导航:首页 > 文档加密 > 椭圆加密哪一年提出

椭圆加密哪一年提出

发布时间:2023-08-09 16:36:57

⑴ 椭圆曲线加密算法

椭圆曲线加密算法,即:Elliptic Curve Cryptography,简称ECC,是基于椭圆曲线数学理论实现的一种非对称加密算法。相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位RSA加密。

椭圆曲线在密码学中的使用,是1985年由Neal Koblitz和Victor Miller分别独立提出的。

一般情况下,椭圆曲线可用下列方程式来表示,其中a,b,c,d为系数。

例如,当a=1,b=0,c=-2,d=4时,所得到的椭圆曲线为:

该椭圆曲线E的图像如图X-1所示,可以看出根本就不是椭圆形。

过曲线上的两点A、B画一条直线,找到直线与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A+B,即为加法。如下图所示:A + B = C

上述方法无法解释A + A,即两点重合的情况。因此在这种情况下,将椭圆曲线在A点的切线,与椭圆曲线的交点,交点关于x轴对称位置的点,定义为A + A,即2A,即为二倍运算。

将A关于x轴对称位置的点定义为-A,即椭圆曲线的正负取反运算。如下图所示:

如果将A与-A相加,过A与-A的直线平行于y轴,可以认为直线与椭圆曲线相交于无穷远点。

综上,定义了A+B、2A运算,因此给定椭圆曲线的某一点G,可以求出2G、3G(即G + 2G)、4G......。即:当给定G点时,已知x,求xG点并不困难。反之,已知xG点,求x则非常困难。此即为椭圆曲线加密算法背后的数学原理。

椭圆曲线要形成一条光滑的曲线,要求x,y取值均为实数,即实数域上的椭圆曲线。但椭圆曲线加密算法,并非使用实数域,而是使用有限域。按数论定义,有限域GF(p)指给定某个质数p,由0、1、2......p-1共p个元素组成的整数集合中定义的加减乘除运算。

假设椭圆曲线为y² = x³ + x + 1,其在有限域GF(23)上时,写作:y² ≡ x³ + x + 1 (mod 23)

此时,椭圆曲线不再是一条光滑曲线,而是一些不连续的点,如下图所示。以点(1,7)为例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此还有如下点:

(0,1) (0,22)(1,7) (1,16)(3,10) (3,13)(4,0)(5,4) (5,19)(6,4) (6,19)(7,11) (7,12)(9,7) (9,16)(11,3) (11,20)等等。

另外,如果P(x,y)为椭圆曲线上的点,则-P即(x,-y)也为椭圆曲线上的点。如点P(0,1),-P=(0,-1)=(0,22)也为椭圆曲线上的点。

相关公式如下:有限域GF(p)上的椭圆曲线y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,则R(Xr,Yr) = P+Q 由如下规则确定:

Xr = (λ² - Xp - Xq) mod pYr = (λ(Xp - Xr) - Yp) mod p其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)

因此,有限域GF(23)上的椭圆曲线y² ≡ x³ + x + 1 (mod 23),假设以(0,1)为G点,计算2G、3G、4G...xG等等,方法如下:

计算2G:λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12Xr = (12² - 0 - 0) mod 23 = 6Yr = (12(0 - 6) - 1) mod 23 = 19即2G为点(6,19)

计算3G:3G = G + 2G,即(0,1) + (6,19)λ = (19 - 1)/(6 - 0) mod 23 = 3Xr = (3² - 0 - 6) mod 23 = 3Yr = (3(0 - 3) - 1) mod 23 = 13即3G为点(3, 13)

建立基于椭圆曲线的加密机制,需要找到类似RSA质因子分解或其他求离散对数这样的难题。而椭圆曲线上的已知G和xG求x,是非常困难的,此即为椭圆曲线上的的离散对数问题。此处x即为私钥,xG即为公钥。

椭圆曲线加密算法原理如下:

设私钥、公钥分别为k、K,即K = kG,其中G为G点。

公钥加密:选择随机数r,将消息M生成密文C,该密文是一个点对,即:C = {rG, M+rK},其中K为公钥

私钥解密:M + rK - k(rG) = M + r(kG) - k(rG) = M其中k、K分别为私钥、公钥。

椭圆曲线签名算法,即ECDSA。设私钥、公钥分别为k、K,即K = kG,其中G为G点。

私钥签名:1、选择随机数r,计算点rG(x, y)。2、根据随机数r、消息M的哈希h、私钥k,计算s = (h + kx)/r。3、将消息M、和签名{rG, s}发给接收方。

