导航:首页 > 文档加密 > 密码学关键词加密法

密码学关键词加密法

发布时间:2023-06-19 13:17:12

⑴ 密码学是怎么样通过加密和解密的,

你是想知道密码学怎样加解密还是?
近代密码学:编码密码学主要致力于信息加密、信息认证、数字签名和密钥管理方面的研究。信息加密的目的在于将可读信息转变为无法识别的内容,使得截获这些信息的人无法阅读,同时信息的接收人能够验证接收到的信息是否被敌方篡改或替换过;数字签名就是信息的接收人能够确定接收到的信息是否确实是由所希望的发信人发出的;密钥管理是信息加密中最难的部分,因为信息加密的安全性在于密钥。历史上,各国军事情报机构在猎取别国的密钥管理方法上要比破译加密算法成功得多。

密码分析学与编码学的方法不同,它不依赖数学逻辑的不变真理,必须凭经验,依赖客观世界觉察得到的事实。因而,密码分析更需要发挥人们的聪明才智,更具有挑战性。

现代密码学是一门迅速发展的应用科学。随着因特网的迅速普及,人们依靠它传送大量的信息,但是这些信息在网络上的传输都是公开的。因此,对于关系到个人利益的信息必须经过加密之后才可以在网上传送,这将离不开现代密码技术。

1976年Diffie和Hellman在《密码新方向》中提出了着名的D-H密钥交换协议,标志着公钥密码体制的出现。 Diffie和Hellman第一次提出了不基于秘密信道的密钥 分发,这就是D-H协议的重大意义所在。
PKI(Public Key Infrastructure)是一个用公钥概念与技术来实施和提供安全服务的具有普适性的安全基础设施。PKI公钥基础设施的主要任务是在开放环境中为开放性业务提供数字签名服务。

要查看具体的某个密码体系的知识可参考《密码学概论》。

⑵ 密码学 - 古典加密

信息理论之父:克劳德 香农
论文《通信的数学理论》

如果没有信息加密,信息直接被中间人拦截查看、修改。

明文Plain text
密文Cipher text

加密Encryption/Encrypherment:将明文转化为密文
解密Decrytion/Decipherment:讲密文还原为明文

加密钥匙EK Encryption Key:加密时配合加密算法的数据
解密钥匙EK Encryption Key:解密时配合解密算法的数据

各个字符按照顺序进行n个字符错位的加密方法。
(凯撒是古罗马军事家政治家)

多次使用恺撒密码来加密并不能获得更大的安全性,因为使用偏移量A加密得到的结果再用偏移量B加密,等同于使用A+B的偏移量进行加密的结果。

凯撒密码最多只有25个密匙 +1到+25 安全强度几乎为0
(密钥为0或26时,明文在加密前后内容不变)

暴力枚举
根据密文,暴力列出25个密匙解密后的结果。

凯撒密码的例子是所有 单字母替代式密码 的典范,它只使用一个密码字母集。
我们也可以使用多字母替代式密码,使用的是多个密码字母集。
加密由两组或多组 密码字母集 组成,加密者可自由的选择然后用交替的密码字母集加密讯息。
(增加了解码的困难度,因为密码破解者必须找出这两组密码字母集)
另一个多字母替代式密码的例子“维吉尼亚密码”,将更难解密
(法语:Vigenère cypher),
它有26组不同用来加密的密码字母集。
每个密码字母集就是多移了一位的凯撒密码。
维吉尼亚方格(替换对照表):

维吉尼亚密码引入了密匙概念。
同一明文在密文中的每个对应,可能都不一样。

移位式密码,明文中出现的字母依然出现在密文中,只有字母顺序是依照一个定义明确的计划改变。
许多移位式密码是基于几何而设计的。一个简单的加密(也易被破解),可以将字母向右移1位。
例如,明文"Hello my name is Alice."
将变成"olleH ym eman si ecilA."
密码棒(英语:scytale)也是一种运用移位方法工具。


