导航:首页 > 文档加密 > 对称加密模型的五个组成部分

对称加密模型的五个组成部分

发布时间:2023-06-04 12:21:45

Ⅰ 对称加密算法介绍 关于对称加密算法简介

1、对称加密(也叫私钥加密)指加密和解密使用相同密钥的加密算法。有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的,所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信的安全性至关重要。

2、对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。

Ⅱ 简述对称加密算法的基本原理

对称加密是计算机加密领域最古老也是最经典的加密标准。虽然对称加密被认为不再是安全的加密方式,但是直到现在,还看不到它被淘汰的迹象。在很多非网络化的加密环境中,对称加密足以满足人们的需要。

对称加密采用单密钥加密方式,不论是加密还是解密都是用同一个密钥,即“一把钥匙开一把锁”。对称加密的好处在于操作简单、管理方便、速度快。它的缺点在于密钥在网络传输中容易被窃听,每个密钥只能应用一次,对密钥管理造成了困难。对称加密的实现形式和加密算法的公开性使它依赖于密钥的安全性,而不是算法的安全性。

一个对称加密系统由五个部分组成,可以表述为

S={M,C,K,E,D}

各字母的含义如下:

M:明文空间,所有明文的集合。

C:密文空间,全体密文的集合。

K:密钥空间,全体密钥的集合。

E:加密算法。

D:解密算法。

Ⅲ 对称加密和非对称加密的 优缺点

密码学中两种常见的密码算法为对称密码算法(单钥密码算法)和非对称密码算法(公钥密码算法)。

对称密码算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。对称算法的加密和解密表示为:

Ek(M)=C

Dk(C)=M

对称算法可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。

这种算法具有如下的特性:

Dk(Ek(M))=M

常用的采用对称密码术的加密方案有5个组成部分(如图所示)

l)明文:原始信息。

2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。

3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。

4)密文:对明文进行变换的结果。

5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。

对称密码术的优点在于效率高(加/解密速度能达到数十兆/秒或更多),算法简单,系统开销小,适合加密大量数据。

尽管对称密码术有一些很好的特性,但它也存在着明显的缺陷,包括:

l)进行安全通信前需要以安全方式进行密钥交换。这一步骤,在某种情况下是可行的,但在某些情况下会非常困难,甚至无法实现。

2)规模复杂。举例来说,A与B两人之间的密钥必须不同于A和C两人之间的密钥,否则给B的消息的安全性就会受到威胁。在有1000个用户的团体中,A需要保持至少999个密钥(更确切的说是1000个,如果她需要留一个密钥给他自己加密数据)。对于该团体中的其它用户,此种倩况同样存在。这样,这个团体一共需要将近50万个不同的密钥!推而广之,n个用户的团体需要N2/2个不同的密钥。

通过应用基于对称密码的中心服务结构,上述问题有所缓解。在这个体系中,团体中的任何一个用户与中心服务器(通常称作密钥分配中心)共享一个密钥。因而,需要存储的密钥数量基本上和团体的人数差不多,而且中心服务器也可以为以前互相不认识的用户充当“介绍人”。但是,这个与安全密切相关的中心服务器必须随时都是在线的,因为只要服务器一掉线,用户间的通信将不可能进行。这就意味着中心服务器是整个通信成败的关键和受攻击的焦点,也意味着它还是一个庞大组织通信服务的“瓶颈”

非对称密钥算法是指一个加密算法的加密密钥和解密密钥是不一样的,或者说不能由其中一个密钥推导出另一个密钥。1、加解密时采用的密钥的差异:从上述对对称密钥算法和非对称密钥算法的描述中可看出,对称密钥加解密使用的同一个密钥,或者能从加密密钥很容易推出解密密钥;②对称密钥算法具有加密处理简单,加解密速度快,密钥较短,发展历史悠久等特点,非对称密钥算法具有加解密速度慢的特点,密钥尺寸大,发展历史较短等特点。

Ⅳ 对称加密算法以及使用方法

加密的原因:保证数据安全

加密必备要素:1、明文/密文    2、秘钥    3、算法

秘钥:在密码学中是一个定长的字符串、需要根据加密算法确定其长度

加密算法解密算法一般互逆、也可能相同

常用的两种加密方式:

对称加密:秘钥:加密解密使用同一个密钥、数据的机密性双向保证、加密效率高、适合加密于大数据大文件、加密强度不高(相对于非对称加密)

