① 非对称加密的应用
应用1:加密通信
|明文|->公钥加密->|密文|->私钥解密->|明文|
这种加密路径用于和他人进行加密通信,作用等同于对称加密。
我们回到Alice和Bob的例子来看下。
如果Bob想利用非对称加密算法私密的接收他人向他发送的信息,步骤是这样的。
1.首先Bob需要使用具体约定的算法(例如RSA)生成密钥和公钥,密钥自己保留,公钥对外公布。
2.Alice拿到Bob的公钥后,便可以对想要发送的消息“Alice已向Bob转账1BTC,请查收。”进行加密。
3.然后Alice将密文(例如是“FH39ggJ+shi3djifg35”)发送给Bob。
4.Bob收到消息后,用自己的私钥进行解密,还原出消息原文“Alice已向Bob转账1BTC,请查收。”
由于使用Bob公钥加密的消息只能用Bob的私钥解密(Bob的公钥也是不行的),而私钥只有Bob拥有,因此即使消息被第三方劫持,他也无法还原出消漏誉息明文。
应用2:数字签名
如果反过来,先用私钥加密呢?这便诞生了非对称加密的另一个重要应用中源:数字签名
我们回到Alice和Bob的例子来看下。
在比特币系统中,类似“Alice已向Bob转账1BTC,请查收。”这样的消息最终会被矿工记录在账本上,是与转账双方利益相关的。这样一条消息的受益方是Bob,我们腹黑一点想,如果Bob一直向网络中广播Alice给他转账的消息呢?
Bob:“Alice已向Bob转账1BTC”
Bob:“Alice已向Bob转账2BTC”
Bob:“Alice已向Bob转账3BTC”
…
因此,我们需要一种机制来证明Alice是“自愿”的,也就是消息是Alice亲自发出的。步骤是这样的:
1.Alice需要使用具体约定的算法(例如RSA)生成密钥和公钥,密钥自己保留,公钥卖搜态对外公布。
2.当Alice想要发送消息 Alice已向Bob转账1BTC,请查收。| 我的公钥是:“gh3giPGFN2jgh3sF”。 时,Alice使用自己的私钥对消息进行加密,假设加密后的密文是 SHG356g3T4+dh4fh,现在这个密文可以看作Alice的数字签名。
3.Alice将消息明文和数字签名放到一起并发送到网络中
发送的消息类似这样的形式 Alice已向Bob转账1BTC,请查收。| 我的公钥是:“gh3giPGFN2jgh3sF”。| 签名:“SHG356g3T4+dh4fh”
4.网络中的所有人接收到消息后,都可以进行如下操作完成验证:
收到消息 Alice已向Bob转账1BTC,请查收。| 我的公钥是:“gh3giPGFN2jgh3sF”。| 签名:“SHG356g3T4+dh4fh”
使用Alice在消息中提供的公钥 gh3giPGFN2jgh3sF对私钥签署的数字签名SHG356g3T4+dh4fh进行解密
将解密结果与消息明文 Alice已向Bob转账1BTC,请查收。| 我的公钥是:“gh3giPGFN2jgh3sF”进行对比
如果一致,说明消息是Alice亲自发送的,因为只有Alice本人拥有Alice的密钥
如果不一致,则说明消息不是Alice发送的,或者虽然消息是Alice发送的但已遭到他人篡改
5.于是,通过4中描述的方法,Bob确认了Alice给他了一笔价值1BTC的转账。
网络中其他人(矿工)均成功验证了这条消息的真实性,并为Bob作证他的账户新增了1个BTC,Alice的账户减少了1个BTC。
② 非对称加密解密RSA的实现例子
最近有接触到加密相关的内容,本期以非对称加密为例子,做个简单的总结和记录。首先了解下非对称加密,简单来说非对称指的是加密和解密用不同的秘钥,典型的RSA,这个算法名称是基于三个发明人的名字首字母取的;辩含碧而对称加密必须要在加解密使用相同的秘钥携举,典型的AES。这里细节不多展开阐述,涉及到很多数学原理,如大数的质因数分解等,感兴趣的可以找找李永乐等网上比较优秀的科普。这篇文章只是java原生实现的加解密例子。至于其他的如md5,hash等,如果从主观可读的角度来说,也可以称为加密。
如下的示例是使用Java原生实现RSA的加密解密,包括用公钥加密,然后私钥解密;或者使用私钥加密,然后公钥解密。注意不同key大小,限制的解密内容大小也不一样,感老备兴趣的同学可以试试修改key大小和加密内容长度来试试。还有要注意的是RSA加密有一定的性能损耗。
想了解原理相关的内容可以看如下的参考内容。
[1]. RSA原理
③ 非对称加密的两种应用场景
用一个数学上的小游戏作例子,老师让学生任意想一个三位数的数字A,然后把A*91的乘积的末尾三位数告诉老师,老师把末尾三位数*11得到一个乘积,乘积的末尾三位数就是数字A。
比如,数字A为234,234*91=21294,学生把294告诉老师,294*11=3234,末尾三位数就是数字A。
