导航:首页 > 文档加密 > 分裂加密技术

分裂加密技术

发布时间:2023-05-23 16:11:02

① 最早出现的加密算法

最早出现的加密算法是恺撒密码,详细介绍如下:

一、恺撒密码简介:

1、在密码学中,恺撒密码,或称恺撒加密,恺撒变换,变换加密,是一种最简单且最广为人知的加密技术。它是一种替换加密的技术,明文中的所有字母都在字母表上向后或向前按照一个固定数目进行偏移后被替换成密文。

2、由于使用恺撒密码进行加密的语言一般都是敬胡字母文字系统,因此密码中可能是使用的偏移量也是有限的,例如使用26个字母的英语,它的偏移量最多就是25,因此可以通过穷举法,很轻易地进行破解。

② 数据在网络上传输为什么要加密现在常用的数据加密算法主要有哪些

数据传输加密技术的目的是对传输中的数据流加密,通常有线路加密与端—端加密两种。线路加密侧重在线路上而不考虑信源与信宿,是对保密信息通过各线路采用不同的加密密钥提供安全保护。

端—端加密指信息由发送端自动加密,并且由TCP/IP进行数据包封装,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息到达目的地,将被自动重组、解密,而成为可读的数据。

数据存储加密技术的目的是防止在存储环节上的数据失密,数据存储加密技术可分为密文存储和存取控制两种。前者一般是通过加密算法转换、附加密码、加密模块等方法实现;后者则是对用户资格、权限加以审查和限制,防止非法用户存取数据或合法用户越权存取数据。

常见加密算法

1、DES(Data Encryption Standard):对称算法,数据加密标准,速度较快,适用于加密大量数据的场合;

2、3DES(Triple DES):是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高;

3、RC2和RC4:对称算法,用变长密钥对大量数据进行加密,比 DES 快;

4、IDEA(International Data Encryption Algorithm)国际数据加密算法,使用 128 位密钥提供非常强的安全性;

5、RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法; 算法如下:

首先, 找出三个数,p,q,r,其中 p,q 是两个不相同的质数,r 是与 (p-1)(q-1) 互为质数的数。

p,q,r这三个数便是 private key。接着,找出 m,使得 rm == 1 mod (p-1)(q-1).....这个 m 一定存在,因为 r 与 (p-1)(q-1) 互质,用辗转相除法就可以得到了。再来,计算 n = pq.......m,n 这两个数便是 public key。

6、DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法;

7、AES(Advanced Encryption Standard):高级加密标准,对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael 算法。

8、BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;

9、MD5:严格来说不算加密算法,只能说是摘要算法;

对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

(2)分裂加密技术扩展阅读

数据加密标准

传统加密方法有两种,替换和置换。上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密文中的一个字符。而置换仅将明文的字符按不同的顺序重新排列。单独使用这两种方法的任意一种都是不够安全的,但是将这两种方法结合起来就能提供相当高的安全程度。

数据加密标准(Data Encryption Standard,简称DES)就采用了这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准。

DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8位奇偶校验位组成,因此只有56个可能的密码而不是64个。

每块先用初始置换方法进行加密,再连续进行16次复杂的替换,最后再对其施用初始置换的逆。第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki。

DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外。

参考资料来源:网络-加密算法

参考资料来源:网络-数据加密

③ 目前常用的加密解密算法有哪些

加密算法

加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。

对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。

不对称加密算法不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。

不可逆加密算法 不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。

加密技术

加密算法是加密技术的基础,任何一种成熟的加密技术都是建立多种加密算法组合,或者加密算法和其他应用软件有机结合的基础之上的。下面我们介绍几种在计算机网络应用领域广泛应用的加密技术。

非否认(Non-repudiation)技术 该技术的核心是不对称加密算法的公钥技术,通过产生一个与用户认证数据有关的数字签名来完成。当用户执行某一交易时,这种签名能够保证用户今后无法否认该交易发生的事实。由于非否认技术的操作过程简单,而且直接包含在用户的某类正常的电子交易中,因而成为当前用户进行电子商务、取得商务信任的重要保证。

PGP(Pretty Good Privacy)技术 PGP技术是一个基于不对称加密算法RSA公钥体系的邮件加密技术,也是一种操作简单、使用方便、普及程度较高的加密软件。PGP技术不但可以对电子邮件加密,防止非授权者阅读信件;还能对电子邮件附加数字签名,使收信人能明确了解发信人的真实身份;也可以在不需要通过任何保密渠道传递密钥的情况下,使人们安全地进行保密通信。PGP技术创造性地把RSA不对称加密算法的方便性和传统加密体系结合起来,在数字签名和密钥认证管理机制方面采用了无缝结合的巧妙设计,使其几乎成为最为流行的公钥加密软件包。

