导航:首页 > 文档加密 > 数据挖掘算法pdf

数据挖掘算法pdf

发布时间:2023-06-16 14:42:13

① 带你了解数据挖掘中的经典算法

数据挖掘的算法有很多,而不同的算法有着不同的优点,同时也发挥着不同的作用。可以这么说,算法在数据挖掘中做出了极大的贡献,如果我们要了解数据挖掘的话就不得不了解这些算法,下面我们就继续给大家介绍一下有关数据挖掘的算法知识。
1.The Apriori algorithm,
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。这个算法是比较复杂的,但也是十分实用的。
2.最大期望算法
在统计计算中,最大期望算法是在概率模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量。最大期望经常用在机器学习和计算机视觉的数据集聚领域。而最大期望算法在数据挖掘以及统计中都是十分常见的。
3.PageRank算法
PageRank是Google算法的重要内容。PageRank里的page不是指网页,而是创始人的名字,即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”,这个标准就是衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
3.AdaBoost算法
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器,然后把这些弱分类器集合起来,构成一个更强的最终分类器。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。这种算法给数据挖掘工作解决了不少的问题。
数据挖掘算法有很多,这篇文章中我们给大家介绍的算法都是十分经典的算法,相信大家一定可以从中得到有价值的信息。需要告诉大家的是,我们在进行数据挖掘工作之前一定要事先掌握好数据挖掘需呀掌握的各类算法,这样我们才能在工总中得心应手,如果基础不牢固,那么我们迟早是会被淘汰的。职场如战场,我们一定要全力以赴。

② 《从零开始学Python数据分析与挖掘第二版》pdf下载在线阅读全文,求百度网盘云资源

《从零开始学Python数据分析与挖掘第二版》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1zj7Mt8vBp1g-TK9phSSVKw

?pwd=488y 提取码:488y
简介:全书共涵盖15种可视化图形以及10个常用的数据挖掘算法和实战项目,通过本书的学习,读者可以掌握数据分析与挖掘的理论知识和实战技能。本书适于统计学、数学、经济学、金融学、管理学以及相关理工科专业的本科生、研究生使用,也能够提高从事数据咨询、研究或分析等人士的专业水平和技能。

③ 数据挖掘十大算法-

整理里一晚上的数据挖掘算法,其中主要引自wiki和一些论坛。发布到上作为知识共享,但是发现Latex的公式转码到网页的时候出现了丢失,暂时没找到解决方法,有空再回来填坑了。

——编者按

一、 C4.5

C4.5算法是由Ross Quinlan开发的用于产生决策树的算法[1],该算法是对Ross Quinlan之前开发的ID3算法的一个扩展。C4.5算法主要应用于统计分类中,主要是通过分析数据的信息熵建立和修剪决策树。

1.1 决策树的建立规则

在树的每个节点处,C4.5选择最有效地方式对样本集进行分裂,分裂规则是分析所有属性的归一化的信息增益率,选择其中增益率最高的属性作为分裂依据,然后在各个分裂出的子集上进行递归操作。

依据属性A对数据集D进行分类的信息熵可以定义如下:

划分前后的信息增益可以表示为:

那么,归一化的信息增益率可以表示为:

1.2 决策树的修剪方法

C4.5采用的剪枝方法是悲观剪枝法(Pessimistic Error Pruning,PEP),根据样本集计算子树与叶子的经验错误率,在满足替换标准时,使用叶子节点替换子树。

不妨用K表示训练数据集D中分类到某一个叶子节点的样本数,其中其中错误分类的个数为J,由于用估计该节点的样本错误率存在一定的样本误差,因此用表示修正后的样本错误率。那么,对于决策树的一个子树S而言,设其叶子数目为L(S),则子树S的错误分类数为:

设数据集的样本总数为Num,则标准错误可以表示为:

那么,用表示新叶子的错误分类数,则选择使用新叶子节点替换子树S的判据可以表示为:

二、KNN

最近邻域算法(k-nearest neighbor classification, KNN)[2]是一种用于分类和回归的非参数统计方法。KNN算法采用向量空间模型来分类,主要思路是相同类别的案例彼此之间的相似度高,从而可以借由计算未知样本与已知类别案例之间的相似度,来实现分类目标。KNN是一种基于局部近似和的实例的学习方法,是目前最简单的机器学习算法之一。