这个游戏的原理在于(不理解也没关系,不影响后面的学习):
91*11=1001,一个三位数*1001,相当于左移三位,然后再加上自己,因此一个三位腔族局数*1001的乘积的末尾三位数,一定等于该数
这个例子中,91就是公钥,谁都可以用公钥来加密,11是私钥,只有一个人有,所以只有一个人可以解密。
本例中,公钥私钥的创建,是利用了1001=91*11,其安全性在于,把1001拆成穗型91和11很容易,但只凭91猜出1001和11很难。
我们还可以用更大的数字来做公钥私钥,比如400000001=19801*20201, =1199481995446957*3334772856269093,这样就更加安全。不伍让过,真正的非对称加密算法(比如RSA)原理远比这复杂。
上面的例子,其实只是介绍了非对称加密的第一种应用场景:
消息发送方用公钥加密消息,接收方用私钥解密。
实际上,非对称加密还有第二种应用场景:
消息发送方用私钥加密消息,接收方用公钥解密,如果能解密成功,说明消息的来源可以信任。
备注
以上参考自 知乎
④ 非对称加密的代表例子有哪些
非对称加密主要算法:RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。
使用最广泛的是RSA算法,Elgamal是另一种常用的非对称加密算法。
经典的非对称加密算法如RSA算法等安全性都相当高.
非对称加密的典型应用是数字签名。
⑤ 非对称加密算法
如果要给世界上所有算法按重要程度排个序,那我觉得“公钥加密算法”一定是排在最前边的,因为它是现代计算机通信安全的基石,保证了加密数据的安全。
01 对称加密算法
在非对称加密出现以前,普遍使用的是对称加密算法。所谓对称加密,就是加密和解密是相反的操作,对数据进行解密,只要按加密的方式反向操作一遍就可以获得对应的原始数据了,举一个简单的例子,如果要对字符串"abc"进行加密,先获取它们的ANSCII码为:97 98 99;密钥为+2,加密后的数据就是:99 100 101,将密文数据发送出去。接收方收到数据后对数据进行解密,每个数据减2,就得到了原文。当然这只是一个非常简单的例子,真实的对称加密算法会做得非常复杂,但这已经能够说明问题了。
这样的加密方法有什么缺点呢?首先缺点一:密钥传递困难;想想看如果两个人,分别是Bob和Alice,Bob要给Alice发消息,那Bob就要把密钥通过某种方式告诉Alice,有什么可靠的途径呢?打电话、发邮件、写信...等等方式好像都不靠谱,都有被窃取的风险,也只有两人见面后当面交流这一种方式了;缺点二:密钥数量会随着通信人数的增加而急剧增加,密钥管理将会是一个非常困难的事情。
02 非对称加密算法
1976年,两位美国计算机学家,提出了Diffie-Hellman密钥交换算法。这个算法的提出了一种崭新的构思,可以在不直接传递密钥的情况下,完成解密。这个算法启发了其他科学家,让人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应的关系即可,这样就避免了直接传递密钥。这种新的加密模式就是“非对称加密算法”。
算法大致过程是这样的:
(1)乙方 生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。
(2)甲方获取乙方的公钥,然后用它对信息加密。
(3)乙方得到加密后的信息,用私钥解密。
如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。
03 RSA非对称加密算法
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。
从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。
公钥加密 -> 私钥解密
只有私钥持有方可以正确解密,保证通信安全
私钥加密 -> 公钥解密
所有人都可以正确解密,信息一定是公钥所对应的私钥持有者发出的,可以做签名
04 质数的前置知识
RSA的安全性是由大数的质因数分解保证的。下面是一些质数的性质:
1、任意两个质数构成素质关系,比如:11和17;
2、一个数是质数,另一个数只要不是前者的倍数,两者就构成素质关系,比如3和10;
3、如果两个数之中,较大的那个是质数,则两者构成互质关系,比如97和57;
4、1和任意一个自然数都是互质关系,比如1和99;
5、p是大于1的整数,则p和p-1构成互质关系,比如57和56;
6、p是大于1的奇数,则p和p-2构成互质关系,比如17和15
05 RSA密钥生成步骤
举个“栗子“,假如通信双方为Alice和Bob,Alice要怎么生成公钥和私钥呢?
