导航:首页 > 文档加密 > 加密领域竞争原理

加密领域竞争原理

发布时间:2023-06-15 18:55:15

㈠ 互联网上的加密原理

互联网上的加密方式主要分为对称加密和非对称加密二种,

采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
需要对加密和解密使用相同密钥的加密算法。由于其速度快,对称性加密通常在消息发送方需要加密大量数据时使用。对称性加密也称为密钥加密。
所谓对称,就是采用这种加密方法的双方使用方式用同样的密钥进行加密和解密。密钥是控制加密及解密过程的指令。算法是一组规则,规定如何进行加密和解密。
加密的安全性不仅取决于加密算法本身,密钥管理的安全性更是重要。因为加密和解密都使用同一个密钥,如何把密钥安全地传递到解密者手上就成了必须要解决的问题。
常用的对称加密有:DES、IDEA、RC2、RC4、SKIPJACK、RC5、AES算法等

非对称加密算法需要二个秘钥,公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

明白了互联网上的加密原理之后,下面来看看浏览器与服务器交互时,浏览器想将数据加密后再发送给服务器,那么该怎么做呢?服务器首先要向浏览器出示一份数字证书,浏览器看到数字证书后,就可以使用数字证书里面的公钥加密数据,所以要想做浏览器和服务器的加密数据传输,那么首先得针对服务器生成一份数字证书。然后再配置一下服务器,让服务器收到浏览器的请求之后,会向浏览器出示它的数字证书。