数字签名(Digital Signature)技术 数字签名技术是不对称加密算法的典型应用。数字签名的应用过程是,数据源发送方使用自己的私钥对数据校验和或其他与数据内容有关的变量进行加密处理,完成对数据的合法“签名”,数据接收方则利用对方的公钥来解读收到的“数字签名”,并将解读结果用于对数据完整性的检验,以确认签名的合法性。数字签名技术是在网络系统虚拟环境中确认身份的重要技术,完全可以代替现实过程中的“亲笔签字”,在技术和法律上有保证。在公钥与私钥管理方面,数字签名应用与加密邮件PGP技术正好相反。在数字签名应用中,发送者的公钥可以很方便地得到,但他的私钥则需要严格保密。

PKI(Public Key Infrastructure)技术 PKI技术是一种以不对称加密技术为核心、可以为网络提供安全服务的公钥基础设施。PKI技术最初主要应用在Internet环境中,为复杂的互联网系统提供统一的身份认证、数据加密和完整性保障机制。由于PKI技术在网络安全领域所表现出的巨大优势,因而受到银行、证券、政府等核心应用系统的青睐。PKI技术既是信息安全技术的核心,也是电子商务的关键和基础技术。由于通过网络进行的电子商务、电子政务等活动缺少物理接触,因而使得利用电子方式验证信任关系变得至关重要,PKI技术恰好能够有效解决电子商务应用中的机密性、真实性、完整性、不可否认性和存取控制等安全问题。一个实用的PKI体系还必须充分考虑互操作性和可扩展性。PKI体系所包含的认证中心(CA)、注册中心(RA)、策略管理、密钥与证书管理、密钥备份与恢复、撤销系统等功能模块应该有机地结合在一起。

加密的未来趋势

尽管双钥密码体制比单钥密码体制更为可靠,但由于计算过于复杂,双钥密码体制在进行大信息量通信时,加密速率仅为单钥体制的1/100,甚至是 1/1000。正是由于不同体制的加密算法各有所长,所以在今后相当长的一段时期内,各类加密体制将会共同发展。而在由IBM等公司于1996年联合推出的用于电子商务的协议标准SET(Secure Electronic Transaction)中和1992年由多国联合开发的PGP技术中,均采用了包含单钥密码、双钥密码、单向杂凑算法和随机数生成算法在内的混合密码系统的动向来看,这似乎从一个侧面展示了今后密码技术应用的未来。

在单钥密码领域,一次一密被认为是最为可靠的机制,但是由于流密码体制中的密钥流生成器在算法上未能突破有限循环,故一直未被广泛应用。如果找到一个在算法上接近无限循环的密钥流生成器,该体制将会有一个质的飞跃。近年来,混沌学理论的研究给在这一方向产生突破带来了曙光。此外,充满生气的量子密码被认为是一个潜在的发展方向,因为它是基于光学和量子力学理论的。该理论对于在光纤通信中加强信息安全、对付拥有量子计算能力的破译无疑是一种理想的解决方法。

由于电子商务等民用系统的应用需求,认证加密算法也将有较大发展。此外,在传统密码体制中,还将会产生类似于IDEA这样的新成员,新成员的一个主要特征就是在算法上有创新和突破,而不仅仅是对传统算法进行修正或改进。密码学是一个正在不断发展的年轻学科,任何未被认识的加/解密机制都有可能在其中占有一席之地。

目前,对信息系统或电子邮件的安全问题,还没有一个非常有效的解决方案,其主要原因是由于互联网固有的异构性,没有一个单一的信任机构可以满足互联网全程异构性的所有需要,也没有一个单一的协议能够适用于互联网全程异构性的所有情况。解决的办法只有依靠软件代理了,即采用软件代理来自动管理用户所持有的证书(即用户所属的信任结构)以及用户所有的行为。每当用户要发送一则消息或一封电子邮件时,代理就会自动与对方的代理协商,找出一个共同信任的机构或一个通用协议来进行通信。在互联网环境中,下一代的安全信息系统会自动为用户发送加密邮件,同样当用户要向某人发送电子邮件时,用户的本地代理首先将与对方的代理交互,协商一个适合双方的认证机构。当然,电子邮件也需要不同的技术支持,因为电子邮件不是端到端的通信,而是通过多个中间机构把电子邮件分程传递到各自的通信机器上,最后到达目的地。