在分类问题中,KNN的输出是一个分类族群,它的对象的分类是由其邻居的“多数表决”确定的,k个最近邻居(k为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。若k = 1,则该对象的类别直接由最近的一个节点赋予。在回归问题中,KNN的输出是其周围k个邻居的平均值。无论是分类还是回归,衡量邻居的权重都非常重要,目标是要使较近邻居的权重比较远邻居的权重大,例如,一种常见的加权方案是给每个邻居权重赋值为1/d,其中d是到邻居的距离。这也就自然地导致了KNN算法对于数据的局部结构过于敏感。

三、Naive Bayes

在机器学习的众多分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)[3]。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。

在假设各个属性相互独立的条件下,NBC模型的分类公式可以简单地表示为:

但是实际上问题模型的属性之间往往是非独立的,这给NBC模型的分类准确度带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型;而在属性相关性较小时,NBC模型的性能最为良好。

四、CART

CART算法(Classification And Regression Tree)[4]是一种二分递归的决策树,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,因此CART算法生成的决策树是结构简洁的二叉树。由于CART算法构成的是一个二叉树,它在每一步的决策时只能是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。在CART算法中主要分为两个步骤:将样本递归划分进行建树过程;用验证数据进行剪枝。

五、K-means

k-平均算法(k-means clustering)[5]是源于信号处理中的一种向量量化方法,现在则更多地作为一种聚类分析方法流行于数据挖掘领域。k-means的聚类目标是:把n个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类。

5.1 k-means的初始化方法

通常使用的初始化方法有Forgy和随机划分(Random Partition)方法。Forgy方法随机地从数据集中选择k个观测作为初始的均值点;而随机划分方法则随机地为每一观测指定聚类,然后执行“更新”步骤,即计算随机分配的各聚类的图心,作为初始的均值点。Forgy方法易于使得初始均值点散开,随机划分方法则把均值点都放到靠近数据集中心的地方;随机划分方法一般更适用于k-调和均值和模糊k-均值算法。对于期望-最大化(EM)算法和标准k-means算法,Forgy方法作为初始化方法的表现会更好一些。

5.2 k-means的标准算法

k-means的标准算法主要包括分配(Assignment)和更新(Update),在初始化得出k个均值点后,算法将会在这两个步骤中交替执行。

分配(Assignment):将每个观测分配到聚类中,使得组内平方和达到最小。

更新(Update):对于上一步得到的每一个聚类,以聚类中观测值的图心,作为新的均值点。

六、Apriori

Apriori算法[6]是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。Apriori采用自底向上的处理方法,每次只扩展一个对象加入候选集,并且使用数据集对候选集进行检验,当不再产生匹配条件的扩展对象时,算法终止。

Apriori的缺点在于生成候选集的过程中,算法总是尝试扫描整个数据集并尽可能多地添加扩展对象,导致计算效率较低;其本质上采用的是宽度优先的遍历方式,理论上需要遍历次才可以确定任意的最大子集S。

七、SVM

支持向量机(Support Vector Machine, SVM)[7]是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

除了进行线性分类之外,SVM还可以使用所谓的核技巧有效地进行非线性分类,将其输入隐式映射到高维特征空间中,即支持向量机在高维或无限维空间中构造超平面或超平面集合,用于分类、回归或其他任务。直观来说,分类边界距离最近的训练数据点越远越好,因为这样可以缩小分类器的泛化误差。

八、EM

最大期望算法(Expectation–Maximization Algorithm, EM)[7]是从概率模型中寻找参数最大似然估计的一种算法。其中概率模型依赖于无法观测的隐性变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。

九、PageRank

PageRank算法设计初衷是根据网站的外部链接和内部链接的数量和质量对网站的价值进行衡量。PageRank将每个到网页的链接作为对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。

算法假设上网者将会不断点网页上的链接,当遇到了一个没有任何链接出页面的网页,这时候上网者会随机转到另外的网页开始浏览。设置在任意时刻,用户到达某页面后并继续向后浏览的概率,该数值是根据上网者使用浏览器书签的平均频率估算而得。PageRank值可以表示为:

其中,是被研究的页面集合,N表示页面总数,是链接入页面的集合,是从页面链接处的集合。

PageRank算法的主要缺点是的主要缺点是旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多外链,除非它是某个站点的子站点。