明文分组,按字符长度来分,每5个字母分一组。
并将各组内的字符的顺序进行替换。

具体例子
纵栏式移项密码
先选择一个关键字,把原来的讯息由左而右、由上而下依照关键字长度转写成长方形。接着把关键字的字母依照字母集顺序编号,例如A就是1、B就是2、C就是3等。例如,关键字是CAT,明文是THE SKY IS BLUE,则讯息应该转换成这样:
C A T
3 1 20
T H E
S K Y
I S B
L U E

最后把讯息以行为单位,依照编号大小调换位置。呈现的应该是A行为第一行、C行为第二行、T行为第三行。然后就可以把讯息"The sky is blue"转写成HKSUTSILEYBE。
另一种移位式密码是中国式密码(英语:Chinese cipher),移位的方法是将讯息的字母加密成由右而左、上下交替便成不规则的字母。范例,如果明文是:THE DOG RAN FAR,则中国式密码看起来像这样:
R R G T
A A O H
F N D E
密码文将写成:RRGT AAOH FNDE
绝大多数的移位式密码与这两个范例相类似,通常会重新排列字母的行或列,然后有系统的移动字母。其它一些例子包括Vertical Parallel和双移位式(英语:Double Transposition)密码。
更复杂的算法可以混合替代和移位成为积密码(proct cipher);现代资料区段密码像是DES反复位移和替代的几个步骤。

行数=栏数
明文,分为N栏(N行) 按照明文本来的顺序,竖着从上往下填。

【实例1】
明文123456
栏数2(行数2)
密文135246

135
246
拆成2行(2栏),竖着看密文——得到明文

【实例2】明文123456789abcdefghi 栏数9 (行数)--->密文1a2b3c4d5e6f7g8h9i
拆成9行竖着看密文.

1a
2b
3c
4d
5e
6f
7g
8h
9i

古典密码【栅栏密码安全度极低】组成栅栏的字母一般一两句话,30个字母。不会太多! 加解密都麻烦

是指研究字母或者字母组合在文本中出现的频率。应用频率分析可以破解古典密码。

工具
在线词频分析 http://textalyser.net/

⑶ 计算机密码学中有哪些加密算法

传统密码学Autokey密码 置换密码 二字母组代替密码 (by Charles Wheatstone) 多字母替换密码 希尔密码 维吉尼亚密码 替换密码 凯撒密码 ROT13 仿射密码 Atbash密码 换位密码 Scytale Grille密码 VIC密码 (一种复杂的手工密码,在五十年代早期被至少一名苏联间谍使用过,在当时是十分安全的) 分组密码包括 DES、IDEA、SAFER、Blowfish 和 Skipjack — 最后一个是“美国国家安全局(US National Security Agency,NSA)”限制器芯片中使用的算法。 置换加密法,将字母的顺序重新排列;替换加密法,将一组字母换成其他字母或符号。 DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合 RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的MD5。 对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

⑷ 古典密码学常用的技术和主要的密码算法原理

古典密码技术根据其基本原理大体可以分为两类:替换密码技术和换位密码技术。

古典悄和含密码是密码学中的其中一个类型,其大部分加密方式都是利用替换式密码或移项式密码,有时则是两者的混合。其于历史中经常使用,但在现代由于计算机的出现,使得古典密码解密已经不再困难,已经很少使用,大部分的已经不再使用了。

利用一个密钥字来构造替换作为密钥,先将密钥字作为首段密文,然后将之后未在字母表中出现过的字母依次写在此密钥字之后,构造出一个字母替换表。当密文为英文单词时,最多可以有26!个不同的替换表(包括恒等变换)。

仿射密码技术:启笑

即结合乘法密码技术和移位密码技术。

它的加密函数是 e(x)=ax+b,其中a和 m互质,m是字母的数目。

解码函数是 d(x)=i*(x-b)mod m,其中 i 是 a 的乘法逆元。

当a=0时,仿射密码技术退化为移位替换密码技术。

当b=0时,仿射密码技术退化为乘法密码技术。

⑸ 密码学知识精粹

① 替换法
替换法很好理解,就是用固定的信息将原文替换成无法直接阅读的密文信息。例如将 b 替换成 w ,e 替换成p ,这样bee 单词就变换成了wpp,不知道替换规则的人就无法阅读出原文的含义。
替换法有单表替换和多表替换两种形式。