SUN公司提供了制作证书的工具keytool, 在JDK 1.4以后的版本中都包含了这一工具,它的位置为<JAVA_HOME>\bin\keytool.exe

使用keytool生成一个名字为tomcat的证书,存放在.keystore这个密钥库中

㈡ 详解加密技术概念、加密方法以及应用

随着网络技术的发展,网络安全也就成为当今网络 社会 的焦点中的焦点,几乎没有人不在谈论网络上的安全问题,病毒、黑客程序、邮件炸弹、远程侦听等这一切都无不让人胆战心惊。病毒、黑客的猖獗使身处今日网络 社会 的人们感觉到谈网色变,无所适从。
但我们必需清楚地认识到,这一切一切的安全问题我们不可一下全部找到解决方案,况且有的是根本无法找到彻底的解决方案,如病毒程序,因为任何反病毒程序都只能在新病毒发现之后才能开发出来,目前还没有哪能一家反病毒软件开发商敢承诺他们的软件能查杀所有已知的和未知的病毒,所以我们不能有等网络安全了再上网的念头,因为或许网络不能有这么一日,就象“矛”与“盾”,网络与病毒、黑客永远是一对共存体。
现代的电脑加密技术就是适应了网络安全的需要而应运产生的,它为我们进行一般的电子商务活动提供了安全保障,如在网络中进行文件传输、电子邮件往来和进行合同文本的签署等。其实加密技术也不是什么新生事物,只不过应用在当今电子商务、电脑网络中还是近几年的 历史 。下面我们就详细介绍一下加密技术的方方面面,希望能为那些对加密技术还一知半解的朋友提供一个详细了解的机会!
一、加密的由来
加密作为保障数据安全的一种方式,它不是现在才有的,它产生的 历史 相当久远,它是起源于要追溯于公元前2000年(几个世纪了),虽然它不是现在我们所讲的加密技术(甚至不叫加密),但作为一种加密的概念,确实早在几个世纪前就诞生了。当时埃及人是最先使用特别的象形文字作为信息编码的,随着时间推移,巴比伦、美索不达米亚和希腊文明都开始使用一些方法来保护他们的书面信息。
近期加密技术主要应用于军事领域,如美国独立战争、美国内战和两次世界大战。最广为人知的编码机器是German Enigma机,在第二次世界大战中德国人利用它创建了加密信息。此后,由于Alan Turing和Ultra计划以及其他人的努力,终于对德国人的密码进行了破解。当初,计算机的研究就是为了破解德国人的密码,人们并没有想到计算机给今天带来的信息革命。随着计算机的发展,运算能力的增强,过去的密码都变得十分简单了,于是人们又不断地研究出了新的数据加密方式,如利用ROSA算法产生的私钥和公钥就是在这个基础上产生的。
二、加密的概念
数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。该过程的逆过程为解密,即将该编码信息转化为其原来数据的过程。
三、加密的理由
当今网络 社会 选择加密已是我们别无选择,其一是我们知道在互联网上进行文件传输、电子邮件商务往来存在许多不安全因素,特别是对于一些大公司和一些机密文件在网络上传输。而且这种不安全性是互联网存在基础——TCP/IP协议所固有的,包括一些基于TCP/IP的服务;另一方面,互联网给众多的商家带来了无限的商机,互联网把全世界连在了一起,走向互联网就意味着走向了世界,这对于无数商家无疑是梦寐以求的好事,特别是对于中小企业。为了解决这一对矛盾、为了能在安全的基础上大开这通向世界之门,我们只好选择了数据加密和基于加密技术的数字签名。
加密在网络上的作用就是防止有用或私有化信息在网络上被拦截和窃取。一个简单的例子就是密码的传输,计算机密码极为重要,许多安全防护体系是基于密码的,密码的泄露在某种意义上来讲意味着其安全体系的全面崩溃。
通过网络进行登录时,所键入的密码以明文的形式被传输到服务器,而网络上的窃听是一件极为容易的事情,所以很有可能黑客会窃取得用户的密码,如果用户是Root用户或Administrator用户,那后果将是极为严重的。
还有如果你公司在进行着某个招标项目的投标工作,工作人员通过电子邮件的方式把他们单位的标书发给招标单位,如果此时有另一位竞争对手从网络上窃取到你公司的标书,从中知道你公司投标的标的,那后果将是怎样,相信不用多说聪明的你也明白。
这样的例子实在是太多了,解决上述难题的方案就是加密,加密后的口令即使被黑客获得也是不可读的,加密后的标书没有收件人的私钥也就无法解开,标书成为一大堆无任何实际意义的乱码。总之无论是单位还是个人在某种意义上来说加密也成为当今网络 社会 进行文件或邮件安全传输的时代象征!
数字签名就是基于加密技术的,它的作用就是用来确定用户是否是真实的。应用最多的还是电子邮件,如当用户收到一封电子邮件时,邮件上面标有发信人的姓名和信箱地址,很多人可能会简单地认为发信人就是信上说明的那个人,但实际上伪造一封电子邮件对于一个通常人来说是极为容易的事。在这种情况下,就要用到加密技术基础上的数字签名,用它来确认发信人身份的真实性。