十、AdaBoost

AdaBoost方法[10]是一种迭代算法,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率。每一个训练样本都被赋予一个权重,表明它被某个分类器选入训练集的概率。如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它被选中的概率就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。通过这样的方式,AdaBoost方法能“聚焦于”那些较难分的样本上。在具体实现上,最初令每个样本的权重都相等,对于第k次迭代操作,我们就根据这些权重来选取样本点,进而训练分类器Ck。然后就根据这个分类器,来提高被它分错的的样本的权重,并降低被正确分类的样本权重。然后,权重更新过的样本集被用于训练下一个分类器Ck[,并且如此迭代地进行下去。

AdaBoost方法的自适应在于:前一个分类器分错的样本会被用来训练下一个分类器。AdaBoost方法对于噪声数据和异常数据很敏感。但在一些问题中,AdaBoost方法相对于大多数其它学习算法而言,不会很容易出现过拟合现象。AdaBoost方法中使用的分类器可能很弱(比如出现很大错误率),但只要它的分类效果比随机好一点(比如两类问题分类错误率略小于0.5),就能够改善最终得到的模型。而错误率高于随机分类器的弱分类器也是有用的,因为在最终得到的多个分类器的线性组合中,可以给它们赋予负系数,同样也能提升分类效果。

引用

[1] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

[2] Altman, N. S. An introction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992, 46 (3): 175–185. doi:10.1080/00031305.1992.10475879

[3] Webb, G. I.; Boughton, J.; Wang, Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning (Springer). 2005, 58 (1): 5–24. doi:10.1007/s10994-005-4258-6

[4] decisiontrees.net Interactive Tutorial

[5] Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better clusterings (PDF). Proceedings of the eleventh international conference on Information and knowledge management (CIKM). 2002

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile, September 1994.

[7] Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018

[8] Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39 (1):1–38, 1977

[9] Susan Moskwa. PageRank Distribution Removed From WMT. [October 16, 2009]

[10] Freund, Yoav; Schapire, Robert E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. 1995. CiteSeerX: 10.1.1.56.9855

