导航:首页 > 文档加密 > 易语言rsa加密解密过程

易语言rsa加密解密过程

发布时间:2023-07-25 05:48:27

① 一个RSA算法加密运算,需要完整的演算过程。

我来回答你可以闭帖了,呵呵
看你题目的意思就是打算把republic这个词按照你的方法装换成数字例如是:X
p=3,q=11
n=p*q=33
t=(p-1)*(q-1)=20
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
我们可以取e=7
要求d*e%t==1(D*e除以t取余等于1),我们可以找到D=3
此时我们就有了三个数
n=33
d=3 公钥
e=7 私钥

设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。

我们可以对republic词按照你的方法装换成数字:X一位一位的加密。
加入X的第一位是6(别的同理)
则:M = 6
加密时:(c为加密后的数字)
c=(M**d)%n=(6^3)%33=216%33=18(商6余18),则6加密后就是18了
解密时:
设m=(c**e)%n则 m == M,
(18^7)%33=612220032%33=6(商18552122余6)
到此加密解密完成。
至于怎么把republic装换成X,把X装分成多少部分进行分批加密,你可以自己决定。但是加密的数字M 需要小于n

如果需要给你写个程序,留个Email,我空的时候写个发给你。

我个人给你个方法,因为n=33 >26(26个英文字母),所以可以把republic分成一个字母一个字母的加密。
按你的分发 REP 就分成数字
18 05 16
加密
(18^3)%33=5832%33= 24
(05^3)%33=125%33= 26
(16^3)%33=%33= 4
所以加密后就是
24 26 04 转换成字母就是 XZD
解密
(24^7)%33=4586471424%33=18
(26^7)%33=8031810176%33=05
(4^7)%33=16384%33=16
又变成 18 05 16 转换成字母就是 REP
是不是很简单啊~~

我如果不懂。空间里面有片文章,你可以看看,就知道我上面讲的那些是什么意思了。

RSA算法举例说明
http://hi..com/lsgo/blog/item/5fd0da24d495666834a80fb8.html

② RSA加密/解密和签名/验签过程理解

加密是为了防止信息被泄露

签名是为了防止信息被篡改

第一个场景:战场上,B要给A传递一条消息,内容为某一指令。

RSA的加密过程如下:

(1)A生成一对密钥(公钥和私钥),私钥不公开,A自己保留。公钥为公开的,任何人可以获取。

(2)A传递自己的公钥给B,B用A的公钥对消息进行加密。

(3)A接收到B加密的消息,利用A自己的私钥对消息进行解密。

在这个过程中,只有2次传递过程,第一次是A传递公钥给B,第二次是B传递加密消息给A,即使都被敌方截获,也没有危险性,因为只有A的私钥才能对消息进行解密,防止了消息内容的泄露。

第二个场景:A收到B发的消息后,需要进行回复“收到”。

RSA签名的过程如下:

(1)A生成一对密钥(公钥和私钥),私钥不公开,A自己保留。公钥为公开的,任何人可以获取。

(2)A给B发送消息,A先计算出消息的消息摘要,然后使用自己的私钥加密消息摘要,被加密的消息摘要就是签名.并将签名和消息本身(签名原文)一起传递给B.(A用自己的私钥给消息摘要加密成为签名)

(3)B收到消息后,也会使用和A相同的方法提取消息摘要,然后用A的公钥解密签名,并与自己计算出来的消息摘要进行比较-->如果相同则说明消息是A发送给B的,同时,A也无法否认自己发送消息给B的事实.(B使用A的公钥解密签名文件的过程,叫做"验签")

在这个过程中,只有2次传递过程,第一次是A传递加签的消息和消息本身给B,第二次是B获取A的公钥,即使都被敌方截获,也没有危险性,因为只有A的私钥才能对消息进行签名,即使知道了消息内容,也无法伪造带签名的回复给B,防止了消息内容的篡改。