公钥验证签名:1、接收方收到消息M、以及签名{rG=(x,y), s}。2、根据消息求哈希h。3、使用发送方公钥K计算:hG/s + xK/s,并与rG比较,如相等即验签成功。

原理如下:hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s= r(h+xk)G / (h+kx) = rG

假设要签名的消息是一个字符串:“Hello World!”。DSA签名的第一个步骤是对待签名的消息生成一个消息摘要。不同的签名算法使用不同的消息摘要算法。而ECDSA256使用SHA256生成256比特的摘要。
摘要生成结束后,应用签名算法对摘要进行签名:
产生一个随机数k
利用随机数k,计算出两个大数r和s。将r和s拼在一起就构成了对消息摘要的签名。
这里需要注意的是,因为随机数k的存在,对于同一条消息,使用同一个算法,产生的签名是不一样的。从函数的角度来理解,签名函数对同样的输入会产生不同的输出。因为函数内部会将随机值混入签名的过程。

关于验证过程,这里不讨论它的算法细节。从宏观上看,消息的接收方从签名中分离出r和s,然后利用公开的密钥信息和s计算出r。如果计算出的r和接收到的r值相同,则表示验证成功。否则,表示验证失败。

⑵ 密钥管理的管理技术

1、对称密钥管理。对称加密是基于共同保守秘密来实现的。采用对称加密技术的贸易双方必须要保证采用的是相同的密钥,要保证彼此密钥的交换是安全可靠的,同时还要设定防止密钥泄密和更改密钥的程序。这样,对称密钥的管理和分发工作将变成一件潜在危险的和繁琐的过程。通过公开密钥加密技术实现对称密钥的管理使相应的管理变得简单和更加安全,同时还解决了纯对称密钥模式中存在的可靠性问题和鉴别问题。 贸易方可以为每次交换的信息(如每次的EDI交换)生成唯一一把对称密钥并用公开密钥对该密钥进行加密,然后再将加密后的密钥和用该密钥加密的信息(如EDI交换)一起发送给相应的贸易方。由于对每次信息交换都对应生成了唯一一把密钥,因此各贸易方就不再需要对密钥进行维护和担心密钥的泄露或过期。这种方式的另一优点是,即使泄露了一把密钥也只将影响一笔交易,而不会影响到贸易双方之间所有的交易关系。这种方式还提供了贸易伙伴间发布对称密钥的一种安全途径。
2、公开密钥管理/数字证书。贸易伙伴间可以使用数字证书(公开密钥证书)来交换公开密钥。国际电信联盟(ITU)制定的标准X.509,对数字证书进行了定义该标准等同于国际标准化组织(ISO)与国际电工委员会(IEC)联合发布的ISO/IEC 9594-8:195标准。数字证书通常包含有唯一标识证书所有者(即贸易方)的名称、唯一标识证书发布者的名称、证书所有者的公开密钥、证书发布者的数字签名、证书的有效期及证书的序列号等。证书发布者一般称为证书管理机构(CA),它是贸易各方都信赖的机构。数字证书能够起到标识贸易方的作用,是目前电子商务广泛采用的技术之一。
3、密钥管理相关的标准规范。目前国际有关的标准化机构都着手制定关于密钥管理的技术标准规范。ISO与IEC下属的信息技术委员会(JTC1)已起草了关于密钥管理的国际标准规范。该规范主要由三部分组成:一是密钥管理框架;二是采用对称技术的机制;三是采用非对称技术的机制。该规范现已进入到国际标准草案表决阶段,并将很快成为正式的国际标准。
数字签名
数字签名是公开密钥加密技术的另一类应用。它的主要方式是:报文的发送方从报文文本中生成一个128位的散列值(或报文摘要)。发送方用自己的专用密钥对这个散列值进行加密来形成发送方的数字签名。然后,这个数字签名将作为报文的附件和报文一起发送给报文的接收方。报文的接收方首先从接收到的原始报文中计算出128位的散列值(或报文摘要),接着再用发送方的公开密钥来对报文附加的数字签名进行解密。如果两个散列值相同,那么接收方就能确认该数字签名是发送方的。通过数字签名能够实现对原始报文的鉴别和不可抵赖性。
ISO/IEC JTC1已在起草有关的国际标准规范。该标准的初步题目是“信息技术安全技术带附件的数字签名方案”,它由概述和基于身份的机制两部分构成。 密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。
随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提高,近期又出现了AES、ECC等。
使用密码学可以达到以下目的:
保密性:防止用户的标识或数据被读取。
数据完整性:防止数据被更改。
身份验证:确保数据发自特定的一方。
二. 加密算法介绍根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。
对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。
非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 在对称加密算法中,只有一个密钥用来加密和解密信息,即加密和解密采用相同的密钥。常用的算法包括:DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。
3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。
AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;
2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的一项新的密匙加密标准。Rijndael被选中成为将来的AES。Rijndael是在 1999 年下半年,由研究员Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。
美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标准(AES) 规范。
算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。
AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据。