④ 数据挖掘算法与生活中的应用案例

数据挖掘算法与生活中的应用案例

如何分辨出垃圾邮件”、“如何判断一笔交易是否属于欺诈”、“如何判断红酒的品质和档次”、“扫描王是如何做到文字识别的”、“如何判断佚名的着作是否出自某位名家之手”、“如何判断一个细胞是否属于肿瘤细胞”等等,这些问题似乎都很专业,都不太好回答。但是,如果了解一点点数据挖掘的知识,你,或许会有柳暗花明的感觉。
本文,主要想简单介绍下数据挖掘中的算法,以及它包含的类型。然后,通过现实中触手可及的、活生生的案例,去诠释它的真实存在。 一般来说,数据挖掘的算法包含四种类型,即分类、预测、聚类、关联。前两种属于有监督学习,后两种属于无监督学习,属于描述性的模式识别和发现。
有监督学习有监督的学习,即存在目标变量,需要探索特征变量和目标变量之间的关系,在目标变量的监督下学习和优化算法。例如,信用评分模型就是典型的有监督学习,目标变量为“是否违约”。算法的目的在于研究特征变量(人口统计、资产属性等)和目标变量之间的关系。
分类算法分类算法和预测算法的最大区别在于,前者的目标变量是分类离散型(例如,是否逾期、是否肿瘤细胞、是否垃圾邮件等),后者的目标变量是连续型。一般而言,具体的分类算法包括,逻辑回归、决策树、KNN、贝叶斯判别、SVM、随机森林、神经网络等。
预测算法预测类算法,其目标变量一般是连续型变量。常见的算法,包括线性回归、回归树、神经网络、SVM等。
无监督学习无监督学习,即不存在目标变量,基于数据本身,去识别变量之间内在的模式和特征。例如关联分析,通过数据发现项目A和项目B之间的关联性。例如聚类分析,通过距离,将所有样本划分为几个稳定可区分的群体。这些都是在没有目标变量监督下的模式识别和分析。
聚类分析聚类的目的就是实现对样本的细分,使得同组内的样本特征较为相似,不同组的样本特征差异较大。常见的聚类算法包括kmeans、系谱聚类、密度聚类等。
关联分析关联分析的目的在于,找出项目(item)之间内在的联系。常常是指购物篮分析,即消费者常常会同时购买哪些产品(例如游泳裤、防晒霜),从而有助于商家的捆绑销售。
基于数据挖掘的案例和应用上文所提到的四种算法类型(分类、预测、聚类、关联),是比较传统和常见的。还有其他一些比较有趣的算法分类和应用场景,例如协同过滤、异常值分析、社会网络、文本分析等。下面,想针对不同的算法类型,具体的介绍下数据挖掘在日常生活中真实的存在。下面是能想到的、几个比较有趣的、和生活紧密关联的例子。
基于分类模型的案例这里面主要想介绍两个案例,一个是垃圾邮件的分类和判断,另外一个是在生物医药领域的应用,即肿瘤细胞的判断和分辨。
垃圾邮件的判别邮箱系统如何分辨一封Email是否属于垃圾邮件?这应该属于文本挖掘的范畴,通常会采用朴素贝叶斯的方法进行判别。它的主要原理是,根据邮件正文中的单词,是否经常出现在垃圾邮件中,进行判断。例如,如果一份邮件的正文中包含“报销”、“发票”、“促销”等词汇时,该邮件被判定为垃圾邮件的概率将会比较大。
一般来说,判断邮件是否属于垃圾邮件,应该包含以下几个步骤。
第一,把邮件正文拆解成单词组合,假设某篇邮件包含100个单词。
第二,根据贝叶斯条件概率,计算一封已经出现了这100个单词的邮件,属于垃圾邮件的概率和正常邮件的概率。如果结果表明,属于垃圾邮件的概率大于正常邮件的概率。那么该邮件就会被划为垃圾邮件。
医学上的肿瘤判断如何判断细胞是否属于肿瘤细胞呢?肿瘤细胞和普通细胞,有差别。但是,需要非常有经验的医生,通过病理切片才能判断。如果通过机器学习的方式,使得系统自动识别出肿瘤细胞。此时的效率,将会得到飞速的提升。并且,通过主观(医生)+客观(模型)的方式识别肿瘤细胞,结果交叉验证,结论可能更加靠谱。
如何操作?通过分类模型识别。简言之,包含两个步骤。首先,通过一系列指标刻画细胞特征,例如细胞的半径、质地、周长、面积、光滑度、对称性、凹凸性等等,构成细胞特征的数据。其次,在细胞特征宽表的基础上,通过搭建分类模型进行肿瘤细胞的判断。
基于预测模型的案例这里面主要想介绍两个案例。即通过化学特性判断和预测红酒的品质。另外一个是,通过搜索引擎来预测和判断股价的波动和趋势。
红酒品质的判断如何评鉴红酒?有经验的人会说,红酒最重要的是口感。而口感的好坏,受很多因素的影响,例如年份、产地、气候、酿造的工艺等等。但是,统计学家并没有时间去品尝各种各样的红酒,他们觉得通过一些化学属性特征就能够很好地判断红酒的品质了。并且,现在很多酿酒企业其实也都这么干了,通过监测红酒中化学成分的含量,从而控制红酒的品质和口感。
那么,如何判断鉴红酒的品质呢?
第一步,收集很多红酒样本,整理检测他们的化学特性,例如酸性、含糖量、氯化物含量、硫含量、酒精度、PH值、密度等等。
第二步,通过分类回归树模型进行预测和判断红酒的品质和等级。
搜索引擎的搜索量和股价波动一只南美洲热带雨林中的蝴蝶,偶尔扇动了几下翅膀,可以在两周以后,引起美国德克萨斯州的一场龙卷风。你在互联网上的搜索是否会影响公司股价的波动?
很早之前,就已经有文献证明,互联网关键词的搜索量(例如流感)会比疾控中心提前1到2周预测出某地区流感的爆发。
同样,现在也有些学者发现了这样一种现象,即公司在互联网中搜索量的变化,会显着影响公司股价的波动和趋势,即所谓的投资者注意力理论。该理论认为,公司在搜索引擎中的搜索量,代表了该股票被投资者关注的程度。因此,当一只股票的搜索频数增加时,说明投资者对该股票的关注度提升,从而使得该股票更容易被个人投资者购买,进一步地导致股票价格上升,带来正向的股票收益。这是已经得到无数论文验证了的。