非对称加密:秘钥:加密解密使用的不同秘钥、有两个密钥、需要使用密钥生成算法生成两个秘钥、数据的机密性只能单向加密、如果想解决这个问题、双向都需要各自有一对秘钥、加密效率低、加密强度高

                    公钥:可以公开出来的密钥、公钥加密私钥解密

                    私钥:需要自己妥善保管、不能公开、私钥加密公钥解密

安全程度高:多次加密

按位异或运算

凯撒密码:加密方式    通过将铭文所使用的字母表按照一定的字数平移来进行加密

mod:取余

加密三要素:明文/密文(字母)、秘钥(3)、算法(向右平移3/-3)

安全常识:不要使用自己研发的算法、不要钻牛角尖、没必要研究底层实现、了解怎么应用;低强度的密码比不进行任何加密更危险;任何密码都会被破解;密码只是信息安全的一部分

保证数据的机密性、完整性、认证、不可否认性

计算机操作对象不是文字、而是由0或1排列而成的比特序列、程序存储在磁盘是二进制的字符串、为比特序列、将现实的东西映射为比特序列的操作称为编码、加密又称之为编码、解密称之为解码、根据ASCII对照表找到对应的数字、转换成二进制

三种对称加密算法:DES\3DES\ AES  

DES:已经被破解、除了用它来解密以前的明文、不再使用

密钥长度为56bit/8、为7byte、每隔7个bit会设置一个用于错误检查的比特、因此实际上是64bit

分组密码(以组为单位进行处理):加密时是按照一个单位进行加密(8个字节/64bit为一组)、每一组结合秘钥通过加密算法得到密文、加密后的长度不变

3DES:三重DES为了增加DES的强度、将DES重复三次所得到的一种加密算法   密钥长度24byte、分成三份  加密--解密--加密 目的:为了兼容DES、秘钥1秘钥2相同==三个秘钥相同  ---加密一次        密钥1秘钥3相同--加密三次    三个密钥不相同最好、此时解密相当于加密、中间的一次解密是为了有三个密钥相同的情况

此时的解密操作与加密操作互逆,安全、效率低

数据先解密后加密可以么?可以、解密相当于加密、加密解密说的是算法

AES:(首选推荐)底层算法为Rijndael   分组长度为128bit、密钥长度为128bit到256bit范围内就可以   但是在AES中、密钥长度只有128bit\192bit\256bit     在go提供的接口中、只能是16字节(128bit)、其他语言中秘钥可以选择

目前为止最安全的、效率高

底层算法

分组密码的模式:

按位异或、对数据进行位运算、先将数据转换成二进制、按位异或操作符^、相同为真、不同为假、非0为假    按位异或一次为加密操作、按位异或两次为解密操作:a和b按位异或一次、结果再和b按位异或

ECB : 如果明文有规律、加密后的密文有规律不安全、go里不提供该接口、明文分组分成固定大小的块、如果最后一个分组不满足分组长度、则需要补位

CBC:密码链

问题:如何对字符串进行按位异或?解决了ECB的规律可查缺点、但是他不能并行处理、最后一个明文分组也需要填充 、初始化向量长度与分组长度相同

CFB:密文反馈模式

不需要填充最后一个分组、对密文进行加密

OFB:

不需要对最后一组进行填充

CTR计数器:

不需要对最后一组进行填充、不需要初始化向量     

Go中的实现

官方文档中:

在创建aes或者是des接口时都是调用如下的方法、返回的block为一个接口

func NewCipher(key [] byte ) ( cipher . Block , error )

type Block interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Encrypt(dst, src []byte)

    // 解密src的第一块数据并写入dst,src和dst可指向同一内存地址

    Decrypt(dst, src []byte)

}

Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。

Block的Encrypt/Decrypt也能进行加密、但是只能加密第一组、因为aes的密钥长度为16、所以进行操作的第一组数据长度也是16

如果分组模式选择的是cbc

func NewCBCEncrypter(b Block, iv []byte) BlockMode    加密

func NewCBCDecrypter(b Block, iv []byte) BlockMode    解密

加密解密都调用同一个方法CryptBlocks()

并且cbc分组模式都会遇到明文最后一个分组的补充、所以会用到加密字节的大小

返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。iv自己定义

返回的BlockMode同样也是一个接口类型

type BlockMode interface {

    // 返回加密字节块的大小

    BlockSize() int

    // 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址

    CryptBlocks(dst, src []byte)