St ep 1:随机选择两个不相等的质数p和q;
Alice选择了3和11。(实际情况中,选择的越大,就越难破解)
S tep 2 :计算p和q的乘积n;
n = 3*11 = 33,将33转化为二进制:100001,这个时候密钥长度就是6位。
Step 3 :计算n的欧拉函数φ(n);
因为n可以写为两个质数相乘的形式,欧拉函数对于可以写成两个质数形式有简单计算方式
φ(n) = (p-1)(q-1)
Step 4 :随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质;
爱丽丝就在1到20之间,随机选择了3
Step 5 :计算e对于φ(n)的模反元素d
所谓模反元素,就是指有一个整数d,可以使得ed被φ(n)除的余数为1
Step 6 :将n和e封装成公钥,n和d封装成私钥;
在上面的例子中,n=33,e=3,d=7,所以公钥就是 (33,3),私钥就是(33, 7)。
密钥生成步骤中,一共出现了六个数字,分别为:
素质的两个数p和q,乘积n,欧拉函数φ(n),随机质数e,模反元素d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的,可以删除。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。
那么,有无可能在已知n和e的情况下,推导出d?
(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论是如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
BUT!
大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。
维基网络这样写道:
"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。
假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有较短的RSA密钥才可能被暴力破解。到现在为止,世界上还没有任何可靠的攻击RSA算法的方式。
只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"
06 RSA加密和解密过程
1、加密要用公钥(n,e)
假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。
所谓"加密",就是算出下式的c:
爱丽丝的公钥是 (33, 3),鲍勃的m假设是5,那么可以算出下面的等式:
于是,c等于26,鲍勃就把26发给了爱丽丝。
2、解密要用私钥(n,d)
爱丽丝拿到鲍勃发来的26以后,就用自己的私钥(33, 7) 进行解密。下面的等式一定成立(至于为什么一定成立,证明过程比较复杂,略):
也就是说,c的d次方除以n的余数为m。现在,c等于26,私钥是(33, 7),那么,爱丽丝算出:
因此,爱丽丝知道了鲍勃加密前的原文就是5。
至此,加密和解密的整个过程全部完成。整个过程可以看到,加密和解密使用不用的密钥,且不用担心密钥传递过程中的泄密问题,这一点上与对称加密有很大的不同。由于非对称加密要进行的计算步骤复杂,所以通常情况下,是两种算法混合使用的。
07 一些其它的
在Part 5的第五步,要求一定要解出二元一次方程的一对正整数解,如果不存在正整数解,这该怎么办?