② 移位法
移位法就是将原文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后得出密文,典型的移位法应用有 “ 恺撒密码 ”。
例如约定好向后移动2位(abcde - cdefg),这样 bee 单词就变换成了dgg。

古典密码破解方式--频率分析法

古典密码的安全性受到了威胁,外加使用便利性较低,到了工业化时代,近现代密码被广泛应用。

恩尼格玛机
恩尼格玛机是二战时期纳粹德国使用的加密机器,其使用的加密方式本质上还是移位和替代,后被英国破译,参与破译的人员有被称为计算机科学之父、人工智能之父的图灵。

① 散列函数加密(消息摘要,数字摘要)
散列函数,也见杂凑函数、摘要函数或哈希函数,可将任意长度的消息经过运算,变成固定长度数值,常见的有MD5、SHA-1、SHA256,多应用在文件校验,数字签名中。
MD5 可以将任意长度的原文生成一个128位(16字节)的哈希值
SHA-1可以将任意长度的原文生成一个160位(20字节)的哈希值
特点:消息摘要(Message Digest)又称为数字摘要(Digital Digest)
它是一个唯一对应一个消息或文本的固定长度的值,它由一个单向Hash加密函数对消息进行作用而产生
使用数字摘要生成的值是不可以篡改的,为了保证文件或者值的安全

MD5算法 : 摘要结果16个字节, 转16进制后32个字节
SHA1算法 : 摘要结果20个字节, 转16进制后40个字节
SHA256算法 : 摘要结果32个字节, 转16进制后64个字节
SHA512算法 : 摘要结果64个字节, 转16进制后128个字节

② 对称加密
对称密码应用了相同的加密密钥和解密密钥。对称密码分为:序列密码(流密码),分组密码(块密码)两种。流密码是对信息流中的每一个元素(一个字母或一个比特)作为基本的处理单元进行加密,块密码是先对信息流分块,再对每一块分别加密。
例如原文为1234567890,流加密即先对1进行加密,再对2进行加密,再对3进行加密……最后拼接成密文;块加密先分成不同的块,如1234成块,5678成块,90XX(XX为补位数字)成块,再分别对不同块进行加密,最后拼接成密文。前文提到的古典密码学加密方法,都属于流加密。

示例
我们现在有一个原文3要发送给B
设置密钥为108, 3 * 108 = 324, 将324作为密文发送给B
B拿到密文324后, 使用324/108 = 3 得到原文
常见加密算法
DES : Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1977年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),并授权在非密级政府通信中使用,随后该算法在国际上广泛流传开来。
AES : Advanced Encryption Standard, 高级加密标准 .在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。
特点
加密速度快, 可以加密大文件
密文可逆, 一旦密钥文件泄漏, 就会导致数据暴露
加密后编码表找不到对应字符, 出现乱码,故一般结合Base64使用
加密模式
ECB : Electronic codebook, 电子密码本. 需要加密的消息按照块密码的块大小被分为数个块,并对每个块进行独立加密
优点 : 可以并行处理数据
缺点 : 同样的原文生成同样的密文, 不能很好的保护数据
CBC : Cipher-block chaining, 密码块链接. 每个明文块先与前一个密文块进行异或后,再进行加密。在这种方法中,每个密文块都依赖于它前面的所有明文块
优点 : 同样的原文生成的密文不一样
缺点 : 串行处理数据
填充模式:当需要按块处理的数据, 数据长度不符合块处理需求时, 按照一定的方法填充满块长的规则
NoPadding不填充.