AES与3DES的比较 算法名称 算法类型 密钥长度 速度 解密时间(建设机器每秒尝试255个密钥) 资源消耗 AES 对称block密码 128、192、256位 高 1490000亿年 低 3DES 对称feistel密码 112位或168位 低 46亿年 中 常见的非对称加密算法如下:
RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;
DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);
ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。
在1976年,由于对称加密算法已经不能满足需要,Diffie 和Hellman发表了一篇叫《密码学新动向》的文章,介绍了公匙加密的概念,由Rivet、Shamir、Adelman提出了RSA算法。
随着分解大整数方法的进步及完善、计算机速度的提高以及计算机网络的发展,为了保障数据的安全,RSA的密钥需要不断增加,但是,密钥长度的增加导致了其加解密的速度大为降低,硬件实现也变得越来越难以忍受,这对使用RSA的应用带来了很重的负担,因此需要一种新的算法来代替RSA。
1985年N.Koblitz和Miller提出将椭圆曲线用于密码算法,根据是有限域上的椭圆曲线上的点群中的离散对数问题ECDLP。ECDLP是比因子分解问题更难的问题,它是指数级的难度。
原理——椭圆曲线上的难题 椭圆曲线上离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。
将椭圆曲线中的加法运算与离散对数中的模乘运算相对应,将椭圆曲线中的乘法运算与离散对数中的模幂运算相对应,我们就可以建立基于椭圆曲线的对应的密码体制。
例如,对应Diffie-Hellman公钥系统,我们可以通过如下方式在椭圆曲线上予以实现:在E上选取生成元P,要求由P产生的群元素足够多,通信双方A和B分别选取a和b,a和b 予以保密,但将aP和bP公开,A和B间通信用的密钥为abP,这是第三者无法得知的。
对应ELGamal密码系统可以采用如下的方式在椭圆曲线上予以实现:
将明文m嵌入到E上Pm点,选一点B∈E,每一用户都选一整数a,0<a<N,N为阶数已知,a保密,aB公开。欲向A送m,可送去下面一对数偶:[kB,Pm+k(aAB)],k是随机产生的整数。A可以从kB求得k(aAB)。通过:Pm+k(aAB)- k(aAB)=Pm恢复Pm。同样对应DSA,考虑如下等式:
K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数]
不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。
这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k<n,n为基点G的阶)称为私有密钥(privte key),K称为公开密钥(public key)。
ECC与RSA的比较 ECC和RSA相比,在许多方面都有对绝对的优势,主要体现在以下方面:
抗攻击性强。相同的密钥长度,其抗攻击性要强很多倍。
计算量小,处理速度快。ECC总的速度比RSA、DSA要快得多。
存储空间占用小。ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,意味着它所占的存贮空间要小得多。这对于加密算法在IC卡上的应用具有特别重要的意义。
带宽要求低。当对长消息进行加解密时,三类密码系统有相同的带宽要求,但应用于短消息时ECC带宽要求却低得多。带宽要求低使ECC在无线网络领域具有广泛的应用前景。
ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。
下面两张表示是RSA和ECC的安全性和速度的比较。 攻破时间(MIPS年) RSA/DSA(密钥长度) ECC密钥长度 RSA/ECC密钥长度比 10 512 106 5:1 10 768 132 6:1 10 1024 160 7:1 10 2048 210 10:1 10 21000 600 35:1 RSA和ECC安全模长得比较 功能 Security Builder 1.2 BSAFE 3.0 163位ECC(ms) 1,023位RSA(ms) 密钥对生成 3.8 4,708.3 签名 2.1(ECNRA) 228.4 3.0(ECDSA) 认证 9.9(ECNRA) 12.7 10.7(ECDSA) Diffie—Hellman密钥交换 7.3 1,654.0 RSA和ECC速度比较 散列算法也叫哈希算法,英文是Hash ,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
HASH主要用于信息安全领域中加密算法,它把一些不同长度的信息转化成杂乱的128位的编码,这些编码值叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。
单向散列函数一般用于产生消息摘要,密钥加密等,常见的有:
MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法。
SHA(Secure Hash Algorithm):可以对任意长度的数据运算生成一个160位的数值;
在1993年,安全散列算法(SHA)由美国国家标准和技术协会(NIST)提出,并作为联邦信息处理标准(FIPS PUB 180)公布;1995年又发布了一个修订版FIPS PUB 180-1,通常称之为SHA-1。SHA-1是基于MD4算法的,并且它的设计在很大程度上是模仿MD4的。现在已成为公认的最安全的散列算法之一,并被广泛使用。
原理 SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。
单向散列函数的安全性在于其产生散列值的操作过程具有较强的单向性。如果在输入序列中嵌入密码,那么任何人在不知道密码的情况下都不能产生正确的散列值,从而保证了其安全性。SHA将输入流按照每块512位(64个字节)进行分块,并产生20个字节的被称为信息认证代码或信息摘要的输出。