扩展欧几里得算法给出了解答:
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by;
第五步其实等价于:ed - kφ(n) = 1, e与φ(n)又互质,形式上完全与扩展欧几里得算法的一致,所以一定有整数解存在。
Reference:
http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html
⑥ 什么是非对称加密密钥为什么可以证明我的身份
公钥私钥是非对称加密的典型例子。公钥负责加密,私钥负责解密。使用非对称加密,连接方式只有一条路。浏览器使用非对称加密来验证公私钥对,以及扩展证书本身。为此,浏览器将使用随时可用的公钥来加密一小撮一次性数据。 如果服务器能够解密这个数据并以明文形式发回,那么它证明了它的私钥对应于公钥。至此,浏览器和服务器可以开始他们的加密链接了。
⑦ 图文彻底搞懂非对称加密(公钥密钥)
前文详细讲解了对称加密及算法原理。那么是不是对称加密就万无一失了呢?对称加密有一个天然的缺点,就是加密方和解密方都要持有同样的密钥。你可以能会提出疑问:既然要加、解密,当然双方都要持有密钥,这有什么问题呢?别急,我们继续往下看。
我们先看一个例子,小明和小红要进行通信,但是不想被其他人知道通信的内容,所以双方决定采用对称加密的方式。他们做了下面的事情:
1、双方商定了加密和解密的算法
2、双方确定密钥
3、通信过程中采用这个密钥进行加密和解密
这是不是一个看似完美的方案?但其中有一个步骤存在漏洞!
问题出在步骤2:双方确定密钥!
你肯定会问,双方不确定密钥,后面的加、解密怎么做?
问题在于确定下来的密钥如何让双方都知道。密钥在传递过程中也是可能被盗取的!这里引出了一个经典问题:密钥配送问题。
小明和小红在商定密钥的过程中肯定会多次沟通密钥是什么。即使单方一次确定下来,也要发给对方。加密是为了保证信息传输的安全,但密钥本身也是信息,密钥的传输安全又该如何保证呢?难不成还要为密钥的传输再做一次加密?这样不就陷入了死循环?
你是不是在想,密钥即使被盗取,不还有加密算法保证信息安全吗?如果你真的有这个想法,那么赶紧复习一下上一篇文章讲的杜绝隐蔽式安全性。任何算法最终都会被破译,所以不能依赖算法的复杂度来保证安全。
小明和小红现在左右为难,想加密就要给对方发密钥,但发密钥又不能保证密钥的安全。他们应该怎么办呢?
有如下几种解决密钥配送问题的方案:
非对称加密也称为公钥密码。我更愿意用非对称加密这种叫法。因为可以体现出加密和解密使用不同的密钥。
对称加密中,我们只需要一个密钥,通信双方同时持有。而非对称加密需要4个密钥。通信双方各自准备一对公钥和私钥。其中公钥是公开的,由信息接受方提供给信息发送方。公钥用来对信息加密。私钥由信息接受方保留,用来解密。既然公钥是公开的,就不存在保密问题。也就是说非对称加密完全不存在密钥配送问题!你看,是不是完美解决了密钥配送问题?
回到刚才的例子,小明和下红经过研究发现非对称加密能解决他们通信的安全问题,于是做了下面的事情:
1、小明确定了自己的私钥 mPrivateKey,公钥 mPublicKey。自己保留私钥,将公钥mPublicKey发给了小红
2、小红确定了自己的私钥 hPrivateKey,公钥 hPublicKey。自己保留私钥,将公钥 hPublicKey 发给了小明
3、小明发送信息 “周六早10点soho T1楼下见”,并且用小红的公钥 hPublicKey 进行加密。
4、小红收到信息后用自己的私钥 hPrivateKey 进行解密。然后回复 “收到,不要迟到” 并用小明的公钥mPublicKey加密。
5、小明收到信息后用自己的私钥 mPrivateKey 进行解密。读取信息后心里暗想:还提醒我不迟到?每次迟到的都是你吧?