对应的AES加密类似,但是如果使用的是AES加密,那么密钥必须是16个字节。

加密模式和填充模式:
AES/CBC/NoPadding (128)
AES/CBC/PKCS5Padding (128)
AES/ECB/NoPadding (128)
AES/ECB/PKCS5Padding (128)
DES/CBC/NoPadding (56)
DES/CBC/PKCS5Padding (56)
DES/ECB/NoPadding (56)
DES/ECB/PKCS5Padding (56)
DESede/CBC/NoPadding (168)
DESede/CBC/PKCS5Padding (168)
DESede/ECB/NoPadding (168)
DESede/ECB/PKCS5Padding (168)
RSA/ECB/PKCS1Padding (1024, 2048)
RSA/ECB/OAEPWithSHA-1AndMGF1Padding (1024, 2048)
RSA/ECB/OAEPWithSHA-256AndMGF1Padding (1024, 2048)

PS: Base64是网络上最常见的用于传输8Bit字节码的可读性编码算法之一
可读性编码算法不是为了保护数据的安全性,而是为了可读性
可读性编码不改变信息内容,只改变信息内容的表现形式
所谓Base64,即是说在编码过程中使用了64种字符:大写A到Z、小写a到z、数字0到9、“+”和“/”
Base64 算法原理:base64 是 3个字节为一组,一个字节 8位,一共 就是24位 ,然后,把3个字节转成4组,每组6位(3 * 8 = 4 * 6 = 24),每组缺少的2位会在高位进行补0 ,这样做的好处在于 base取的是后面6位而去掉高2位 ,那么base64的取值就可以控制在0-63位了,所以就叫base64,111 111 = 32 + 16 + 8 + 4 + 2 + 1 =

toString()与new String ()用法区别

③ 非对称加密
非对称密码有两支密钥,公钥(publickey)和私钥(privatekey),加密和解密运算使用的密钥不同。用公钥对原文进行加密后,需要由私钥进行解密;用私钥对原文进行加密后(此时一般称为签名),需要由公钥进行解密(此时一般称为验签)。公钥可以公开的,大家使用公钥对信息进行加密,再发送给私钥的持有者,私钥持有者使用私钥对信息进行解密,获得信息原文。因为私钥只有单一人持有,因此不用担心被他人解密获取信息原文。
特点:
加密和解密使用不同的密钥
如果使用私钥加密, 只能使用公钥解密
如果使用公钥加密, 只能使用私钥解密
处理数据的速度较慢, 因为安全级别高
常见算法:RSA,ECC

数字签名
数字签名的主要作用就是保证了数据的有效性(验证是谁发的)和完整性(证明信息没有被篡改),是非对称加密和消息摘要的应用

keytool工具使用
keytool工具路径:C:\Program Files\Java\jre1.8.0_91\bin

--- END

⑹ 计算机密码学中有哪些加密算法

、信息加密概述

密码学是一门古老而深奥的学科,它对一般人来说是莫生的,因为长期以来,它只在很少的范围内,如军事、外交、情报等部门使用。计算机密码学是研究计算机信息加密、解密及其变换的科学,是数学和计算机的交义学科,也是一门新兴的学科。随着计算机网络和计算机通讯技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。在国外,它已成为计算机安全主要的研究方向,也是计算机安全课程教学中的主要内容。

密码是实现秘密通讯的主要手段,是隐蔽语言、文字、图象的特种符号。凡是用特种符号按照通讯双方约定的方法把电文的原形隐蔽起来,不为第三者所识别的通讯方式称为密码通讯。在计算机通讯中,采用密码技术将信息隐蔽起来,再将隐蔽后的信息传输出去,使信息在传输过程中即使被窃取或载获,窃取者也不能了解信息的内容,从而保证信息传输的安全。

任何一个加密系统至少包括下面四个组成部分:

( 1)、未加密的报文,也称明文。

( 2)、加密后的报文,也称密文。

( 3)、加密解密设备或算法。

( 4)、加密解密的密钥。

发送方用加密密钥,通过加密设备或算法,将信息加密后发送出去。接收方在收到密文后,用解密密钥将密文解密,恢复为明文。如果传输中有人窃取,他只能得到无法理解的密文,从而对信息起到保密作用。

二、密码的分类

从不同的角度根据不同的标准,可以把密码分成若干类。

(一)按应用技术或历史发展阶段划分:

1、手工密码。以手工完成加密作业,或者以简单器具辅助操作的密码,叫作手工密码。第一次世界大战前主要是这种作业形式。

2、机械密码。以机械密码机或电动密码机来完成加解密作业的密码,叫作机械密码。这种密码从第一次世界大战出现到第二次世界大战中得到普遍应用。3、电子机内乱密码。通过电子电路,以严格的程序进行逻辑运算,以少量制乱元素生产大量的加密乱数,因为其制乱是在加解密过程中完成的而不需预先制作,所以称为电子机内乱密码。从五十年代末期出现到七十年代广泛应用。

4、计算机密码,是以计算机软件编程进行算法加密为特点,适用于计算机数据保护和网络通讯等广泛用途的密码。

(二)按保密程度划分:

1、理论上保密的密码。不管获取多少密文和有多大的计算能力,对明文始终不能得到唯一解的密码,叫作理论上保密的密码。也叫理论不可破的密码。如客观随机一次一密的密码就属于这种。

2、实际上保密的密码。在理论上可破,但在现有客观条件下,无法通过计算来确定唯一解的密码,叫作实际上保密的密码。

3、不保密的密码。在获取一定数量的密文后可以得到唯一解的密码,叫作不保密密码。如早期单表代替密码,后来的多表代替密码,以及明文加少量密钥等密码,现在都成为不保密的密码。

(三)、按密钥方式划分:

1、对称式密码。收发双方使用相同密钥的密码,叫作对称式密码。传统的密码都属此类。

2、非对称式密码。收发双方使用不同密钥的密码,叫作非对称式密码。如现代密码中的公共密钥密码就属此类。

(四)按明文形态:

1、模拟型密码。用以加密模拟信息。如对动态范围之内,连续变化的语音信号加密的密码,叫作模拟式密码。

2、数字型密码。用于加密数字信息。对两个离散电平构成0、1二进制关系的电报信息加密的密码叫作数字型密码。

(五)按编制原理划分:

可分为移位、代替和置换三种以及它们的组合形式。古今中外的密码,不论其形态多么繁杂,变化多么巧妙,都是按照这三种基本原理编制出来的。移位、代替和置换这三种原理在密码编制和使用中相互结合,灵活应用。

⑺ 现代密码学加密原理

密码学是在区块链技术中承担着非常重要的角色,但其实,在互联网中,也大量的使用着密码学的技术,本文将介绍现代密码学中的早期加密方法,这将有助于我们理解区块链中的复杂算法。

第二次大战之后,从军方演化而来的互联网慢慢的进入了寻常百姓家,我们能够将一切事物都电子化处理,交易也不例外,于是电子银行也出现了,所有交易都可以通过网络进行。随着互联网用户越来越多,新的问题产生了,加密需要双方共享一个秘密的随机数,也就是秘钥,但从未谋面的两个人,如何就此共享密钥达成一致,而又不让第三方监听这知道呢?这将是现代密码学的目标。

1976年,维特菲尔德和马丁赫尔曼找到了一种巧妙的解决方法,让我们用颜色为比喻来讲解该技巧是如何实现的:

首先,明确我们的目标,发送者和接受者就秘密颜色达成一致,而不让窃听者知道,于是需要采用一种技巧,该技巧基于两点:

一、混合两种颜色得到第三种颜色很容易;

二、得到这种混合色后,想在此基础上知道原来的颜色就很难了, 这就是锁的原理。

朝一个方向容易,朝反方向难,这被称作是单向函数。解决方案是这样的,首先,他们公开对某种颜色达成一致,假设是黄色,然后发送者和接收者随机选取私有颜色,混到公共的黄色中,从而掩饰掉他们的私有颜色,并且将混合颜色发给接收者,接收者知道自己的私有颜色,并将它的混合颜色发给发送者,

然后就是技巧的关键了,发送者和接收者将各自私有颜色加入到另一个人的混合色中,然后得到一种共享秘密颜色,此时,窃听者无法确定这种颜色,她必须有一种私有颜色才能确定,技巧就是这样,对密码学的世界中, 我们需要一个数值的运算过程,这个过程向单一方向很容易,反方向会很难。