该算法输入报文的最大长度不超过264位,产生的输出是一个160位的报文摘要。输入是按512 位的分组进行处理的。SHA-1是不可逆的、防冲突,并具有良好的雪崩效应。
通过散列算法可实现数字签名实现,数字签名的原理是将要传送的明文通过一种函数运算(Hash)转换成报文摘要(不同的明文对应不同的报文摘要),报文摘要加密后与明文一起传送给接受方,接受方将接受的明文产生新的报文摘要与发送方的发来报文摘要解密比较,比较结果一致表示明文未被改动,如果不一致表示明文已被篡改。
MAC (信息认证代码)就是一个散列结果,其中部分输入信息是密码,只有知道这个密码的参与者才能再次计算和验证MAC码的合法性。MAC的产生参见下图。 输入信息 密码 散列函数 信息认证代码 SHA-1与MD5的比较 因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:
对强行供给的安全性:最显着和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2数量级的操作,而对SHA-1则是2数量级的操作。这样,SHA-1对强行攻击有更大的强度。
对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。
速度:在相同的硬件上,SHA-1的运行速度比MD5慢。 对称与非对称算法比较
以上综述了两种加密方法的原理,总体来说主要有下面几个方面的不同:
一、 在管理方面:公钥密码算法只需要较少的资源就可以实现目的,在密钥的分配上,两者之间相差一个指数级别(一个是n一个是n)。所以私钥密码算法不适应广域网的使用,而且更重要的一点是它不支持数字签名。
二、 在安全方面:由于公钥密码算法基于未解决的数学难题,在破解上几乎不可能。对于私钥密码算法,到了AES虽说从理论来说是不可能破解的,但从计算机的发展角度来看。公钥更具有优越性。
三、 从速度上来看:AES的软件实现速度已经达到了每秒数兆或数十兆比特。是公钥的100倍,如果用硬件来实现的话这个比值将扩大到1000倍。
加密算法的选择 前面的章节已经介绍了对称解密算法和非对称加密算法,有很多人疑惑:那我们在实际使用的过程中究竟该使用哪一种比较好呢?
我们应该根据自己的使用特点来确定,由于非对称加密算法的运行速度比对称加密算法的速度慢很多,当我们需要加密大量的数据时,建议采用对称加密算法,提高加解密速度。
对称加密算法不能实现签名,因此签名只能非对称算法。
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。
如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。
密码学在现代的应用, 随着密码学商业应用的普及,公钥密码学受到前所未有的重视。除传统的密码应用系统外,PKI系统以公钥密码技术为主,提供加密、签名、认证、密钥管理、分配等功能。
保密通信:保密通信是密码学产生的动因。使用公私钥密码体制进行保密通信时,信息接收者只有知道对应的密钥才可以解密该信息。
数字签名:数字签名技术可以代替传统的手写签名,而且从安全的角度考虑,数字签名具有很好的防伪造功能。在政府机关、军事领域、商业领域有广泛的应用环境。
秘密共享:秘密共享技术是指将一个秘密信息利用密码技术分拆成n个称为共享因子的信息,分发给n个成员,只有k(k≤n)个合法成员的共享因子才可以恢复该秘密信息,其中任何一个或m(m≤k)个成员合作都不知道该秘密信息。利用秘密共享技术可以控制任何需要多个人共同控制的秘密信息、命令等。
认证功能:在公开的信道上进行敏感信息的传输,采用签名技术实现对消息的真实性、完整性进行验证,通过验证公钥证书实现对通信主体的身份验证。
密钥管理:密钥是保密系统中更为脆弱而重要的环节,公钥密码体制是解决密钥管理工作的有力工具;利用公钥密码体制进行密钥协商和产生,保密通信双方不需要事先共享秘密信息;利用公钥密码体制进行密钥分发、保护、密钥托管、密钥恢复等。
基于公钥密码体制可以实现以上通用功能以外,还可以设计实现以下的系统:安全电子商务系统、电子现金系统、电子选举系统、电子招投标系统、电子彩票系统等。
公钥密码体制的产生是密码学由传统的政府、军事等应用领域走向商用、民用的基础,同时互联网、电子商务的发展为密码学的发展开辟了更为广阔的前景。
加密算法的未来 随着计算方法的改进,计算机运行速度的加快,网络的发展,越来越多的算法被破解。
在2004年国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做的破译MD5、HAVAL-128、MD4和RIPEMD算法的报告,令在场的国际顶尖密码学专家都为之震惊,意味着这些算法将从应用中淘汰。随后,SHA-1也被宣告被破解。
历史上有三次对DES有影响的攻击实验。1997年,利用当时各国 7万台计算机,历时96天破解了DES的密钥。1998年,电子边境基金会(EFF)用25万美元制造的专用计算机,用56小时破解了DES的密钥。1999年,EFF用22小时15分完成了破解工作。因此。曾经有过卓越贡献的DES也不能满足我们日益增长的需求了。
最近,一组研究人员成功的把一个512位的整数分解因子,宣告了RSA的破解。
我们说数据的安全是相对的,可以说在一定时期一定条件下是安全的,随着硬件和网络的发展,或者是另一个王小云的出现,目前的常用加密算法都有可能在短时间内被破解,那时我们不得不使用更长的密钥或更加先进的算法,才能保证数据的安全,因此加密算法依然需要不断发展和完善,提供更高的加密安全强度和运算速度。
纵观这两种算法一个从DES到3DES再到AES,一个从RSA到ECC。其发展角度无不是从密钥的简单性,成本的低廉性,管理的简易性,算法的复杂性,保密的安全性以及计算的快速性这几个方面去考虑。因此,未来算法的发展也必定是从这几个角度出发的,而且在实际操作中往往把这两种算法结合起来,也需将来一种集两种算法优点于一身的新型算法将会出现,到那个时候,电子商务的实现必将更加的快捷和安全。