类似数字签名技术的还有一种身份认证技术,有些站点提供入站FTP和WWW服务,当然用户通常接触的这类服务是匿名服务,用户的权力要受到限制,但也有的这类服务不是匿名的,如某公司为了信息交流提供用户的合作伙伴非匿名的FTP服务,或开发小组把他们的Web网页上载到用户的WWW服务器上,现在的问题就是,用户如何确定正在访问用户的服务器的人就是用户认为的那个人,身份认证技术就是一个好的解决方案。
在这里需要强调一点的就是,文件加密其实不只用于电子邮件或网络上的文件传输,其实也可应用静态的文件保护,如PIP软件就可以对磁盘、硬盘中的文件或文件夹进行加密,以防他人窃取其中的信息。
四、两种加密方法
加密技术通常分为两大类:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。
非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。
五、加密技术中的摘要函数(MAD、MAD和MAD)
摘要是一种防止改动的方法,其中用到的函数叫摘要函数。这些函数的输入可以是任意大小的消息,而输出是一个固定长度的摘要。摘要有这样一个性质,如果改变了输入消息中的任何东西,甚至只有一位,输出的摘要将会发生不可预测的改变,也就是说输入消息的每一位对输出摘要都有影响。总之,摘要算法从给定的文本块中产生一个数字签名(fingerprint或message digest),数字签名可以用于防止有人从一个签名上获取文本信息或改变文本信息内容和进行身份认证。摘要算法的数字签名原理在很多加密算法中都被使用,如SO/KEY和PIP(pretty good privacy)。
现在流行的摘要函数有MAD和MAD,但要记住客户机和服务器必须使用相同的算法,无论是MAD还是MAD,MAD客户机不能和MAD服务器交互。
MAD摘要算法的设计是出于利用32位RISC结构来最大其吞吐量,而不需要大量的替换表(substitution table)来考虑的。
MAD算法是以消息给予的长度作为输入,产生一个128位的"指纹"或"消息化"。要产生两个具有相同消息化的文字块或者产生任何具有预先给定"指纹"的消息,都被认为在计算上是不可能的。
MAD摘要算法是个数据认证标准。MAD的设计思想是要找出速度更快,比MAD更安全的一种算法,MAD的设计者通过使MAD在计算上慢下来,以及对这些计算做了一些基础性的改动来解决安全性这一问题,是MAD算法的一个扩展。
六、密钥的管理
密钥既然要求保密,这就涉及到密钥的管理问题,管理不好,密钥同样可能被无意识地泄露,并不是有了密钥就高枕无忧,任何保密也只是相对的,是有时效的。要管理好密钥我们还要注意以下几个方面:
1、密钥的使用要注意时效和次数
如果用户可以一次又一次地使用同样密钥与别人交换信息,那么密钥也同其它任何密码一样存在着一定的安全性,虽然说用户的私钥是不对外公开的,但是也很难保证私钥长期的保密性,很难保证长期以来不被泄露。如果某人偶然地知道了用户的密钥,那么用户曾经和另一个人交换的每一条消息都不再是保密的了。另外使用一个特定密钥加密的信息越多,提供给窃听者的材料也就越多,从某种意义上来讲也就越不安全了。
因此,一般强调仅将一个对话密钥用于一条信息中或一次对话中,或者建立一种按时更换密钥的机制以减小密钥暴露的可能性。
2、多密钥的管理
假设在某机构中有100个人,如果他们任意两人之间可以进行秘密对话,那么总共需要多少密钥呢?每个人需要知道多少密钥呢?也许很容易得出答案,如果任何两个人之间要不同的密钥,则总共需要4950个密钥,而且每个人应记住99个密钥。如果机构的人数是1000、10000人或更多,这种办法就显然过于愚蠢了,管理密钥将是一件可怕的事情。
Kerberos提供了一种解决这个较好方案,它是由MIT发明的,使保密密钥的管理和分发变得十分容易,但这种方法本身还存在一定的缺点。为能在因特网上提供一个实用的解决方案,Kerberos建立了一个安全的、可信任的密钥分发中心(Key Distribution Center,KDC),每个用户只要知道一个和KDC进行会话的密钥就可以了,而不需要知道成百上千个不同的密钥。
假设用户甲想要和用户乙进行秘密通信,则用户甲先和KDC通信,用只有用户甲和KDC知道的密钥进行加密 ,用户甲告诉KDC他想和用户乙进行通信,KDC会为用户甲和用户乙之间的会话随机选择一个对话密钥,并生成一个标签,这个标签由KDC和用户乙之间的密钥进行加密,并在用户甲启动和用户乙对话时,用户甲会把这个标签交给用户乙。这个标签的作用是让用户甲确信和他交谈的是用户乙,而不是冒充者。因为这个标签是由只有用户乙和KDC知道的密钥进行加密的,所以即使冒充者得到用户甲发出的标签也不可能进行解密,只有用户乙收到后才能够进行解密,从而确定了与用户甲对话的人就是用户乙。
当KDC生成标签和随机会话密码,就会把它们用只有用户甲和KDC知道的密钥进行加密,然后把标签和会话钥传给用户甲,加密的结果可以确保只有用户甲能得到这个信息,只有用户甲能利用这个会话密钥和用户乙进行通话。同理,KDC会把会话密码用只有KDC和用户乙知道的密钥加密,并把会话密钥给用户乙。