基于关联分析的案例:沃尔玛的啤酒尿布啤酒尿布是一个非常非常古老陈旧的故事。故事是这样的,沃尔玛发现一个非常有趣的现象,即把尿布与啤酒这两种风马牛不相及的商品摆在一起,能够大幅增加两者的销量。原因在于,美国的妇女通常在家照顾孩子,所以,她们常常会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。沃尔玛从数据中发现了这种关联性,因此,将这两种商品并置,从而大大提高了关联销售。
啤酒尿布主要讲的是产品之间的关联性,如果大量的数据表明,消费者购买A商品的同时,也会顺带着购买B产品。那么A和B之间存在关联性。在超市中,常常会看到两个商品的捆绑销售,很有可能就是关联分析的结果。
基于聚类分析的案例:零售客户细分对客户的细分,还是比较常见的。细分的功能,在于能够有效的划分出客户群体,使得群体内部成员具有相似性,但是群体之间存在差异性。其目的在于识别不同的客户群体,然后针对不同的客户群体,精准地进行产品设计和推送,从而节约营销成本,提高营销效率。
例如,针对商业银行中的零售客户进行细分,基于零售客户的特征变量(人口特征、资产特征、负债特征、结算特征),计算客户之间的距离。然后,按照距离的远近,把相似的客户聚集为一类,从而有效的细分客户。将全体客户划分为诸如,理财偏好者、基金偏好者、活期偏好者、国债偏好者、风险均衡者、渠道偏好者等。
基于异常值分析的案例:支付中的交易欺诈侦测采用支付宝支付时,或者刷信用卡支付时,系统会实时判断这笔刷卡行为是否属于盗刷。通过判断刷卡的时间、地点、商户名称、金额、频率等要素进行判断。这里面基本的原理就是寻找异常值。如果您的刷卡被判定为异常,这笔交易可能会被终止。
异常值的判断,应该是基于一个欺诈规则库的。可能包含两类规则,即事件类规则和模型类规则。第一,事件类规则,例如刷卡的时间是否异常(凌晨刷卡)、刷卡的地点是否异常(非经常所在地刷卡)、刷卡的商户是否异常(被列入黑名单的套现商户)、刷卡金额是否异常(是否偏离正常均值的三倍标准差)、刷卡频次是否异常(高频密集刷卡)。第二,模型类规则,则是通过算法判定交易是否属于欺诈。一般通过支付数据、卖家数据、结算数据,构建模型进行分类问题的判断。
基于协同过滤的案例:电商猜你喜欢和推荐引擎电商中的猜你喜欢,应该是大家最为熟悉的。在京东商城或者亚马逊购物,总会有“猜你喜欢”、“根据您的浏览历史记录精心为您推荐”、“购买此商品的顾客同时也购买了商品”、“浏览了该商品的顾客最终购买了商品”,这些都是推荐引擎运算的结果。
这里面,确实很喜欢亚马逊的推荐,通过“购买该商品的人同时购买了**商品”,常常会发现一些质量比较高、较为受认可的书。一般来说,电商的“猜你喜欢”(即推荐引擎)都是在协同过滤算法(Collaborative Filter)的基础上,搭建一套符合自身特点的规则库。即该算法会同时考虑其他顾客的选择和行为,在此基础上搭建产品相似性矩阵和用户相似性矩阵。基于此,找出最相似的顾客或最关联的产品,从而完成产品的推荐。
基于社会网络分析的案例:电信中的种子客户种子客户和社会网络,最早出现在电信领域的研究。即,通过人们的通话记录,就可以勾勒出人们的关系网络。电信领域的网络,一般会分析客户的影响力和客户流失、产品扩散的关系。
基于通话记录,可以构建客户影响力指标体系。采用的指标,大概包括如下,一度人脉、二度人脉、三度人脉、平均通话频次、平均通话量等。基于社会影响力,分析的结果表明,高影响力客户的流失会导致关联客户的流失。其次,在产品的扩散上,选择高影响力客户作为传播的起点,很容易推动新套餐的扩散和渗透。
此外,社会网络在银行(担保网络)、保险(团伙欺诈)、互联网(社交互动)中也都有很多的应用和案例。
基于文本分析的案例这里面主要想介绍两个案例。一个是类似“扫描王”的APP,直接把纸质文档扫描成电子文档。相信很多人都用过,这里准备简单介绍下原理。另外一个是,江湖上总是传言红楼梦的前八十回和后四十回,好像并非都是出自曹雪芹之手,这里面准备从统计的角度聊聊。
字符识别:扫描王APP手机拍照时会自动识别人脸,还有一些APP,例如扫描王,可以扫描书本,然后把扫描的内容自动转化为word。这些属于图像识别和字符识别(Optical Character Recognition)。图像识别比较复杂,字符识别理解起来比较容易些。
查找了一些资料,字符识别的大概原理如下,以字符S为例。
第一,把字符图像缩小到标准像素尺寸,例如12*16。注意,图像是由像素构成,字符图像主要包括黑、白两种像素。
第二,提取字符的特征向量。如何提取字符的特征,采用二维直方图投影。就是把字符(12*16的像素图)往水平方向和垂直方向上投影。水平方向有12个维度,垂直方向有16个维度。这样分别计算水平方向上各个像素行中黑色像素的累计数量、垂直方向各个像素列上的黑色像素的累计数量。从而得到水平方向12个维度的特征向量取值,垂直方向上16个维度的特征向量取值。这样就构成了包含28个维度的字符特征向量。
第三,基于前面的字符特征向量,通过神经网络学习,从而识别字符和有效分类。
文学着作与统计:红楼梦归属这是非常着名的一个争论,悬而未决。对于红楼梦的作者,通常认为前80回合是曹雪芹所着,后四十回合为高鹗所写。其实主要问题,就是想确定,前80回合和后40回合是否在遣词造句方面存在显着差异。
这事让一群统计学家比较兴奋了。有些学者通过统计名词、动词、形容词、副词、虚词出现的频次,以及不同词性之间的相关系做判断。有些学者通过虚词(例如之、其、或、亦、了、的、不、把、别、好),判断前后文风的差异。有些学者通过场景(花卉、树木、饮食、医药与诗词)频次的差异,来做统计判断。总而言之,主要通过一些指标量化,然后比较指标之间是否存在显着差异,借此进行写作风格的判断。

