课程提供数学基础。线性代数与解析几何是高等学校理工科和经济管理学科的一门重要基础课。《线性代数与解析几何》可作为高等院校理工、经济、管理等专业的教材或教学参考书,也可供科技人员或自学人员使用。
目录 · · · · · ·
第一章 向量与复数
1.1 向量的线性运算
1.1.1 向量及其表示
1.1.2 向量的线性运算
1.1.3 向量的共线与共面
1.2 坐标系
1.2.1 仿射坐标系
1.2.2 向量的坐标运算
1.2.3 直角坐标系
1.3 向量的数量积
1.3.1 数量积的定义与性质
1.3.2 直角坐标系下数量积的计算
1.4 向量的向量积
1.4.1 向量积的定义与性质
1.4.2 直角坐标系下向量积的计算
1.5 向量的混合积
1.5.1 混合积的定义
1.5.2 直角坐标系下混合积的计算
1.5.3 二重向量积
.1.6 复数
1.6.1 复数的四则运算
1.6.2 复数的几何表示
*1.7 数域
1.8 求和符号
习题一
第二章 空间解析几何
2.1 直线与平面
2.1.1 直线的方程
2.1.2 平面的方程
2.1.3 点到直线的距离
2.1.4 点到平面的距离
2.1.5 两直线的位置关系
2.1.6 两平面的位置关系
2.1.7 直线与平面的位置关系
2.2 空间曲线与曲面
2.2.1 曲线与曲面的方程
2.2.2 柱面
2.2.3 锥面
2.2.4 旋转面
2.2.5 二次曲面简介
*2.3 坐标变换
2.3.1 坐标系的平移
2.3.2 坐标系的旋转
2.3.3 一般坐标变换
习题二
第三章 线性方程组
3.1 gauss消元法
3.2 gauss消元法的矩阵表示
3.3 一般线性方程组的gauss消元法
3.3.1 算法描述
3.3.2 线性方程组解的属性
习题三
第四章 矩阵与行列式
4.1 矩阵的定义
4.2 矩阵的运算
4.2.1 加法与数乘
4.2.2 矩阵的乘法
4.2.3 逆矩阵
4.2.4 转置、共轭与迹
4.2.5 分块运算
4.2.6 初等变换
4.3 行列式
4.3.1 行列式的定义
4.3.2 行列式的展开式
4.3.3 行列式的计算
4.3.4 cramer法则
54.4 秩与相抵
54.4.1 秩与相抵的定义
4.4.2 秩的计算
4.4.3 相抵标准形的应用
习题四
第五章 线性空间
5.1 数组空间
5.2 线性相关与线性无关
5.3 极大无关组与秩
5.4 子空间、基与维数
5.5 线性方程组解集的结构
5.5.1 线性方程组解的存在性与唯一性
5.5.2 齐次线性方程组解集的结构
5.5.3 非齐次线性方程组解集的结构
5.6 一般线性空间
5.6.1 一般线性空间的定义
5.6.2 一般线性空间的理论
*5.7 线性空间的同构
5.8 予空间及其运算
5.8.1 子空间
*5.8.2 子空间的交
*5.8.3 子空间的和
*5.8.4 子空间的直和
习题五
第六章 线性变换
6.1 线性变换的定义与性质
6.1.1 线性变换的定义
6.1.2 线性变换的性质
6.2 线性变换的蛔咋
6.2.1 线性变换在一组基下的矩阵
*6.2.2 线性变换与矩阵的一一对应
*6.2.3 线性变换的运算
6.3 矩阵的相似
6.3.1 线性变换在不同基下的矩阵
6.3.2 矩阵的相似
6.4 特征值与特征向量
6.4.1 特征值与特征向量的定义
6.4.2 特征值与特征向量的计算
6.5 矩阵的相似对角化
6.5.1 矩阵相似于对角矩阵的充要条件
*6.5.2 特征值的代数重数与几何重数
6.5.3 相似于上三角形矩阵
*6.6 若尔当标准形简介
习题六
第七章 欧几里得空间
7.1 定义与基本性质
7.1.1 欧几里得空间的定义
7.1.2 欧几里得空间的性质
7.2 内积的表示与标准正交基
*7.3 欧几里得空间的同构
7.4 欧几里得空间中的线性变换
7.4.1 正交变换与正交矩阵
7.4.2 对称变换与对称矩阵
7.4.3 实对称矩阵的对角化
*7.5 欧几里得空间的子空间
*7.6 酉空间
7.6.1 酉空间的基本概念
7.6.2 酉空间的基本性质
7.6.3 酉变换与酉矩阵
7.6.4 hermite变换与hermite矩阵
7.6.5 规范变换与规范矩阵
7.6.6 酉变换和hermite变换的对角化
习题七
第八章 实二次型
8.1 二次型的矩阵表示
8.2 二次型的标准形