我们需要一种朝一方向易,反方向难的数值过程,于是密码学家找到了模算数,也就是取余的函数,(比如46除12的余数是10)。

假设我们考虑用质数做模型,比如17,我们找到17的一个原根,这里是3,它具有如下重要性质,取不同幂次时,结果会在时钟上均匀分布,3是一个生成元,取3的X次方,结果会等可能地出现在0和17中间任何整数上。

但相反的过程就难了,比如给定12,要求这是3的多少次方,这被称为离散对数问题,这样我们就有了单向函数,一个方向计算很容易,但反方向就很难了,已知12,我们只能采用试错法,求出匹配的质数。

这有多难呢?如果数字很小,这还很容易,但模数是长达数百位的质数,那么,想解密是不切实际的,即便借助世界上最强大的计算机,要遍历所有可能的情况,也需要上千年的时间,单向函数的强度取决于反向过程所需要的时间。

解决方案是这样的,首先,发送者和接收者公开质模数和生成元,这里的例子中也就是17和3,然后发送者选择一个私有的随机数,比如15,计算315 mod 17(结果为6),然后公开将此结果发送给接收者,之后接收者选择自己的私有随机数,比如13,计算313mod 17(结果为12),然后公开将此结果发送给对方。

关键在于,将接收者的公开结果,取她的私有数字次方,以获得共享密钥,这里是10,接收者将发送者的公开结果,取她的私有数字次方,结果得到相同的共享密钥,可能大家还不好理解,但他们实际上进行了相同的运算。

考虑发送者,她从接收者接收到的是12,来自313 mod 17,所以她的计算实际上是3∧13∧15 mod 17,而接收者,他从发送者那里接收6,来自315mod17,所以他的计算实际上是3∧15∧13mod17,两种计算结果是相同的,只是指数的顺序不同,调换指数顺序,结果不会改变,他们的结果都是,3取两人私有数字次幂,没有这些私有数字,15或13,第三方将无法求出结果。

第三方会被困在离散对数问题之中,数字足够大时,实践中,她在合理时限内,几乎不可能破解,这就解决了交换密钥的问题,这可以同伪随机数生成器结合使用,为从未谋面的人提供通信加密。

现在区块链常用的算法,如sha256,都是继承单向函数的设计思维,一个方向计算容易,反过来几乎不能破解,来保证安全。

⑻ 计算机密码学中有哪些加密算法

传统密码Autokey密码
置换密码
二字母组代替密码
(by
Charles
Wheatstone)
字母替换密码
希尔密码
维吉尼亚密码
替换密码
凯撒密码
ROT13
仿射密码
Atbash密码
换位密码
Scytale
Grille密码
VIC密码
(种复杂手工密码五十代早期至少名苏联间谍使用十安全)
组密码包括
DES、IDEA、SAFER、Blowfish
Skipjack
-
美家安全局(US
National
Security
AgencyNSA)限制器芯片使用算
置换加密字母顺序重新排列;替换加密组字母换其字母或符号
DES(Data
Encryption
Standard):数据加密标准速度较快适用于加密量数据场合
RSA:由
RSA
公司发明支持变密钥公共密钥算需要加密文件块度变MD5
MD5算简要叙述:MD5512位组处理输入信息且每组划1632位组经系列处理算输由四32位组组四32位组级联128位散列值

阅读全文

与密码学关键词加密法相关的资料

热点内容
java程序员一天多少行代码 浏览:944
丧尸危机java 浏览:123
华为手机怎么去除app标记未读信息 浏览:852
java监控文件夹 浏览:803
群控服务器主机怎么转变普通电脑 浏览:705
手机怎么调整app大小 浏览:453
加密门禁卡揭秘 浏览:137
词释pdf 浏览:991
安卓手机上如何停止自动续费 浏览:880
加密编码摘要 浏览:785
疫情命令党 浏览:496
java转sql 浏览:705
android获取apn 浏览:74
phpfpm进程池 浏览:795
解压掏耳朵音频 浏览:676
爬香山解压 浏览:953
算法导论回溯 浏览:345
开盘指标源码查询 浏览:528
有道云保存服务器出错 浏览:641
生成360文件夹 浏览:1006