用户甲会启动一个和用户乙的会话,并用得到的会话密钥加密自己和用户乙的会话,还要把KDC传给它的标签传给用户乙以确定用户乙的身份,然后用户甲和用户乙之间就可以用会话密钥进行安全的会话了,而且为了保证安全,这个会话密钥是一次性的,这样黑客就更难进行破解了。同时由于密钥是一次性由系统自动产生的,则用户不必记那么多密钥了,方便了人们的通信。
七、数据加密的标准
随着计算机硬件的速度越来越快,制造一台这样特殊的机器的花费已经降到了十万美元左右,而用它来保护十亿美元的银行,那显然是不够保险了。另一方面,如果只用它来保护一台普通服务器,那么DES确实是一种好的办法,因为黑客绝不会仅仅为入侵一个服务器而花那么多的钱破解DES密文。
另一种非常着名的加密算法就是RSA了,RSA(Rivest-Shamir-Adleman)算法是基于大数不可能被质因数分解假设的公钥体系。简单地说就是找两个很大的质数。一个对外公开的为“公钥”(Prblic key) ,另一个不告诉任何人,称为"私钥”(Private key)。这两个密钥是互补的,也就是说用公钥加密的密文可以用私钥解密,反过来也一样。
假设用户甲要寄信给用户乙,他们互相知道对方的公钥。甲就用乙的公钥加密邮件寄出,乙收到后就可以用自己的私钥解密出甲的原文。由于别人不知道乙的私钥,所以即使是甲本人也无法解密那封信,这就解决了信件保密的问题。另一方面,由于每个人都知道乙的公钥,他们都可以给乙发信,那么乙怎么确信是不是甲的来信呢?那就要用到基于加密技术的数字签名了。
甲用自己的私钥将签名内容加密,附加在邮件后,再用乙的公钥将整个邮件加密(注意这里的次序,如果先加密再签名的话,别人可以将签名去掉后签上自己的签名,从而篡改了签名)。这样这份密文被乙收到以后,乙用自己的私钥将邮件解密,得到甲的原文和数字签名,然后用甲的公钥解密签名,这样一来就可以确保两方面的安全了。
八、加密技术的应用
加密技术的应用是多方面的,但最为广泛的还是在电子商务和VPN上的应用,下面就分别简叙。
1、在电子商务方面的应用
电子商务(E-business)要求顾客可以在网上进行各种商务活动,不必担心自己的信用卡会被人盗用。在过去,用户为了防止信用卡的号码被窃取到,一般是通过电话订货,然后使用用户的信用卡进行付款。现在人们开始用RSA(一种公开/私有密钥)的加密技术,提高信用卡交易的安全性,从而使电子商务走向实用成为可能。
许多人都知道NETSCAPE公司是Internet商业中领先技术的提供者,该公司提供了一种基于RSA和保密密钥的应用于因特网的技术,被称为安全插座层(Secure Sockets Layer,SSL)。
也许很多人知道Socket,它是一个编程界面,并不提供任何安全措施,而SSL不但提供编程界面,而且向上提供一种安全的服务,SSL3.0现在已经应用到了服务器和浏览器上,SSL2.0则只能应用于服务器端。
SSL3.0用一种电子证书(electric certificate)来实行身份进行验证后,双方就可以用保密密钥进行安全的会话了。它同时使用“对称”和“非对称”加密方法,在客户与电子商务的服务器进行沟通的过程中,客户会产生一个Session Key,然后客户用服务器端的公钥将Session Key进行加密,再传给服务器端,在双方都知道Session Key后,传输的数据都是以Session Key进行加密与解密的,但服务器端发给用户的公钥必需先向有关发证机关申请,以得到公证。
基于SSL3.0提供的安全保障,用户就可以自由订购商品并且给出信用卡号了,也可以在网上和合作伙伴交流商业信息并且让供应商把订单和收货单从网上发过来,这样可以节省大量的纸张,为公司节省大量的电话、传真费用。在过去,电子信息交换(Electric Data Interchange,EDI)、信息交易(information transaction)和金融交易(financial transaction)都是在专用网络上完成的,使用专用网的费用大大高于互联网。正是这样巨大的诱惑,才使人们开始发展因特网上的电子商务,但不要忘记数据加密。
2、加密技术在VPN中的应用
现在,越多越多的公司走向国际化,一个公司可能在多个国家都有办事机构或销售中心,每一个机构都有自己的局域网LAN(Local Area Network),但在当今的网络 社会 人们的要求不仅如此,用户希望将这些LAN连结在一起组成一个公司的广域网,这个在现在已不是什么难事了。
事实上,很多公司都已经这样做了,但他们一般使用租用专用线路来连结这些局域网 ,他们考虑的就是网络的安全问题。现在具有加密/解密功能的路由器已到处都是,这就使人们通过互联网连接这些局域网成为可能,这就是我们通常所说的虚拟专用网(Virtual Private Network ,VPN)。当数据离开发送者所在的局域网时,该数据首先被用户湍连接到互联网上的路由器进行硬件加密,数据在互联网上是以加密的形式传送的,当达到目的LAN的路由器时,该路由器就会对数据进行解密,这样目的LAN中的用户就可以看到真正的信息了。