但是,综合两个场景你会发现,第一个场景虽然被截获的消息没有泄露,但是可以利用截获的公钥,将假指令进行加密,然后传递给A。第二个场景虽然截获的消息不能被篡改,但是消息的内容可以利用公钥验签来获得,并不能防止泄露。所以在实际应用中,要根据情况使用,也可以同时使用加密和签名,比如A和B都有一套自己的公钥和私钥,当A要给B发送消息时,先用B的公钥对消息加密,再对加密的消息使用A的私钥加签名,达到既不泄露也不被篡改,更能保证消息的安全性。

总结:公钥加密、私钥解密、私钥签名、公钥验签。

③ RSA加密、解密、签名、验签的原理及方法

RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。两者之间有数学相关,该加密算法的原理就是对一极大整数做因数分解的困难性来保证安全性。通常个人保存私钥,公钥是公开的(可能同时多人持有)。

加密和签名都是为了安全性考虑,但略有不同。常有人问加密和签名是用私钥还是公钥?其实都是对加密和签名的作用有所混淆。简单的说,加密是为了防止信息被泄露,而签名是为了防止信息被篡改。这里举2个例子说明。

RSA的加密过程如下:

RSA签名的过程如下:

总结:公钥加密、私钥解密、私钥签名、公钥验签。

RSA加密对明文的长度有所限制,规定需加密的明文最大长度=密钥长度-11(单位是字节,即byte),所以在加密和解密的过程中需要分块进行。而密钥默认是1024位,即1024位/8位-11=128-11=117字节。所以默认加密前的明文最大长度117字节,解密密文最大长度为128字。那么为啥两者相差11字节呢?是因为RSA加密使用到了填充模式(padding),即内容不足117字节时会自动填满,用到填充模式自然会占用一定的字节,而且这部分字节也是参与加密的。

④ RSA  加密算法(原理篇)

前几天看到一句话,“我们中的很多人把一生中最灿烂的笑容大部分都献给了手机和电脑屏幕”。心中一惊,这说明了什么?手机和电脑已经成为了我们生活中的一部分,所以才会有最懂你的不是你,也不是你男朋友,而是大数据。

如此重要的个人数据,怎样才能保证其在互联网上的安全传输呢?当然要靠各种加密算法。说起加密算法,大家都知道有哈希、对称加密和非对称加密了。哈希是一个散列函数,具有不可逆操作;对称加密即加密和解密使用同一个密钥,而非对称加密加密和解密自然就是两个密钥了。稍微深入一些的,还要说出非对称加密算法有DES、3DES、RC4等,非对称加密算法自然就是RSA了。那么当我们聊起RSA时,我们又在聊些什么呢?今天笔者和大家一起探讨一下,有不足的地方,还望各位朋友多多提意见,共同进步。

RSA简介:1976年由麻省理工学院三位数学家共同提出的,为了纪念这一里程碑式的成就,就用他们三个人的名字首字母作为算法的命名。即 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)。

公钥:用于加密,验签。

私钥:解密,加签。

通常知道了公钥和私钥的用途以后,即可满足基本的聊天需求了。但是我们今天的主要任务是来探究一下RSA加解密的原理。

说起加密算法的原理部分,肯定与数学知识脱不了关系。

我们先来回忆几个数学知识:

φn = φ(A*B)=φ(A)*φ(B)=(A-1)*(B-1)。

这个公式主要是用来计算给定一个任意的正整数n,在小于等于n的正整数中,有多少个与n构成互质的关系。

其中n=A*B,A与B互为质数,但A与B本身并不要求为质数,可以继续展开,直至都为质数。

在最终分解完成后,即 φ(N) = φ(p1)*φ(p2)*φ(p3)... 之后,p1,p2,p3都是质数。又用到了欧拉函数的另一个特点,即当p是质数的时候,φp = p - 1。所以有了上面给出的欧拉定理公式。

举例看一下:

计算15的欧拉函数,因为15比较小,我们可以直接看一下,小于15的正整数有 1、2、3、4、5、6、7、8、9、10、11、12、13、14。和15互质的数有1、2、4、7、8、11、13、14一共四个。

对照我们刚才的欧拉定理: 。

其他感兴趣的,大家可以自己验证。

之所以要在这里介绍欧拉函数,我们在计算公钥和私钥时候,会用到。

如果两个正整数m 和 n 互质,那么m 的 φn 次方减1,可以被n整除。

 其中  .