}

BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器

返回的BlockMode其实是一个cbc的指针类型中的b和iv

# 加密流程: 

1. 创建一个底层使用des/3des/aes的密码接口 "crypto/des" func NewCipher(key []byte) (cipher.Block, error) # -- des func NewTripleDESCipher(key []byte) (cipher.Block, error) # -- 3des "crypto/aes" func NewCipher(key []byte) (cipher.Block, error) # == aes 

2. 如果使用的是cbc/ecb分组模式需要对明文分组进行填充

3. 创建一个密码分组模式的接口对象 - cbc func NewCBCEncrypter(b Block, iv []byte) BlockMode # 加密 - cfb func NewCFBEncrypter(block Block, iv []byte) Stream # 加密 - ofb - ctr

 4. 加密, 得到密文

流程:

填充明文:

先求出最后一组中的字节数、创建新切片、长度为新切片、值也为切片的长度、然后利用bytes.Reapet将长度换成字节切片、追加到原明文中

//明文补充

func padPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、求出需要填充的个数

    padNum := blockSize-len(plaintText) % blockSize

    //2、对填充的个数进行操作、与原明文进行合并

    newPadding := []byte{byte(padNum)}

    newPlain := bytes.Repeat(newPadding,padNum)

    plaintText = append(plaintText,newPlain...)

    return plaintText

}

去掉填充数据:

拿去切片中的最后一个字节、得到尾部填充的字节个数、截取返回

//解密后的明文曲调补充的地方

func createPlaintText(plaintText []byte,blockSize int)[]byte{

    //1、得到最后一个字节、并将字节转换成数字、去掉明文中此数字大小的字节

    padNum := int(plaintText[len(plaintText)-1])

    newPadding := plaintText[:len(plaintText)-padNum]

    return newPadding

}

des加密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、对明文进行填充

3、创建一个cbc模式的接口、需要创建iv初始化向量、返回一个blockmode对象

4、加密、调用blockmode中的cryptBlock函数进行加密、参数为目标参数和源参数

//des利用分组模式cbc进行加密

func EncryptoText(plaintText []byte,key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、对明文进行填充

    newText := padPlaintText(plaintText,cipherBlock.BlockSize())

    //3、选择分组模式、其中向量的长度必须与分组长度相同

    iv := make([]byte,cipherBlock.BlockSize())

    blockMode := cipher.NewCBCEncrypter(cipherBlock,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

des解密:

1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口

2、创建一个cbc模式的接口、需要创建iv初始化向量,返回一个blockmode对象

3、加密、调用blockmode中的cryptBlock函数进行解密、参数为目标参数和源参数

4、调用去掉填充数据的方法

//des利用分组模式cbc进行解密

func DecryptoText(cipherText []byte, key []byte)[]byte{

    //1、创建des对象

    cipherBlock,err := des.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc分组模式接口

    iv := []byte("12345678")

    blockMode := cipher.NewCBCDecrypter(cipherBlock,iv)

    //3、解密

    blockMode.CryptBlocks(cipherText,cipherText)

    //4、将解密后的数据进行去除填充的数据

    newText := clearPlaintText(cipherText,cipherBlock.BlockSize())

    return newText

}

Main函数调用

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量" +

        "(一个数组、数组的长度与明文分组相等、数据来源:负责加密的人提供,加解密使用的初始化向量必须相同)")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("1234abcd")

    //调用加密函数

    cipherText := EncryptoText(plaintText,key)

    newPlaintText := DecryptoText(cipherText,key)

    fmt.Println(string(newPlaintText))

}

AES加密解密相同、所以只需要调用一次方法就可以加密、调用两次则解密

推荐是用分组模式:cbc、ctr

aes利用分组模式cbc进行加密

//对明文进行补充

func paddingPlaintText(plaintText []byte , blockSize int ) []byte {

    //1、求出分组余数

    padNum := blockSize - len(plaintText) % blockSize

    //2、将余数转换为字节切片、然后利用bytes.Repeat得出有该余数的大小的字节切片

    padByte := bytes.Repeat([]byte{byte(padNum)},padNum)

    //3、将补充的字节切片添加到原明文中

    plaintText = append(plaintText,padByte...)

    return plaintText

}

//aes加密

func encryptionText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、明文补充

    newText := paddingPlaintText(plaintText,block.BlockSize())

    //3、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCEncrypter(block,iv)

    //4、加密

    blockMode.CryptBlocks(newText,newText)

    return newText

}

//解密后的去尾

func clearplaintText(plaintText []byte, blockSize int) []byte {

    //1、得到最后一个字节、并转换成整型数据

    padNum := int(plaintText[len(plaintText)-1])