8.3 相合不变量与分类
8.4 二次曲线与曲面的分类
8.5 正定二次型
习题八
*附录应用案例
a.1 桁架的静力分析
a.2 电网络分析
a.3 多项式公因子与方程求解
a.4 组合与图论问题
a.5 多元函数的极值
a.6 计算机绘图与图形变换
a.7 最小二乘法与奇异值分解
a.8 数字图像的压缩
a.9 投人产出模型
a.10 markov矩阵
a.11 google搜索排序
a.12 层次分析法
参考文献
D. 线性代数的重点和难点
最大的难点就是代数和几何之间的关系。
重点:向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
重要定理
每一个线性空间都有一个基。对一个n行n列的非零矩阵A,如果存在一个矩阵B使AB=BA=E(E是单位矩阵),则A为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
矩阵非奇异(可逆)当且仅当它的行列式不为零。
矩阵非奇异当且仅当它代表的线性变换是个自同构。
矩阵半正定当且仅当它的每个特征值大于或等于零。
矩阵正定当且仅当它的每个特征值都大于零。
以上内容参考:网络-线性代数
E. 《数学(第一卷)它的内容,方法和意义》pdf下载在线阅读,求百度网盘云资源
《数学(第一卷)它的内容,方法和意义》[俄]A.D.亚历山大洛夫等电子书网盘下载免费在线阅读
链接:https://pan..com/s/1gIeNdaInrEcIumLkJ_y6og
书名:数学(第一卷)它的内容,方法和意义辩游
作者名:[俄] A. D. 亚历山大洛夫 等
豆瓣评分:9.1
出版社:科学出版社
出版年份:2001-11
页数:320
内容介绍运灶唯:
《数学:它的内容,方法和意义》是前苏联着名数学家为普及数旁培学知识撰写的一部名着。书中用极其通俗的语言介绍了现代数学各个分支的内容、历史发展及其在自然科学和工程技术中的应用。内容精练,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版,每一章介绍数学的一个分支。第一卷分数学概观、数学分析、解析几何和代数这四部分,内容包括数学的特点,算术,几何,算术和几何,初等数学时代,变量的数学,现代数学等。
F. 诚心求清华大学版《线性代数》第二版PDF。
数学扫描电子PDF书籍
链接:
G. 《大学数学系列课程学习辅导与同步练习线性代数》pdf下载在线阅读全文,求百度网盘云资源
《大学数学系列课程学习辅导与同步练习线性代数》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1XvCHNwdRVF-JzYHcEDtM1A
H. 求同济线性代数第六版教材pdf
综述:《工程数学线性代数第六版》教材扫描版PDF文件可以咨询机构老师,也可以去新华书店购买。
《线性代数(第六版)》是同济大学数学系编着、高等教育出版社出版社的“十二五”普通高等教育本科国家级规划教材,可供高等院校各工程类专业使用,包括诸如管理工程、生物工程等新兴工程类专业,也可供自学者、考研者和科技工作者阅读。
内容简介:
《线性代数(第六版)》共六章,内容包括行列式、矩阵及其运算、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换,各章配有习题,书末附有习题答案。
参考资料来源:网络-线性代数(第六版)
I. 二次型矩阵 利用初等变换化二次型为标准型
摘 要 在高等代数这门课中,我们经常应用初等变换这一方法计算行列式的值、矩阵的逆、矩阵的秩。其实初等变换还有更广泛的应用,本文主要介绍利用初等变换方法将二次型为标准型。
关键词 初等变换 二次型 标准型
中图分类号:O156文献标识码:A
二次型f (X) = XTAX,矩阵A是一个对称矩阵,通常将二次型化为标准型的方法三种:(1)配方法;(2)正交变换法;(3)初等变换法。求解上述问题的一般步骤为:
(1)令|A -E| = 0,求得A全部不同的特征值 1, 2,…, 3, i(i = 1,2,…,s)的重数为ki,ki = n;
(2)对于每个 1(i = 1,2,…,s),求出齐次线性方程组(A -iE)x = 0的一个基础解系,,…,,这时为列向量;