④ 数据怎么加密比较好

数据加密,透明加密是现在企事业单位用的最好的管理方案,也是企业用的最多的管理方案
数据透明加密方案的功能介绍如下::
透明加密
安装安秉网盾加密客户端的计算机,其生成的文档自动加密,加密文档在内部授权环境内可正常使用,未经授权解密,私自带到外部或未经授权的内部环境均无法打开。
解密审批
管理员可以设置客户端解密审批流程。设置好后,客户端选择被加密的文件,鼠标右键,选择申请解密,审批人计算机右下角就会弹出审批请求。如同意审批,则客户端以明文形式外发文件。
分级加密
管理员可以设置不同计算机具有不同的级别,级别低的终端,无法查看级别高的终端生成的文件。
自定义策略
针对非通用软件,系统提供了人性化自定义策略功能,使用者可以很方便的自定义加密策略。
解密UKey
管理员可以制作多个解密UKey,同时可以给解密UKey分配相应的权限,包括解密的权限,修改文件级别的权限等.
打包外发
外发文件时,申请者可以设置外发文件的使用权限,包括外发出去的文件的打开次数,打开时间等信息。
剪切板加密
剪切板加密:禁止终端用户将数据通过复制粘贴的方式外发出去
截屏控制
禁止截屏:禁止终端用户使用截屏软件将屏幕数据外发出去。
打印水印
对于加密的文件,打印出来的纸张,背景会有打印水印信息。管理者可以设置水印的内容、位置等信息。
老板客户端
管理员可以给企业负责人安装老板客户端,老板客户端可以打开全部加密文件,同时自己使用的文件不加密。
离线策略
用于管理不能跟服务器通信的终端电脑如出差,服务器故障等,在授权时间内,终端可以正常工作,超过离线时间,将无法打开加密文档。
审批日志
终端使用者的一切申请解密日志,以及审批日志都会记录在系统内,管理员可以进行查询。所有申请解密的文件,均会保存在服务器上,管理员可以打开查看。
加密文件备份
对于已经加密过的文件,系统提供备份策略,将文件备份到服务器上。

⑤ 现在数据库加密的方式有哪几种

数据库加密的方式从最早到现在有4种技术,首先是前置代理加密技术,该技术的思路是在数据库之前增加一道安全代理服务,所有访问数据库的行为都必须经过该安全代理服务,在此服务中实现如数据加解密、存取控制等安全策略,安全代理服务通过数据库的访问接口实现数据存储。安全代理服务存在于客户端应用与数据库存储引擎之间,负责完成数据的加解密工作,加密数据存储在安全代理服务中。
然后是应用加密技术,该技术是应用系统通过加密API对敏感数据进行加密,将加密数据存储到数据库的底层文件中;在进行数据检索时,将密文数据取回到客户端,再进行解密,应用系统自行管理密钥体系。
其次是文件系统加解密技术,该技术不与数据库自身原理融合,只是对数据存储的载体从操作系统或文件系统层面进行加解密。这种技术通过在操作系统中植入具有一定入侵性的“钩子”进程,在数据存储文件被打开的时候进行解密动作,在数据落地的时候执行加密动作,具备基础加解密能力的同时,能够根据操作系统用户或者访问文件的进程ID进行基本的访问权限控制。
最后后置代理技术,该技术是使用“视图”+“触发器”+“扩展索引”+“外部调用”的方式实现数据加密,同时保证应用完全透明。核心思想是充分利用数据库自身提供的应用定制扩展能力,分别使用其触发器扩展能力、索引扩展能力、自定义函数扩展能力以及视图等技术来满足数据存储加密,加密后数据检索,对应用无缝透明等核心需求。安华金和的加密技术在国内是唯一支持TDE的数据库加密产品厂商。

⑥ 加密技术有哪几种

采用密码技术对信息加密,是最常用的安全交易手段。在电子商务中获得广泛应用的加密技术有以下两种:

(1)公共密钥和私用密钥(public key and private key)