以上过程是一次完整的request和response。通过这个例子我们梳理出一次信息传输的非对称加、解密过程:
1、消息接收方准备好公钥和私钥
2、私钥接收方自己留存、公钥发布给消息发送方
3、消息发送方使用接收方公钥对消息进行加密
4、消息接收方用自己的私钥对消息解密
公钥只能用做数据加密。公钥加密的数据,只能用对应的私钥才能解密。这是非对称加密的核心概念。
下面我用一个更为形象的例子来帮助大家理解。
我有下图这样一个信箱。
由于我只想接收我期望与之通信的朋友信件。于是我在投递口加了一把锁,这把锁的钥匙(公钥)我可以复制n份,发给我想接受其信件的人。只有这些人可以用这把钥匙打开寄信口,把信件投入。
相信通过这个例子,可以帮助大家彻底理解公钥和私钥的概念。
RSA 是现在使用最为广泛的非对称加密算法,本节我们来简单介绍 RSA 加解密的过程。
RSA 加解密算法其实很简单:
密文=明文^E mod N
明文=密文^D mod N
RSA 算法并不会像对称加密一样,用玩魔方的方式来打乱原始信息。RSA 加、解密中使用了是同样的数 N。公钥是公开的,意味着 N 也是公开的。所以私钥也可以认为只是 D。
我们接下来看一看 N、E、D 是如何计算的。
1、求 N
首先需要准备两个很大质数 a 和 b。太小容易破解,太大计算成本太高。我们可以用 512 bit 的数字,安全性要求高的可以使用 1024,2048 bit。
N=a*b
2、求 L
L 只是生成密钥对过程中产生的数,并不参与加解密。L 是 (a-1) 和 (b-1) 的最小公倍数
3、求 E(公钥)
E 有两个限制:
1<E<
E和L的最大公约数为1
第一个条件限制了 E 的取值范围,第二个条件是为了保证有与 E 对应的解密时用到的 D。
4、求 D(私钥)
D 也有两个限制条件:
1<D<L
E*D mod L = 1
第二个条件确保密文解密时能够成功得到原来的明文。
由于原理涉及很多数学知识,这里就不展开细讲,我们只需要了解这个过程中用到这几个数字及公式。这是理解RSA 安全性的基础。
由于 N 在公钥中是公开的,那么只需要破解 D,就可以解密得到明文。
在实际使用场景中,质数 a,b 一般至少1024 bit,那么 N 的长度在 2048 bit 以上。D 的长度和 N 接近。以现在计算机的算力,暴力破解 D 是非常困难的。
公钥是公开的,也就是说 E 和 N 是公开的,那么是否可以通过 E 和 N 推断出 D 呢?
E*D mod L = 1
想要推算出 D 就需要先推算出 L。L 是 (a-1) 和 (b-1) 的最小公倍数。想知道 L 就需要知道质数 a 和 b。破解者并不知道这两个质数,想要破解也只能通过暴力破解。这和直接破解 D 的难度是一样的。
等等,N 是公开的,而 N = a*b。那么是否可以对 N 进行质因数分解求得 a 和 b 呢?好在人类还未发现高效进行质因数分解的方法,因此可以认为做质因数分解非常困难。
但是一旦某一天发现了快速做质因数分解的算法,那么 RSA 就不再安全
我们可以看出大质数 a 和 b 在 RSA 算法中的重要性。保证 a 和 b 的安全也就确保了 RSA 算法的安全性。a 和 b 是通过伪随机生成器生成的。一旦伪随机数生成器的算法有问题,导致随机性很差或者可以被推断出来。那么 RSA 的安全性将被彻底破坏。
中间人攻击指的是在通信双方的通道上,混入攻击者。他对接收方伪装成发送者,对放送放伪装成接收者。
他监听到双方发送公钥时,偷偷将消息篡改,发送自己的公钥给双方。然后自己则保存下来双方的公钥。
如此操作后,双方加密使用的都是攻击者的公钥,那么后面所有的通信,攻击者都可以在拦截后进行解密,并且篡改信息内容再用接收方公钥加密。而接收方拿到的将会是篡改后的信息。实际上,发送和接收方都是在和中间人通信。
要防范中间人,我们需要使用公钥证书。这部分内容在下一篇文章里会做介绍。
和对称加密相比较,非对称加密有如下特点:
1、非对称加密解决了密码配送问题