(3)对,,…,,进行施密特正交化过程,得到ki个属于 i的相互正交的特征向量,,…,(1≤i≤s);团宏
(4)将单位化得rij = , (1≤i≤s,1≤j≤ki);
(5)令C = (,…,,…,…,),则C为所求矩阵,且CTAC为对角阵,其中主对角上的元素为 1…, 1,…, s,…, s。
上述求解过程比较繁琐,特别是施密特正交化过程公式,较易忘记,而本文介绍的正交变换法就能快速地化二次型为标准型。由于二次型的标准型所对应的矩阵是对角矩阵∧,所以∧ A,即存在可逆矩阵C,使得CTAC = ∧。而C = P1P2…Pt,其中Pj(j = 1,…,t)为初等矩阵,CT =
培世
上述这两个式子说明,对矩阵A施行一系列成对的初等变换,将A化成对角矩阵E,就相当于对单位矩阵E施行同种类型的初等变换,将单位矩阵E化成可逆矩阵C。对角矩阵所对应的二次型就是标准型,可逆矩阵C就是可逆的线性变换X = CY所对应的矩阵。
因此我们作一个矩阵
这里需要说明的是,所谓合同变换是:当对矩阵施行一次初等行变换后,紧接着进行同样的初等列变换,两次变换必须同时进行。
例1 将二次型f (,,) =- 3 +- 2 + 2 - 6化成标准型。
解:此时二次型的矩阵,作矩阵
所以可逆的线性替换为
其标准型为f (,,) =- 4 +
例2 将实二次型f (,,) = 2 - 6 + 2化为标准型。
解:此二次型的系数矩阵,A的主塌中册对角元素全是0,先对A作初等变换及其相应的列,使经过如此变换后得到的新合同阵的主对角有非零数。
所以可逆的线性替换为
标准型为:f (,,) = 2 -+ 6
初等变换在解决高等代数的有关问题中所具有的特殊作用,本文主要研究了将二次型化为标准型的有效方法――初等变换。
参考文献
[1] 张贤科.高等代数.北京:清华大学出版社,2000.
[2] 杨桂元.线性代数.成都:电子科技大学出版社,2002.
[3] 王俊青.论初等变换在高等代数中的应用[J].沧州师范专科学校学报,2002.
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
J. 《高观点下的初等数学》pdf下载在线阅读,求百度网盘云资源
《高观点下的初等数学》([德] Felix Klein)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1fXnQ5nt1O-3cTK-PziUj9g
书名:高观点下的初等数学
作者:[德] Felix Klein
译者:舒湘芹
豆瓣评分:9.1
出版社:世烂复旦大学出版社
出版年份:2008-9
页数:812
内容简介:
《高观点下的初等数学》(全3册)是克莱因根据自己在哥廷根大学多年为德国中学数学教师及在校学生开设的讲座所撰写的基础数学普及读物。该书反映了他对数学的许多观点,向人们生动地展示了一流大师的遗风,出版后被译成多种文字,是一友蔽部数学教育的不朽杰作,影响至今不衰。《高观点下的初等数学》共分3卷。第一卷:算术,代数、分析;第二卷:几何;第三卷:精确数学与近似数学。菲利克斯·克莱因是19世纪末20世纪初世界最有影响好返州力的数学学派——哥廷根学派的创始人,他不仅是伟大的数学家,也是现代国际数学教育的奠基人、杰出的数学史家和数学教育家,在数学界享有崇高的声誉和巨大的影响。克莱因认为函数为数学的”灵魂”。应该成为中学数学的“基石”,应该把算术、代数和几何方面的内容,通过几何的形式用以函数为中心的观念综合起来;强调要用近代数学的观点来改造传统的中学数学内容,主张加强函数和微积分的教学,改革和充实代数的内容,倡导”高观点下的初等数学”意识。在克莱因看来,一个数学教师的职责是:”应使学生了解数学并不是孤立的各门学问,而是一个有机的整体”; 基础数学的教师应该站在更高的视角(高等数学)来审视。理解初等数学问题,只有观点高了,事物才能显得明了而简单;一个称职的教师应当掌握或了解数学的各种概念、方法及其发展与完善的过程以及数学教育演化的经过。他认为”有关的每一个分支,原则上应看做是数学整体的代表”,“有许多初等数学的现象只有在非初等的理论结构内才能深刻地理解”。
作者简介:
Felix Klein是19世纪末20世纪初世界最有影响力的数学学派——哥廷根学派的创始人,他不仅是伟大的数学家,也是现代国际数学教育的奠基人、杰出的数学史家和数学教育家,在数学界享有崇高的声誉和巨大的影响。