㈢ 【深度知识】区块链之加密原理图示(加密,签名)

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。
2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES, 主要用于加密信息流。

伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。

ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段

ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。

ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。

ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

<meta charset="utf-8">

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式 K = k G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式 不可进行逆运算( 也就是说G/K是无法计算的 )。 *

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k G计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么k G怎么计算呢?如何计算k G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q = 0, 故P+R = -Q , 如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。

也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0

于是乎得到 2 P = -Q (是不是与我们非对称算法的公式 K = k G 越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。

选一个随机数 k, 那么k * P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111

由于2 P = -Q 所以 这样就计算出了k P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。

签名过程:

生成随机数R, 计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M, RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。

公式推论:

HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考 Alice And Bob 的例子。

Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。

Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。

计算ECDH阶段:

Alice 利用计算公式 Q = ka * KB 计算出一个秘钥Q。

Bob 利用计算公式 Q' = kb * KA 计算出一个秘钥Q'。

共享秘钥验证:

Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'

故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。

2、签名算法采用的是 ECDSA

3、认证方式采用的是 H-MAC

4、ECC的参数体系采用了secp256k1, 其他参数体系 参考这里

H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:

以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

㈣ 简述对称加密算法的基本原理

对称加密是计算机加密领域最古老也是最经典的加密标准。虽然对称加密被认为不再是安全的加密方式,但是直到现在,还看不到它被淘汰的迹象。在很多非网络化的加密环境中,对称加密足以满足人们的需要。

对称加密采用单密钥加密方式,不论是加密还是解密都是用同一个密钥,即“一把钥匙开一把锁”。对称加密的好处在于操作简单、管理方便、速度快。它的缺点在于密钥在网络传输中容易被窃听,每个密钥只能应用一次,对密钥管理造成了困难。对称加密的实现形式和加密算法的公开性使它依赖于密钥的安全性,而不是算法的安全性。

一个对称加密系统由五个部分组成,可以表述为

S={M,C,K,E,D}

各字母的含义如下:

M:明文空间,所有明文的集合。

C:密文空间,全体密文的集合。

K:密钥空间,全体密钥的集合。

E:加密算法。

D:解密算法。

㈤ 现代密码学加密原理

密码学是在区块链技术中承担着非常重要的角色,但其实,在互联网中,也大量的使用着密码学的技术,本文将介绍现代密码学中的早期加密方法,这将有助于我们理解区块链中的复杂算法。

第二次大战之后,从军方演化而来的互联网慢慢的进入了寻常百姓家,我们能够将一切事物都电子化处理,交易也不例外,于是电子银行也出现了,所有交易都可以通过网络进行。随着互联网用户越来越多,新的问题产生了,加密需要双方共享一个秘密的随机数,也就是秘钥,但从未谋面的两个人,如何就此共享密钥达成一致,而又不让第三方监听这知道呢?这将是现代密码学的目标。

1976年,维特菲尔德和马丁赫尔曼找到了一种巧妙的解决方法,让我们用颜色为比喻来讲解该技巧是如何实现的:

首先,明确我们的目标,发送者和接受者就秘密颜色达成一致,而不让窃听者知道,于是需要采用一种技巧,该技巧基于两点:

一、混合两种颜色得到第三种颜色很容易;

二、得到这种混合色后,想在此基础上知道原来的颜色就很难了, 这就是锁的原理。

朝一个方向容易,朝反方向难,这被称作是单向函数。解决方案是这样的,首先,他们公开对某种颜色达成一致,假设是黄色,然后发送者和接收者随机选取私有颜色,混到公共的黄色中,从而掩饰掉他们的私有颜色,并且将混合颜色发给接收者,接收者知道自己的私有颜色,并将它的混合颜色发给发送者,

然后就是技巧的关键了,发送者和接收者将各自私有颜色加入到另一个人的混合色中,然后得到一种共享秘密颜色,此时,窃听者无法确定这种颜色,她必须有一种私有颜色才能确定,技巧就是这样,对密码学的世界中, 我们需要一个数值的运算过程,这个过程向单一方向很容易,反方向会很难。

我们需要一种朝一方向易,反方向难的数值过程,于是密码学家找到了模算数,也就是取余的函数,(比如46除12的余数是10)。

假设我们考虑用质数做模型,比如17,我们找到17的一个原根,这里是3,它具有如下重要性质,取不同幂次时,结果会在时钟上均匀分布,3是一个生成元,取3的X次方,结果会等可能地出现在0和17中间任何整数上。

但相反的过程就难了,比如给定12,要求这是3的多少次方,这被称为离散对数问题,这样我们就有了单向函数,一个方向计算很容易,但反方向就很难了,已知12,我们只能采用试错法,求出匹配的质数。