其中当n为质数时,那么  上面看到的公式就变成了

 mod n   1.

这个公式也就是着名的 费马小定理 了。

如果两个正整数e和x互为质数,那么一定存在一个整数d,不止一个,使得 e*d - 1 可以被x整除,即 e * d mode x   1。则称 d 是 e 相对于 x的模反元素。

了解了上面所讲的欧拉函数、欧拉定理和模反元素后,就要来一些化学反应了,请看图:

上面这幅图的公式变化有没有没看明白的,没看明白的咱们评论区见哈。

最终我们得到了最重要的第5个公式的变形,即红色箭头后面的:

 mod n   m。

其中有几个关系,需要搞明白,m 与 n 互为质数,φn = x,d 是e相对于x的模反元素。

有没有看到一些加解密的雏形。

从 m 到 m。 这中间涵盖了从加密到解密的整个过程,但是缺少了我们想要的密文整个过程。

OK,下面引入本文的第四个数学公式:

我们来看一下整个交换流程:

1、客户端有一个数字13,服务端有一个数字15;

2、客户端通过计算 3的13次方 对 17 取余,得到数字12; 将12发送给服务端;同时服务端通过计算3的15次方,对17取余,得到数字6,将6发送给客户端。至此,整个交换过程完成。

3、服务端收到数字12以后,继续计算,12的15次方 对 17取余,得到 数字10。

4、客户端收到数字 6以后,继续计算,6的13次方 对 17 取余,得到数字 10。

有没有发现双方,最终得到了相同的内容10。但是这个数字10从来没有在网络过程中出现过。

好,讲到这里,可能有些人已经恍然大悟,这就是加密过程了,但是也有人会产生疑问,为什么要取数字3 和 17 呢,这里还牵涉到另一个数学知识,原根的问题。即3是17的原根。看图

有没有发现规律,3的1~16次方,对17取余,得到的整数是从1~16。这时我们称3为17的原根。也就是说上面的计算过程中有一组原根的关系。这是最早的迪菲赫尔曼秘钥交换算法。

解决了为什么取3和17的问题后,下面继续来看最终的RSA是如何产生的:

还记得我们上面提到的欧拉定理吗,其中 m 与 n 互为质数,n为质数,d 是 e 相对于 φn的模反元素。

当迪菲赫尔曼密钥交换算法碰上欧拉定理会产生什么呢?

我们得到下面的推论:

好,到这里我们是不是已经看到了整个的加密和解密过程了。

其中 m 是明文;c 是密文; n 和 e 为公钥;d 和 n 为私钥 。

其中几组数字的关系一定要明确:

1、d是e 相对于 φn 的模反元素,φn = n-1,即 e * d mod n = 1.

2、m 小于 n,上面在讲迪菲赫尔曼密钥交换算法时,提到原根的问题,在RSA加密算法中,对m和n并没有原根条件的约束。只要满足m与n互为质数,n为质数,且m < n就可以了。

OK,上面就是RSA加密算法的原理了,经过上面几个数学公式的狂轰乱炸,是不是有点迷乱了,给大家一些时间理一下,后面会和大家一起来验证RSA算法以及RSA为什么安全。

⑤ RSA加密解密过程

为了这道题把好几年前学的东西重新看了一遍,累觉不爱。。。


不清楚你了不了解RSA过程,先跟说一下吧

  1. 随机产生两个大素数p和q作为密钥对。此题:p=13,q=17,n =p*q=221

  2. 随机产生一个加密密钥e,使e 和(p-1)*(q-1)互素。此题:e=83

  3. 公钥就是(n,e)。此题:(221,83)

  4. 通过e*d mod (p-1)*(q-1)=1生成解密密钥d, ,n与d也要互素。此题:(d*83)≡1mod192

  5. 私钥就是(n,d)。此题:(221,155)

  6. 之后发送者用公钥加密明文M,得到密文C=M^e mod n

  7. 接受者利用私钥解密M=C^d mod n


求解d呢,就是求逆元,de = 1 mod n这种形式就称de于模数n说互逆元,可以看成de-ny=1,此题83e-192y=1.