2、非对称加密的处理速度只有对称加密的几百分之一。不适合对很长的消息做加密。
3、1024 bit 的 RSA不应该在被新的应用使用。至少要 2048 bit 的 RSA。
RSA 解决了密码配送问题,但是效率更低。所以有些时候,根据需求可能会配合使用对称和非对称加密,形成混合密码系统,各取所长。
最后提醒大家,RSA 还可以用于签名,但要注意是私钥签名,公钥验签。发信方用自己的私钥签名,收信方用对方公钥验签。关于签名,后面的文章会再详细讲解。
⑧ 数据加密(对称加密和非对称加密)
通过网络通信的五层模型(ISO规定的是七层模型,TCP/IP规定的是五层模型)可以实现两个应用程序之间的数据通信
但是现在有个问题是 数据如何加密,总不能两个人之间说的话让第三个人活着别的人听到吧
那最简单的例子就是:A和B之间传递数据,如何保证数据不被第三个人知道,或者说第三个人就算知道数据,但是不知道数据所代表的意思。
在传递数据时候不能避免传递的数据被别的人知道,那我们能做的就是让第三个人不知道数据所表达的意思就好了。
A 和 B 约定一套规则,A 通过这套规则将要发送的数据改变, 称作加密 ,B 接受到数据,在用这套规则将数据还原成原来的数据 称作解密 。这就完成了一次加密数据传输。
因为数据传输的方式无外乎就有两种形式;1.通过无线的方式,对应的就是(电磁波)。2.通过有线连接的方式(网线)数据就是转化为0,1,0,1的这种二进制来传送的。
假如A 要发送一组数据为010101010101,A约定的规则是按位取反,通过这套规则数据就变成了101010101010,将变化后的数据发送给B,B得到这个数据,通过按位取反,将这套数据变成原来的样子也就是将1010101010按位置取反变成010101010101,在这个传输过程中有人得到了这个数据,那得到的也是101010101010,他并不知道这套规则,那即使知道了数据,也并不影响什么。
在上面的过程中这套规则就叫做 ------- 公钥 ----------
上面的过程就叫做对称加密
对称加密是一种思想,具体的实现就是算法,有很多的对称加密的算法 比如 DES算法
对称的意思就是 加密和解密用的是一套规则
说到这里对称加密大体说明白了一点。但不要停下思考的步伐,那请思考一个问题
新的问题又摆在了眼前。。。。。。怎么搞,,怎么半
这个时候非对称加密就出现了,就是这样。在一个合适的时间 出现一个合适的东西。
扯多了,回归正题:
继续上面的情景 A 和 B 俩交流,互通数据,解决上面出现的问题那就定义两套规则,一套加密(俗称公钥),一套解密(俗称私钥),那A又一对钥匙(即就是一个公钥,一个私钥),B也有一对钥匙。如果A想要给B传数据 那就先用B 的公钥将数据加密,然后通过网络传给B。B 接受到数据后,通过自己的私钥将数据解密 ,就得到A 所传的真正的数据。 同样的道理 B 想给A传数据,那就先通过网络得到A的公钥,然后加密数据,通过网络传给A ,A得到数据后用自己的私钥解密,就可以得到B 传给A的真正的数据。
上面的过程就是非对称加密,所谓非对称就是有两套规则,一套是公钥,一套是私钥。
这种规则其实就是算法,当然这种非对称加密算法有很多,但是现在比较常用的就是RSA算法 RSA算法
那写到这里基本的也就差不多了。数据加密传输也就完成了,基本没什么问题,但是网络传数据当然是越快越好,那我接下来就是要写一些两个加密方式的优缺点:
对称加密 ---------简单,因为只有一套规则。
--------- 速度快,因为只有一套规则。
非对称加密 ------- 复杂,两套规则
--------速度慢,两套规则
公钥 说到底也就是数据。那数据要怎么传 !!!!! 是不是很眼熟,这不就是我们之前将的问题吗? 我们可以用非对称加密将对称加密的公钥传过去,那之前对称加密的问题不就解决了吗? 然后可以放心大胆的使用对称加密了。有没有?
一般先都是用非对称加密将对称加密的公钥传过去,然后使用对称加密。。那数据的处理速度就很快。
ok 就到这了……