导航:首页 > 文档加密 > 综合加密技术的步骤解释

综合加密技术的步骤解释

发布时间:2023-06-07 05:24:23

1. 1.什么是数据加密简述加密和解密的过程。

Sesoffice隐形加密技术具有强制加密、自动加密、实时加密、动态加密和无损加密的特点,对文件加密和解密是自动进行的,无需用户干预,用户实际上是无知觉的,在文件编辑和使用过程中,不需要明文过渡,不产生明文。一旦离开使用环境,加密的文件无法打开或打开是乱码。隐形加密从根源上解决文档安全问题。客户端只加密,不解密,软件里无解密函数,无法利用客户端软件来破解解密,理论上增加了破解难度。

2. 电子商务的加密技术有哪些是如何加密和解密的

1.什么是加密技术? 加密技术是电子商务采取的主要安全保密措施,是最常用的安全保密手段,利用技术手段把重要的数据变为乱码(加密)传送,到达目的地后再用相同或不同的手段还原(解密)。加密技术包括两个元素:算法和密钥。算法是将普通的文本(或者可以理解的信息)与一窜数字(密钥)的结合,产生不可理解的密文的步骤,密钥是用来对数据进行编码和解码的一种算法。在安全保密中,可通过适当的密钥加密技术和管理机制来保证网络的信息通讯安全。密钥加密技术的密码体制分为对称密钥体制和非对称密钥体制两种。相应地,对数据加密的技术分为两类,即对称加密(私人密钥加密)和非对称加密(公开密钥加密)。对称加密以数据加密标准(DNS,Data Encryption Standard)算法为典型代表,非对称加密通常以RSA(Rivest Shamir Ad1eman)算法为代表。对称加密的加密密钥和解密密钥相同,而非对称加密的加密密钥和解密密钥不同,加密密钥可以公开而解密密钥需要保密。 2.什么是对称加密技术? 对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DNS),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DNS的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP(Pretty Good Privacy)系统使用。 3.什么是非对称加密技术? 1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。相对于“对称加密算法”这种方法也叫做“非对称加密算法”。与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密 (privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

3. 加密技术06-加密总结

对称密码是一种用相同的密钥进行加密和解密的技术,用于确保消息的机密性。在对称密码的算法方面,目前主要使用的是 AES。尽管对称密码能够确保消息的机密性,但需要解决将解密密钥配送给接受者的密钥配送问题。

主要算法

DES

数据加密标准(英语:Data Encryption Standard,缩写为 DES)是一种对称密钥加密块密码算法,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用56位密钥的对称算法。

DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。

原理请参考: 加密技术01-对称加密-DES原理

3DES

三重数据加密算法(英语:Triple Data Encryption Algorithm,缩写为TDEA,Triple DEA),或称3DES(Triple DES),是一种对称密钥加密块密码,相当于是对每个数据块应用三次DES算法。由于计算机运算能力的增强,原版DES由于密钥长度过低容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

注意:有3个独立密钥的3DES的密钥安全性为168位,但由于中途相遇攻击(知道明文和密文),它的有效安全性仅为112位。

3DES使用“密钥包”,其包含3个DES密钥,K1,K2和K3,均为56位(除去奇偶校验位)。

密文 = E k3 (D k2 (E k1 (明文)))

而解密则为其反过程:

明文 = D k3 (E k2 (D k1 (密文)))

AES

AES 全称 Advanced Encryption Standard(高级加密标准)。它的出现主要是为了取代 DES 加密算法的,因为 DES 算法的密钥长度是 56 位,因此算法的理论安全强度是 56 位。于是 1997 年 1 月 2 号,美国国家标准技术研究所宣布什望征集高级加密标准,用以取代 DES。AES 也得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6 和 MARS。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael 算法获胜。

AES 密码与分组密码 Rijndael 基本上完全一致,Rijndael 分组大小和密钥大小都可以为 128 位、192 位和 256 位。然而 AES 只要求分组大小为 128 位,因此只有分组长度为 128 位的 Rijndael 才称为 AES 算法。