这一加密方法亦称为RSA编码法,是由Rivest、Shamir和Adlernan三人所研究发明的。它利用两个很大的质数相乘所产生的乘积来加密。这两个质数无论哪一个先与原文件编码相乘,对文件加密,均可由另一个质数再相乘来解密。但要用一个质数来求出另一个质数,则是十分困难的。因此将这一对质数称为密钥对(Key Pair)。在加密应用时,某个用户总是将一个密钥公开,让需发信的人员将信息用其公共密钥加密后发给该用户,而一旦信息加密后,只有用该用户一个人知道的私用密钥才能解密。具有数字凭证身份的人员的公共密钥可在网上查到,亦可在请对方发信息时主动将公共密钥传给对方,这样保证在Internet上传输信息的保密和安全。

(2)数字摘要(digital digest)

这一加密方法亦称安全Hash编码法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所设计。该编码法采用单向Hash函数将需加密的明文“摘要”成一串128bit的密文,这一串密文亦称为数字指纹(Finger Print),它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。这样这摘要便可成为验证明文是否是“真身”的“指纹”了。

上述两种方法可结合起来使用,数字签名就是上述两法结合使用的实例。

3.2数字签名(digital signature)

在书面文件上签名是确认文件的一种手段,签名的作用有两点,一是因为自己的签名难以否认,从而确认了文件已签署这一事实;二是因为签名不易仿冒,从而确定了文件是真的这一事实。数字签名与书面文件签名有相同之处,采用数字签名,也能确认以下两点:

a. 信息是由签名者发送的。

b. 信息在传输过程中未曾作过任何修改。

这样数字签名就可用来防止电子信息因易被修改而有人作伪;或冒用别人名义发送信息;或发出(收到)信件后又加以否认等情况发生。

数字签名采用了双重加密的方法来实现防伪、防赖。其原理为:

(1) 被发送文件用SHA编码加密产生128bit的数字摘要(见上节)。

(2) 发送方用自己的私用密钥对摘要再加密,这就形成了数字签名。

(3) 将原文和加密的摘要同时传给对方。

(4) 对方用发送方的公共密钥对摘要解密,同时对收到的文件用SHA编码加密产生又一摘要。

(5) 将解密后的摘要和收到的文件在接收方重新加密产生的摘要相互对比。如两者一致,则说明传送过程中信息没有被破坏或篡改过。否则不然。

3.3数字时间戳(digital time-stamp)

交易文件中,时间是十分重要的信息。在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。

在电子交易中,同样需对交易文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。

数字时间戳服务(DTS)是网上安全服务项目,由专门的机构提供。时间戳(time-stamp)是一个经加密后形成的凭证文档,它包括三个部分:1)需加时间戳的文件的摘要(digest),2)DTS收到文件的日期和时间,3)DTS的数字签名。

时间戳产生的过程为:用户首先将需要加时间戳的文件用HASH编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入了收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。由Bellcore创造的DTS采用如下的过程:加密时将摘要信息归并到二叉树的数据结构;再将二叉树的根值发表在报纸上,这样更有效地为文件发表时间提供了佐证。注意,书面签署文件的时间是由签署人自己写上的,而数字时间戳则不然,它是由认证单位DTS来加的,以DTS收到文件的时间为依据。因此,时间戳也可作为科学家的科学发明文献的时间认证。

3.4数字凭证(digital certificate, digital ID)

数字凭证又称为数字证书,是用电子手段来证实一个用户的身份和对网络资源的访问的权限。在网上的电子交易中,如双方出示了各自的数字凭证,并用它来进行交易操作,那么双方都可不必为对方身份的真伪担心。数字凭证可用于电子邮件、电子商务、群件、电子基金转移等各种用途。

数字凭证的内部格式是由CCITT X.509国际标准所规定的,它包含了以下几点:

(1) 凭证拥有者的姓名,

(2) 凭证拥有者的公共密钥,

(3) 公共密钥的有效期,

(4) 颁发数字凭证的单位,

(5) 数字凭证的序列号(Serial number),

(6) 颁发数字凭证单位的数字签名。

数字凭证有三种类型:

(1) 个人凭证(Personal Digital ID):它仅仅为某一个用户提供凭证,以帮助其个人在网上进行安全交易操作。个人身份的数字凭证通常是安装在客户端的浏览器内的。并通过安全的电子邮件(S/MIME)来进行交易操作。

(2) 企业(服务器)凭证(Server ID):它通常为网上的某个Web服务器提供凭证,拥有Web服务器的企业就可以用具有凭证的万维网站点(Web Site)来进行安全电子交易。有凭证的Web服务器会自动地将其与客户端Web浏览器通信的信息加密。

(3) 软件(开发者)凭证(Developer ID):它通常为Internet中被下载的软件提供凭证,该凭证用于和微软公司Authenticode技术(合法化软件)结合的软件,以使用户在下载软件时能获得所需的信息。

上述三类凭证中前二类是常用的凭证,第三类则用于较特殊的场合,大部分认证中心提供前两类凭证,能提供各类凭证的认证中心并不普遍

⑦ 数据加密主要有哪些方式

主要有两种方式:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。
一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)
链路加密
对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。
由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。
尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。
在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。
在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。
在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。
节点加密
尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。
然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。
节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。
端到端加密
端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。
端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。
端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。

⑧ 有哪些加密方法比较经典或者说说加密的历史.