    //2、截取明文字节中去掉得到的整型数据之前的数据、此处出错、没有用len-padNum

    newText := plaintText[:len(plaintText)-padNum]

    return newText

}

//aes解密

func deCryptionText(crypherText []byte, key []byte ) []byte {

    //1、创建aes对象

    block, err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建cbc对象

    iv := []byte("12345678abcdefgh")

    blockMode := cipher.NewCBCDecrypter(block,iv)

    //3、解密

    blockMode.CryptBlocks(crypherText,crypherText)

    //4、去尾

    newText := clearplaintText(crypherText,block.BlockSize())

    return newText

}

func main(){

    //需要进行加密的明文

    plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量")

    //密钥Key的长度需要与分组长度相同、且加密解密的密钥相同

    key := []byte("12345678abcdefgh")

    //调用加密函数

    cipherText := encryptionText(plaintText,key)

    //调用解密函数

    newPlaintText := deCryptionText(cipherText,key)

    fmt.Println("解密后",string(newPlaintText))

}

//aes--ctr加密

func encryptionCtrText(plaintText []byte, key []byte) []byte {

    //1、创建aes对象

    block,err := aes.NewCipher(key)

    if err != nil {

        panic(err)

    }

    //2、创建ctr对象,虽然ctr模式不需要iv,但是go中使用ctr时还是需要iv

    iv := []byte("12345678abcdefgh")

    stream := cipher.NewCTR(block,iv)

    stream.XORKeyStream(plaintText,plaintText)

    return plaintText

}

func main() {

//aes--ctr加密解密、调用两次即为解密、因为加密解密函数相同stream.XORKeyStream

    ctrcipherText := encryptionCtrText(plaintText, key)

    ctrPlaintText := encryptionCtrText(ctrcipherText,key)

    fmt.Println("aes解密后", string(ctrPlaintText))

}

英文单词:

明文:plaintext     密文:ciphertext   填充:padding/fill    去掉clear  加密Encryption  解密Decryption

Ⅳ 对称算法的原理

对称算法的加密和解密表示为:
Ek(M)=C
Dk(C)=M
对称算法可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。
这种算法具有如下的特性:
Dk(Ek(M))=M
常用的采用对称密码术的加密方案有5个组成部分(如图所示)
l)明文:原始信息。
2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。
3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。
4)密文:对明文进行变换的结果。
5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。

Ⅵ 对称加密技术包括哪些

热心网友
对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:

DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。

AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

Ⅶ 对称加密、非对称加密、数字签名

通信双方使用同一个密钥,不同算法工作。数据发送方使用密钥和加密算法对数据进行加密,数据接收方使用密钥和解密算法对密文进行解密,还原数据。

基本模型如下图所示。

通信双方使用不同的密钥,相同的算法工作。数据发送方持有公钥,数据接收方持有私钥。公钥由数据接收方通过网络发送给数据发送方。数据发送方通过加密算法和公钥对数据进行加密,数据接收方通过加密算法和私钥对密文进行解密,还原数据。

基本模型如下图所示。

数字签名是安卓 APK 校验安装包是否被篡改、损坏的有效手段。数字签名采用了非对称加密 + Hash 两种技术。具体原理参见下图,主要是以下几步。

Ⅷ 密码体制包含哪些要素分别表示什么含义

1)M可能明文的有限集,称为明文空间。
2)C可能密文的有限集,称为密文空间。
3)K一切可能密钥的有限集,称为密钥空间。
4)E加密函数
5)D解密函数

阅读全文

与对称加密模型的五个组成部分相关的资料

热点内容
微信视频消息加密怎么设置 浏览:666
python怎么取矩阵最后一行 浏览:923
web服务器怎么关闭jetty进程 浏览:783
米考试app如何退款 浏览:678
我的世界服务器op如何改东西 浏览:787
phototopdf 浏览:482
adobepremierepdf 浏览:28
安卓手机电话簿怎么导出到苹果手机 浏览:763
php实现投票 浏览:333
手机爆力解压加密视频文件 浏览:932
东方财富app怎么看北上资金图解 浏览:418
邢昭林程序员那么可爱拍现场 浏览:169
安卓什么应用可以免费看电视剧 浏览:504
合适pdf 浏览:293
app监测睡眠怎么选择 浏览:642
老人家用什么安卓手机好 浏览:955
解压包能不能送女朋友 浏览:701
好看发卡网源码 浏览:51
水平集算法matlab 浏览:770
局域网如何用ftp服务器配置 浏览:76