本文 AES 默认是分组长度为 128 位的 Rijndael 算法

原理请参考: 加密技术02-对称加密-AES原理

算法对比

公钥密码是一种用不同的密钥进行加密和解密的技术,和对称密码一样用于确保消息的机密性。使用最广泛的一种公钥密码算法是 RAS。和对称密码相比,公钥密码的速度非常慢,因此一般都会和对称密码一起组成混合密码系统来使用。公钥密码能够解决对称密码中的密钥交换问题,但存在通过中间人攻击被伪装的风险,因此需要对带有数字签名的公钥进行认证。

公钥密码学的概念是为了解决对称密码学中最困难的两个问题而提出

应用场景

几个误解

主要算法

Diffie–Hellman 密钥交换

迪菲-赫尔曼密钥交换(英语:Diffie–Hellman key exchange,缩写为D-H) 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道创建起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公钥交换的概念最早由瑞夫·墨克(Ralph C. Merkle)提出,而这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie)和马丁·赫尔曼(Martin Edward Hellman)在1976年发表,也是在公开文献中发布的第一个非对称方案。

Diffie–Hellman 算法的有效性是建立在计算离散对数很困难的基础上。简单地说,我们可如下定义离散对数。首先定义素数 p 的本原跟。素数 p 的本原根是一个整数,且其幂可以产生 1 到 p-1 之间所有整数,也就是说若 a 是素数 p 的本原根,则

a mod p, a 2 mod p,..., a p-1 mod p 各不相同,它是整数 1 到 p-1 的一个置换。

对任意整数 b 和素数 p 的本原跟 a,我们可以找到唯一的指数 i 使得

b ≡ a i (mod p) 其中 0 <= i <= p-1

其中 a, b, p 这些是公开的,i 是私有的,破解难度就是计算 i 的难度。

Elgamal

1985年,T.Elgamal 提出了一种基于离散对数的公开密钥体制,一种与 Diffie-Hellman 密钥分配体制密切相关。Elgamal 密码体系应用于一些技术标准中,如数字签名标准(DSS) 和 S/MIME 电子邮件标准。

基本原理就是利用 Diffie–Hellman 进行密钥交换,假设交换的密钥为 K,然后用 K 对要发送的消息 M,进行加密处理。

所以 Elgamal 的安全系数取决于 Diffie–Hellman 密钥交换。

另外 Elgamal 加密后消息发送的长度会增加一倍。

RSA

MIT 的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)在 1977 年提出并于 1978 年首次发表的算法。RSA 是最早满足要求的公钥算法之一,自诞生日起就成为被广泛接受且被实现的通用的公钥加密方法。

RSA 算法的有效性主要依据是大数因式分解是很困难的。

原理请参考: 加密技术03-非对称加密-RSA原理

ECC

大多数使用公钥密码学进行加密和数字签名的产品和标准都使用 RSA 算法。我们知道,为了保证 RSA 使用的安全性,最近这些年来密钥的位数一直在增加,这对使用 RSA 的应用是很重的负担,对进行大量安全交易的电子商务更是如此。近来,出现的一种具有强大竞争力的椭圆曲线密码学(ECC)对 RSA 提出了挑战。在标准化过程中,如关于公钥密码学的 IEEE P1363 标准中,人们也已考虑了 ECC。

与 RSA 相比,ECC 的主要诱人之处在于,它可以使用比 RSA 短得多的密钥得到相同安全性,因此可以减少处理负荷。

ECC 比 RSA 或 Diffie-Hellman 原理复杂很多,本文就不多阐述了。

算法对比

公钥密码体制的应用

密码分析所需计算量( NIST SP-800-57 )

注:L=公钥的大小,N=私钥的大小

散列函数是一种将长消息转换为短散列值的技术,用于确保消息的完整性。在散列算法方面,SHA-1 曾被广泛使用,但由于人们已经发现了一些针对该算法理论上可行的攻击方式,因此该算法不应再被用于新的用途。今后我们应该主要使用的算法包括目前已经在广泛使用的 SHA-2,以及具有全新结构的 SHA-3 算法。散列函数可以单独使用,也可以作为消息认证、数字签名以及伪随机数生成器等技术的组成元素来使用。

主要应用

主要算法

MD5

MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个 128 位( 16 字节,被表示为 32 位十六进制数字)的散列值(hash value),用于确保信息传输完整一致。MD5 由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于 1992 年公开,用以取代 MD4 算法。这套算法的程序在 RFC 1321 中被加以规范。