这有多难呢?如果数字很小,这还很容易,但模数是长达数百位的质数,那么,想解密是不切实际的,即便借助世界上最强大的计算机,要遍历所有可能的情况,也需要上千年的时间,单向函数的强度取决于反向过程所需要的时间。

解决方案是这样的,首先,发送者和接收者公开质模数和生成元,这里的例子中也就是17和3,然后发送者选择一个私有的随机数,比如15,计算315 mod 17(结果为6),然后公开将此结果发送给接收者,之后接收者选择自己的私有随机数,比如13,计算313mod 17(结果为12),然后公开将此结果发送给对方。

关键在于,将接收者的公开结果,取她的私有数字次方,以获得共享密钥,这里是10,接收者将发送者的公开结果,取她的私有数字次方,结果得到相同的共享密钥,可能大家还不好理解,但他们实际上进行了相同的运算。

考虑发送者,她从接收者接收到的是12,来自313 mod 17,所以她的计算实际上是3∧13∧15 mod 17,而接收者,他从发送者那里接收6,来自315mod17,所以他的计算实际上是3∧15∧13mod17,两种计算结果是相同的,只是指数的顺序不同,调换指数顺序,结果不会改变,他们的结果都是,3取两人私有数字次幂,没有这些私有数字,15或13,第三方将无法求出结果。

第三方会被困在离散对数问题之中,数字足够大时,实践中,她在合理时限内,几乎不可能破解,这就解决了交换密钥的问题,这可以同伪随机数生成器结合使用,为从未谋面的人提供通信加密。

现在区块链常用的算法,如sha256,都是继承单向函数的设计思维,一个方向计算容易,反过来几乎不能破解,来保证安全。

㈥ 加密的原理什么

加密有两种方式:对称密钥加密和非对称密钥加密:
1. 对称密钥加密原理
在加密传输中最初是采用对称密钥方式,也就是加密和解密都用相同的密钥。
2. 非对称密钥加密原理 正因为对称密钥加密方法也不是很安全,于是想到了一种称之为“非对称密钥”加密(也称公钥加密)方法。所谓非对称密钥加密是指加密和解密用不同的密钥,其中一个称之为公钥,可以对外公开,通常用于数据加密,另一个相对称之为私钥,是不能对外公布的,通常用于数据解密。而且公/私钥必须成对使用,也就是用其中一个密钥加密的数据只能由与其配对的另一个密钥进行解密。这样用公钥加密的数据即使被人非法截取了,因为他没有与之配对的私钥(私钥仅发送方自己拥有),也不能对数据进行解密,确保了数据的安全。

㈦ 常见加密算法原理及概念

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方;接收方收到加密后的报文后,结合密钥和解密算法解密组合后得出原始数据。由于加解密算法是公开的,因此在这过程中,密钥的安全传递就成为了至关重要的事了。而密钥通常来说是通过双方协商,以物理的方式传递给对方,或者利用第三方平台传递给对方,一旦这过程出现了密钥泄露,不怀好意的人就能结合相应的算法拦截解密出其加密传输的内容。

对称加密算法拥有着算法公开、计算量小、加密速度和效率高得特定,但是也有着密钥单一、密钥管理困难等缺点。

常见的对称加密算法有:
DES:分组式加密算法,以64位为分组对数据加密,加解密使用同一个算法。
3DES:三重数据加密算法,对每个数据块应用三次DES加密算法。
AES:高级加密标准算法,是美国联邦政府采用的一种区块加密标准,用于替代原先的DES,目前已被广泛应用。
Blowfish:Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥才能解密,反之亦然。
下图为简单非对称加密算法的常见流程:

发送方Bob从接收方Alice获取其对应的公钥,并结合相应的非对称算法将明文加密后发送给Alice;Alice接收到加密的密文后,结合自己的私钥和非对称算法解密得到明文。这种简单的非对称加密算法的应用其安全性比对称加密算法来说要高,但是其不足之处在于无法确认公钥的来源合法性以及数据的完整性。
非对称加密算法具有安全性高、算法强度负复杂的优点,其缺点为加解密耗时长、速度慢,只适合对少量数据进行加密,其常见算法包括:
RSA :RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,可用于加密,也能用于签名。
DSA :数字签名算法,仅能用于签名,不能用于加解密。
DSS :数字签名标准,技能用于签名,也可以用于加解密。
ELGamal :利用离散对数的原理对数据进行加解密或数据签名,其速度是最慢的。