用扩展的欧几里得算法。其实就是辗转相除

此题:

192=2*83+26

83=3*26+5

26=5*5+1

求到余数为1了,就往回写

1=26-5*5

=26-5*(83-3*26)

=(192-2*83)-5*(83-3*(192-2*83))

=16*192-37*83

则d=-37,取正后就是155.

记住,往回写的时候数不该换的一定不要换,比如第二步中的26,一定不能换成(83-5)/3,那样就求不出来了,最终一定要是192和83相关联的表达式。还有,最好保持好的书写格式,比如第一步2*83+26时第二步最好写成3*26+5而不是26*3+5,要不步骤比较多的话容易乱

⑥ RSA加密原理

RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。公钥加密--私钥解密,私钥加密--公钥解密

在 整数 中, 离散对数 是一种基于 同余 运算和 原根 的一种 对数 运算。而在实数中对数的定义 log b a 是指对于给定的 a b ,有一个数 x ,使得 b x = a 。相同地在任何群 G 中可为所有整数 k 定义一个幂数为 b K ,而 离散对数 log b a 是指使得 b K = a 的整数 k

当3为17的 原根 时,我们会发现一个规律

对 正整数 n,欧拉函数是小于或等于n的正整数中与n 互质 的数的数目(因此φ(1)=1)。有以下几个特点

服务端根据生成一个随机数15,根据 3 15 mod 17 计算出6,服务端将6传递给客户端,客户端生成一个随机数13,根据 3 13 mod 17 计算出12后,将12再传回给服务端,客户端收到服务端传递的6后,根据 6 13 mod 17 计算出 10 ,服务端收到客户端传递的12后,根据 12 15 mod 17 计算出 10 ,我们会发现我们通过 迪菲赫尔曼密钥交换 将 10 进行了加密传递

说明:

安全性:
除了 公钥 用到 n 和 e ,其余的4个数字是 不公开 的(p1、p2、φ(n)、d)
目前破解RSA得到的方式如下:

缺点
RSA加密 效率不高 ,因为是纯粹的数学算法,大数据不适合RSA加密,所以我们在加密大数据的时候,我们先用 对称加密 算法加密大数据得到 KEY ,然后再用 RSA 加密 KEY ,再把大数据和KEY一起进行传递

因为Mac系统内置了OpenSSL(开源加密库),所以我们开源直接在终端进行RSA加密解密

生成RSA私钥,密钥名为private.pem,密钥长度为1024bit

因为在iOS中是无法使用 .pem 文件进行加密和解密的,需要进行下面几个步骤

生成一个10年期限的crt证书

crt证书格式转换成der证书

⑦ 利用RSA完成数据的加密与解密应用.求详细过程,求原理。

1、已知 p = 19,q = 23,则 n = p * q = 437,phi_n = ( p - 1) * (q - 1) = 396;

2、已知 e = 13,符合 gcd(e, phi_n) = 1,即 e 和 phi_n 互为素数;
3、由 e * d mod phi_n = 1,解出 d = 61;
4、因为Alice向Bob发送的明文为 m = 10;则加密后的密文为 c = m ^ e % n = 222;
5、Bob收到密文 c 后,利用私钥 d 即可得出明文 m = c ^ d % n = 10。
6、我认为题中私钥和公钥的概念你好像搞错了:Alice要向BOB传送数字10,那么Alice用来加密 使用的是Bob的公钥,即e,而Bob用来解密的是他自己的私钥,即d。

7、上面的d我是用了软件Sage算出的,这个软件用来解RSA很好用,有兴趣的话可以试试,当然 它还有很多很强大的功能。

⑧ 简述RSA体制密钥的生成及其加密、解密算法。

RSA体制密钥的生成:
1. 选择两个大素数,p 和q 。

2. 计算: n = p * q (p,q分别为两个互异的大素数,p,q 必须保密,一般要求p,q为安全素数,n的长度大于512bit ,这主要是因为RSA算法的安全性依赖于因子分解大数问题)。有欧拉函数 (n)=(p-1)(q-1)。

3. 然后随机选择加密密钥e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互质。

4. 最后,利用Euclid 算法计算解密密钥d, 满足de≡1(mod φ(n))。其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q不再需要,应该丢弃,不要让任何人知道。