2009年,中国科学院的谢涛和冯登国仅用了 2 20.96 的碰撞算法复杂度,破解了MD5的碰撞抵抗,该攻击在普通计算机上运行只需要数秒钟。2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。

原理请参考: 加密技术04-哈希算法-MD5原理

SHA-1

SHA-1(英语:Secure Hash Algorithm 1,中文名:安全散列算法1)是一种密码散列函数,美国国家安全局设计,并由美国国家标准技术研究所(NIST)发布为联邦资料处理标准(FIPS)。SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。

2005年,密码分析人员发现了对SHA-1的有效攻击方法,这表明该算法可能不够安全,不能继续使用,自2010年以来,许多组织建议用SHA-2或SHA-3来替换SHA-1。Microsoft、Google以及Mozilla都宣布,它们旗下的浏览器将在2017年停止接受使用SHA-1算法签名的SSL证书。

2017年2月23日,CWI Amsterdam与Google宣布了一个成功的SHA-1碰撞攻击,发布了两份内容不同但SHA-1散列值相同的PDF文件作为概念证明。

2020年,针对SHA-1的选择前缀冲突攻击已经实际可行。建议尽可能用SHA-2或SHA-3取代SHA-1。

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-2

SHA-2,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,由美国国家安全局研发,由美国国家标准与技术研究院(NIST)在2001年发布。属于SHA算法之一,是SHA-1的后继者。其下又可再分为六个不同的算法标准,包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。

SHA-2 系列的算法主要思路和 SHA-1 基本一致

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-3

SHA-3 第三代安全散列算法(Secure Hash Algorithm 3),之前名为 Keccak 算法。

Keccak 是一个加密散列算法,由 Guido Bertoni,Joan Daemen,Michaël Peeters,以及 Gilles Van Assche 在 RadioGatún 上设计。

2012年10月2日,Keccak 被选为 NIST 散列函数竞赛的胜利者。SHA-2 目前没有出现明显的弱点。由于对 MD5、SHA-0 和 SHA-1 出现成功的破解,NIST 感觉需要一个与之前算法不同的,可替换的加密散列算法,也就是现在的 SHA-3。