单向加密算法常用于提取数据指纹,验证数据的完整性。发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。接收方在收到加密的报文后进行解密,将解密获取到的明文使用相同的单向加密算法进行加密,得出加密后的密文串。随后将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应。常见的算法包括:MD5、sha1、sha224等等,其常见用途包括:数字摘要、数字签名等等。

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密,常见的密钥交换方式有下面两种:
1、公钥加密,将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用;
2、Diffie-Hellman,DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。DH算法的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。
如:

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合,用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能,其组成包括:签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。
PKI采用证书管理公钥,通过第三方可信任CA中心,把用户的公钥和其他用户信息组生成证书,用于验证用户的身份。
公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

CA证书认证的流程如下图,Bob为了向Alice证明自己是Bob和某个公钥是自己的,她便向一个Bob和Alice都信任的CA机构申请证书,Bob先自己生成了一对密钥对(私钥和公钥),把自己的私钥保存在自己电脑上,然后把公钥给CA申请证书,CA接受申请于是给Bob颁发了一个数字证书,证书中包含了Bob的那个公钥以及其它身份信息,当然,CA会计算这些信息的消息摘要并用自己的私钥加密消息摘要(数字签名)一并附在Bob的证书上,以此来证明这个证书就是CA自己颁发的。Alice得到Bob的证书后用CA的证书(自签署的)中的公钥来解密消息摘要,随后将摘要和Bob的公钥发送到CA服务器上进行核对。CA在接收到Alice的核对请求后,会根据Alice提供的信息核对Bob的证书是否合法,如果确认合法则回复Alice证书合法。Alice收到CA的确认回复后,再去使用从证书中获取的Bob的公钥加密邮件然后发送给Bob,Bob接收后再以自己的私钥进行解密。

㈧ 数据加密原理是什么 数据解密原理介绍【详解】

数据加密和解密,数据加密和解密原理是什么?

随着Internet 的普及,大量的数据、文件在Internet 传送,因此在客观上就需要一种强有力的安全措施来保护机密数据不被窃取或篡改。我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了) 。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip ,它既压缩数据又加密数据。又如,dbms 的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加判启悔密算法都要有高效的加密和解密能力。幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节) 对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86 cpu 系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。对这种“置换表”方式的一个改进就是使用2 个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几旁皮次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a 表,对所有的奇数位置使用b 表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。与使用“置换表”相类似“, 变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer 中,再在buffer 中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient 可以变为listen ,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。但是,还有一种更好的加密算法,只有计算机可以做,就是字/ 字节循环移位和xor 操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移) ,就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难! 而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci 数列。对数列所产生的数做模运算(例如模3) ,得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能! 但是,使用fibbonaci 数列这种伪随机的掘正方式所产生的密码对我们的解密程序来讲是非常容易的。在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load 到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查! 很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。

循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor 操作来产生一个16 位或32 位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如xmodem - crc。这是方法已经成为标准,而且有详细的文档。但是,基于标准crc 算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。

一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常着名的pgp公钥加密以及rsa 加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0) 。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。

rsa 加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa 算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa 加密算法。pgp 算法(以及大多数基于rsa 算法的加密方法) 使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。

我们举一个例子: 假定现在要加密一些数据使用密钥‘12345’。利用rsa 公钥,使用rsa 算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥) ,然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa 私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。但并不是经过加密的数据就是绝对安全的,数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。

㈨ 网络安全中加密和解密的原理是什么

对数据在网络传输中的保护 加密算法 为防止劫包偷取信息而加了密码 只有知道解开的算法才能看
如hash DES

阅读全文

与加密领域竞争原理相关的资料

热点内容
老韩综app怎么看不了了 浏览:225
只有一个程序员的体验 浏览:321
用服务器地址怎么有网 浏览:550
路由器服务器昵称是什么 浏览:713
程序员男友消失了 浏览:399
程序员搜索框自动提示 浏览:26
android44api20 浏览:675
adb刷recovery命令 浏览:695
广联达正版加密锁可以补办吗 浏览:943
java程序员一天多少行代码 浏览:947
丧尸危机java 浏览:123
华为手机怎么去除app标记未读信息 浏览:854
java监控文件夹 浏览:807
群控服务器主机怎么转变普通电脑 浏览:707
手机怎么调整app大小 浏览:455
加密门禁卡揭秘 浏览:139
词释pdf 浏览:993
安卓手机上如何停止自动续费 浏览:882
加密编码摘要 浏览:787
疫情命令党 浏览:498