以上是小编为大家分享的关于数据挖掘算法与生活中的应用案例的相关内容,更多信息可以关注环球青藤分享更多干货

⑤ 常见的数据挖掘方法有哪些

数据挖掘的常用方法有:

⑥ 数据挖掘的方法有哪些

数据挖掘的的方法主要有以下几点:
1.分类挖掘方法。分类挖掘方法主要利用决策树进行分类,是一种高效且在数据挖掘方法中占有重要地位的挖掘方法。为了对数据进行较为准确的测试并据此分类,我们采用决策树算法,而决策树中比较典型的几种方法为:ID3算法,此方法具有较强的实用性,适用于大规模数据处理;KNN算法,此方法算量较大,适用于分别类别的数据处理。
2..聚类分析挖掘方法。聚类分析挖掘方法主要应用于样品与指标分类研究领域,是一种典型的统计方法,广泛应用于商业领域。此聚类分析方法根据适用对象不同又可分为四种分析挖掘方法:基于网格的聚类分析方法、基于分层的聚类方法、基于密度的聚类挖掘方法和基于模型的聚类方法。
3.预测方法。预测方法主要用于对知识的预测以及对连续数值型数据的挖掘,传统的预测方法主要分为:时间序列方法、回归模型分析法、灰色系统模型分析。而现在预测方法主要采用神经网络与支持向量机算法,进行数据分析计算,同时可预测未来数据的走向趋势。

关于大数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

阅读全文

与数据挖掘算法pdf相关的资料

热点内容
老韩综app怎么看不了了 浏览:225
只有一个程序员的体验 浏览:321
用服务器地址怎么有网 浏览:550
路由器服务器昵称是什么 浏览:713
程序员男友消失了 浏览:399
程序员搜索框自动提示 浏览:26
android44api20 浏览:675
adb刷recovery命令 浏览:695
广联达正版加密锁可以补办吗 浏览:943
java程序员一天多少行代码 浏览:947
丧尸危机java 浏览:123
华为手机怎么去除app标记未读信息 浏览:854
java监控文件夹 浏览:806
群控服务器主机怎么转变普通电脑 浏览:707
手机怎么调整app大小 浏览:455
加密门禁卡揭秘 浏览:139
词释pdf 浏览:993
安卓手机上如何停止自动续费 浏览:882
加密编码摘要 浏览:787
疫情命令党 浏览:498