SHA-3 在2015年8月5日由 NIST 通过 FIPS 202 正式发表。

原理请参考: 加密技术05-哈希算法-SHA系列原理

算法对比

4. 数据库加密的实现技术

对数据进行加密,主要有三种方式:系统中加密、客户端(DBMS外层)加密、服务器端(DBMS内核层)加密。客户端加密的好处是不会加重数据库服务器的负载,并且可实现网上的传输加密,这种加密方式通常利用数据库外层工具实现。而服务器端的加密需要对数据库管理系统本身进行操作,属核心层加密,如果没有数据库开发商的配合,其实现难度相对较大。此外,对那些希望通过ASP获得服务的企业来说,只有在客户端实现加解密,才能保证其数据的安全可靠。
1.常用数据库加密技术
信息安全主要指三个方面。一是数据安全,二是系统安全,三是电子商务的安全。核心是数据库的安全,将数据库的数据加密就抓住了信息安全的核心问题。
对数据库中数据加密是为增强普通关系数据库管理系统的安全性,提供一个安全适用的数据库加密平台,对数据库存储的内容实施有效保护。它通过数据库存储加密等安全方法实现了数据库数据存储保密和完整性要求,使得数据库以密文方式存储并在密态方式下工作,确保了数据安全。
1.1数据库加密技术的功能和特性
经过近几年的研究,我国数据库加密技术已经比较成熟。
一般而言,一个行之有效的数据库加密技术主要有以下6个方面的功能和特性。
(1)身份认证:
用户除提供用户名、口令外,还必须按照系统安全要求提供其它相关安全凭证。如使用终端密钥。
(2) 通信加密与完整性保护:
有关数据库的访问在网络传输中都被加密,通信一次一密的意义在于防重放、防篡改。
(3) 数据库数据存储加密与完整性保护:
数据库系统采用数据项级存储加密,即数据库中不同的记录、每条记录的不同字段都采用不同的密钥加密,辅以校验措施来保证数据库数据存储的保密性和完整性,防止数据的非授权访问和修改。
(4)数据库加密设置:
系统中可以选择需要加密的数据库列,以便于用户选择那些敏感信息进行加密而不是全部数据都加密。只对用户的敏感数据加密可以提高数据库访问速度。这样有利于用户在效率与安全性之间进行自主选择。
(5)多级密钥管理模式:
主密钥和主密钥变量保存在安全区域,二级密钥受主密钥变量加密保护,数据加密的密钥存储或传输时利用二级密钥加密保护,使用时受主密钥保护。
(6) 安全备份:
系统提供数据库明文备份功能和密钥备份功能。
1.2对数据库加密系统基本要求
(1) 字段加密;
(2) 密钥动态管理;
(3) 合理处理数据;
(4) 不影响合法用户的操作;
(5) 防止非法拷贝;
1.3数据库数据加密的实现
使用数据库安全保密中间件对数据库进行加密是最简便直接的方法。主要是通过系统中加密、DBMS内核层(服务器端)加密和DBMS外层(客户端)加密。
在系统中加密,在系统中无法辨认数据库文件中的数据关系,将数据先在内存中进行加密,然后文件系统把每次加密后的内存数据写入到数据库文件中去,读入时再逆方面进行解密就,这种加密方法相对简单,只要妥善管理密钥就可以了。缺点对数据库的读写都比较麻烦,每次都要进行加解密的工作,对程序的编写和读写数据库的速度都会有影响。
在DBMS内核层实现加密需要对数据库管理系统本身进行操作。这种加密是指数据在物理存取之前完成加解密工作。这种加密方式的优点是加密功能强,并且加密功能几乎不会影响DBMS的功能,可以实现加密功能与数据库管理系统之间的无缝耦合。其缺点是加密运算在服务器端进行,加重了服务器的负载,而且DBMS和加密器之间的接口需要DBMS开发商的支持。
在DBMS外层实现加密的好处是不会加重数据库服务器的负载,并且可实现网上的传输,加密比较实际的做法是将数据库加密系统做成DBMS的一个外层工具,根据加密要求自动完成对数据库数据的加解密处理。
采用这种加密方式进行加密,加解密运算可在客户端进行,它的优点是不会加重数据库服务器的负载并且可以实现网上传输的加密,缺点是加密功能会受到一些限制,与数据库管理系统之间的耦合性稍差。
数据库加密系统分成两个功能独立的主要部件:一个是加密字典管理程序,另一个是数据库加解密引擎。数据库加密系统将用户对数据库信息具体的加密要求以及基础信息保存在加密字典中,通过调用数据加解密引擎实现对数据库表的加密、解密及数据转换等功能。数据库信息的加解密处理是在后台完成的,对数据库服务器是透明的。
按以上方式实现的数据库加密系统具有很多优点:首先,系统对数据库的最终用户是完全透明的,管理员可以根据需要进行明文和密文的转换工作;其次,加密系统完全独立于数据库应用系统,无须改动数据库应用系统就能实现数据加密功能;第三,加解密处理在客户端进行,不会影响数据库服务器的效率。
数据库加解密引擎是数据库加密系统的核心部件,它位于应用程序与数据库服务器之间,负责在后台完成数据库信息的加解密处理,对应用开发人员和操作人员来说是透明的。数据加解密引擎没有操作界面,在需要时由操作系统自动加载并驻留在内存中,通过内部接口与加密字典管理程序和用户应用程序通讯。数据库加解密引擎由三大模块组成:加解密处理模块、用户接口模块和数据库接口模块。

5. 请简述数字加密的过程

在对称加密中,数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。

接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密。

(5)综合加密技术的步骤解释扩展阅读:

数字加密注意事项:

通过TCP三次握手进行连接,然后客户端发送hello包到服务端,服务端回应一个hello包,如果客户端需要再次发送数字证书, 则发送数字证书到客户端。

客户端得到服务器的证书后通过CA服务验证真伪、验证证书的主体与访问的主体是否一致,验证证书是否在吊销证书列表中。如果全部通过验证则与服务器端进行加密算法的协商。

用证书中服务器的公钥加密对称秘钥发送给服务器端,对称秘钥只能用服务器的私钥进行解密,当服务器通过私钥解密对称秘钥后。使用对称秘钥将客户端请求的数据发送到客户端,客户端在用对称秘钥进行解密,从而得到想要的数据。