加密、解密算法:

1. 加密信息 m(二进制表示)时,首先把m分成等长数据块 m1 ,m2,..., mi ,块长s,其中 2^s <= n, s 尽可能的大。

2. 对应的密文是:ci ≡mi^e ( mod n ) ( a )

3. 解密时作如下计算:mi ≡ci^d ( mod n ) ( b ) RSA 可用于数字签名,方案是用 ( a ) 式签名, ( b )式验证。

⑨ 简述RSA算法中密钥的产生,数据加密和解密的过程,并简单说明RSA算法安全性的原理。

RSA算法的数学原理

RSA算法的数学原理:
先来找出三个数, p, q, r,

其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数。

p, q, r 这三个数便是 private key。接着, 找出m, 使得 rm == 1 mod (p-1)(q-1)..... 这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了..... 再来, 计算 n = pq....... m, n 这两个数便是 public key。

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n.... 如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t), 则每一位数均小于 n, 然后分段编码...... 接下来, 计算 b == a^m mod n, (0 <= b < n), b 就是编码后的资料...... 解码的过程是, 计算 c == b^r mod pq (0 <= c < pq), 于是乎, 解码完毕...... 等会会证明 c 和 a 其实是相等的 :) 如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b...... 他如果要解码的话, 必须想办法得到 r...... 所以, 他必须先对 n 作质因数分解......... 要防止他分解, 最有效的方法是找两个非常的大质数 p, q, 使第三者作因数分解时发生困难......... <定理> 若 p, q 是相异质数, rm == 1 mod (p-1)(q-1), a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq, 则 c == a mod pq 证明的过程, 会用到费马小定理, 叙述如下: m 是任一质数, n 是任一整数, 则 n^m == n mod m (换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m) 运用一些基本的群论的知识, 就可以很容易地证出费马小定理的........ <证明> 因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数 因为在 molo 中是 preserve 乘法的 (x == y mod z and u == v mod z => xu == yv mod z), 所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq 1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时, 则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q 所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1 即 a^(k(p-1)(q-1)) == 1 mod pq => c == a^(k(p-1)(q-1)+1) == a mod pq 2. 如果 a 是 p 的倍数, 但不是 q 的倍数时, 则 a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q => c == a^(k(p-1)(q-1)+1) == a mod q => q | c - a 因 p | a => c == a^(k(p-1)(q-1)+1) == 0 mod p => p | c - a 所以, pq | c - a => c == a mod pq 3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上 4. 如果 a 同时是 p 和 q 的倍数时, 则 pq | a => c == a^(k(p-1)(q-1)+1) == 0 mod pq => pq | c - a => c == a mod pq Q.E.D. 这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq).... 但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n, 所以这就是说 a 等于 c, 所以这个过程确实能做到编码解码的功能.....

⑩ 一个RSA算法的加密运算,需要完整的演算过程。

RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1
这样最终得到三个数:
n
d
e
设消息为数M
(M
<n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则
m
==
M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。
在对称加密中:
n
d两个数构成公钥,可以告诉别人;
n
e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。
rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n
d的情况下无法获得e;同样在已知n
e的情况下无法
求得d。
rsa简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用rsa
来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。
最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。

阅读全文

与易语言rsa加密解密过程相关的资料

热点内容
明日之后在同一个服务器为什么看不见好友 浏览:697
python日期减一个月 浏览:393
手游网络游戏安装包可以编译吗 浏览:853
氧气是压缩气体吗 浏览:877
电脑蹦出文件夹 浏览:753
安徽ipfs云服务器 浏览:515
acmc用什么编译器 浏览:230
golangweb编译部署 浏览:923
怎样踩东西解压 浏览:969
单片机核心板外接键盘 浏览:396
怎样打开自己的微信文件夹 浏览:424
单片机红外测距原理 浏览:268
phpxdebug扩展 浏览:757
建筑楼层净高算法 浏览:1000
怎么关闭智联app求职状态 浏览:418
pdf的文件夹怎么打印 浏览:752
延拓算法初值 浏览:786
首次适应算法都不满足的话怎么办 浏览:19
php56加密 浏览:556
金立手机app怎么设置浮窗 浏览:496