加密之所以安全,绝非因不知道加密解密算法方法,而是加密的密钥是绝对的隐藏,流行的RSA和AES加密算法都是完全公开的,一方取得已加密的数据,就算知道加密算法也好,若没有加密的密钥,也不能打开被加密保护的信息。

加密作为保障数据安全的一种方式,它不是才有的,它产生的历史相当久远,它是起源于要追溯于公元前2000年(几个世纪了),虽然它不是我们所讲的加密技术(甚至不叫加密),但作为一种加密的概念,确实早在几个世纪前就诞生了。

当时埃及人是最先使用特别的象形文字作为信息编码的,随着时间推移,巴比伦、美索不达米亚和希腊文明都开始使用一些方法来保护他们的书面信息。

近期加密技术主要应用于军事领域,如美国独立战争、美国内战和两次世界大战。最广为人知的编码机器是German Enigma机,在第二次世界大战中德国人利用它创建了加密信息。此后,由于Alan Turing和Ultra计划以及其他人的努力,终于对德国人的密码进行了破解。



(8)分裂加密技术扩展阅读:

相关标准

最早、最着名的保密密钥或对称密钥加密算法DES(Data Encryption Standard)是由IBM公司在70年代发展起来的,并经政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(American National Standard Institute,ANSI)承认。

DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的"每轮"密钥值由56位的完整密钥得出来。

DES用软件进行解码需用很长时间,而用硬件解码速度非常快。幸运的是,当时大多数黑客并没有足够的设备制造出这种硬件设备。

在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。当时DES被认为是一种十分强大的加密方法。



⑨ 加密技术分为哪两类

加密技术分为:

1、对称加密

对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难

2、非对称

1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。

加密技术的功能:

原有的单密钥加密技术采用特定加密密钥加密数据,而解密时用于解密的密钥与加密密钥相同,这称之为对称型加密算法。采用此加密技术的理论基础的加密方法如果用于网络传输数据加密,则不可避免地出现安全漏洞。

区别于原有的单密钥加密技术,PKI采用非对称的加密算法,即由原文加密成密文的密钥不同于由密文解密为原文的密钥,以避免第三方获取密钥后将密文解密。

以上内容参考:网络—加密技术

⑩ 加密技术有哪几种分类

加密技术分为私用密钥加密技术和公开密钥加密技术。其中私用密钥加密技术中最具有代表性的算法是IBM公司提出的DES算法、三重DES算法(是DES加强版)、日本密码学家提出随机化数据加密标准(RDES)、瑞士学者发明的IDEA国际信息加密算法;公开密钥加密技术的核心是运用一种特殊的数学函数(单向陷门函数)。算法有很多,比如着名的背包算法等。目前公认比较安全的是RSA算法及其变种和离散对数算法等等。
数据来源《小议数据加密技术》

阅读全文

与分裂加密技术相关的资料

热点内容
id加密门禁卡可以复制到手机吗 浏览:672
路由器如何控制某个app 浏览:43
C51编译器在标准C的基础上 浏览:260
银行卡掉了可以办车贷解压吗 浏览:317
没解压可以贷款吗 浏览:517
最小pdf阅读器 浏览:808
游戏被加密了怎样用电脑打开 浏览:300
蓝灯如何手动选择服务器 浏览:85
服务器设置在中国意味什么 浏览:571
单片机不能进行选择控制 浏览:694
咕咚手表如何绑定手机app 浏览:530
命令虚拟语气 浏览:405
戴尔系统命令 浏览:583
怎样压缩视频文件大小 浏览:686
51单片机信号发生器 浏览:56
米拍摄影哪个app好 浏览:88
天津致远曙光服务器云服务器 浏览:117
光子程序员怎么获得 浏览:535
中医诊断学第九版pdf 浏览:498
python集成包 浏览:305