6. 混合加密系统的过程

本问题所要求的加密,以此为前提:在发送方向接受方发送信息,或接收方向发送方请求信息时,发送方和接收方会在信道上传递信息而不希望第三者知道该信息的真正意义。发送方和接收方留存的、不放在信道的传播的信息是安全的,不会为第三者所知的;放在信道上传播的信息是不安全的,会被第三者截获的。

“混合”加密系统,是混合了对称加密方法和非对称加密方法的加密通信手段。要解释混合加密系统,必须以理解对称加密和非对称加密为前提。

混合加密系统融合了对称加密和非对称加密的优势,并补足了两者的缺点。对称加密速度快,但安全性难以保证;非对称加密安全性高,但速度慢,无法满足大量信息的加密传送。对于两者的详述,请参考网络的解释。为防止喧宾夺主,这里不展开描述。

对称加密非对称加密

在此处首先定义三个概念以方便阐述:

1.对称密钥:即可用于加密明文,又可用于解密密文。

2.非对称私钥:可用于解密密文。

3.非对称公钥:可用于加密明文,但无法用于解密密文。

混合加密系统的工作流程,以乙向单方面甲要求信息为例,至于双向信息交流由同理易得,不做赘述。

1.乙向甲发送请求,希望得到信息。

2.乙创建非对称私钥和非对称公钥,将非对称公钥发送给甲

3.甲创建明文、对称公钥,以对称公钥加密明文得到密文,再用非对称公钥加密对称公钥得到加密后的对称公钥。甲再将加密后的对称公钥和密文发送给乙。

4.乙用非对称私钥解密加密后的对称公钥,得到对称公钥。乙再用对称公钥解密密文,得到所要的明文。

在斜体加粗所标明的,在传播过程中被第三者截获的信息有:非对称公钥、加密后的对称公钥、密文。第三者欲破解密文,必须有对称公钥;欲破解加密后的对称公钥,必须有非对称私钥。而私钥被乙方保留,第三者无从获得。故第三者无法得到明文。至此,乙得到了向甲要求的信息,而第三者无从得到信息的真正含义。

这种做法既具有非对称加密的安全性,因为非对称密钥是保密的;又具有对称加密的高效率,因为用非对称加密方法加密的是相对短小的对称密钥而非要传输的大量信息。

从其他角度进行的,更加详尽的表述请参阅其他文章:

混合加密1混合加密2混合加密3混合加密4

混合加密5

7. 文件系统加密的技术原理是什么,简单解释下就行

在数据库加密技术中,除了从前端应用及数据库自身角度实现数据库加密外,基于数据库底层依赖的文件系统或存储硬件,也可以实现数据库加密。文件系统加密技术是在操作系统的文件管理子系统层面上对文件进行加密,大多是通过对与文件管理子系统相关的操作系统内核驱动程序进行改造实现的。不同于文件加密只对单个文件设置访问口令,或对单个文件的内容进行加密转换,文件系统加密提供了一种加密文件系统格式(类似于ext4、xfs等文件系统格式),通过把磁盘存储卷或其上的目录设置为该文件加密系统格式,达到对存储于卷或卷上目录中文件进行加密的目的。文件系统加密技术本质上并不是数据库加密技术,但可以用于对数据库的数据文件进行存储层面的加密。关于加密产品你咨询安华金和就可以了,业内权威的加密厂商。

阅读全文

与综合加密技术的步骤解释相关的资料

热点内容
隐藏文件夹是什么梗 浏览:915
插件注册命令 浏览:493
梁一端加密一端不加密规范 浏览:80
代码行数统计命令 浏览:102
单片机中2K表示什么 浏览:480
紫禁城为什么会断开服务器 浏览:578
华为手机的方舟编译器在哪呢 浏览:121
下载压缩虐杀原形2 浏览:903
linux脚本cd 浏览:162
间架结构pdf 浏览:843
重庆农村商业银行app怎么老出问题 浏览:471
慧编程配置要求 浏览:673
数控机床编程与操作视频 浏览:461
文件夹资料误删怎么办 浏览:87
手机app怎么下载安装 浏览:492
最新的java版本 浏览:993
万卷小说缓存在哪个文件夹 浏览:687
st单片机怎样烧 浏览:871
watch怎么下载APP 浏览:821
银行程序员面试 浏览:358