⑶ 非对称加密算法 (RSA、DSA、ECC、DH)

非对称加密需要两个密钥:公钥(publickey) 和私钥 (privatekey)。公钥和私钥是一对,如果用公钥对数据加密,那么只能用对应的私钥解密。如果用私钥对数据加密,只能用对应的公钥进行解密。因为加密和解密用的是不同的密钥,所以称为非对称加密。

非对称加密算法的保密性好,它消除了最终用户交换密钥的需要。但是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比对称加密慢上1000倍。

算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。

RSA、Elgamal、背包算法、Rabin、D-H、ECC (椭圆曲线加密算法)。使用最广泛的是 RSA 算法,Elgamal 是另一种常用的非对称加密算法。

收信者是唯一能够解开加密信息的人,因此收信者手里的必须是私钥。发信者手里的是公钥,其它人知道公钥没有关系,因为其它人发来的信息对收信者没有意义。

客户端需要将认证标识传送给服务器,此认证标识 (可能是一个随机数) 其它客户端可以知道,因此需要用私钥加密,客户端保存的是私钥。服务器端保存的是公钥,其它服务器知道公钥没有关系,因为客户端不需要登录其它服务器。

数字签名是为了表明信息没有受到伪造,确实是信息拥有者发出来的,附在信息原文的后面。就像手写的签名一样,具有不可抵赖性和简洁性。

简洁性:对信息原文做哈希运算,得到消息摘要,信息越短加密的耗时越少。

不可抵赖性:信息拥有者要保证签名的唯一性,必须是唯一能够加密消息摘要的人,因此必须用私钥加密 (就像字迹他人无法学会一样),得到签名。如果用公钥,那每个人都可以伪造签名了。

问题起源:对1和3,发信者怎么知道从网上获取的公钥就是真的?没有遭受中间人攻击?

这样就需要第三方机构来保证公钥的合法性,这个第三方机构就是 CA (Certificate Authority),证书中心。

CA 用自己的私钥对信息原文所有者发布的公钥和相关信息进行加密,得出的内容就是数字证书。

信息原文的所有者以后发布信息时,除了带上自己的签名,还带上数字证书,就可以保证信息不被篡改了。信息的接收者先用 CA给的公钥解出信息所有者的公钥,这样可以保证信息所有者的公钥是真正的公钥,然后就能通过该公钥证明数字签名是否真实了。

RSA 是目前最有影响力的公钥加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可发布的供任何人使用,私钥则为自己所有,供解密之用。

A 要把信息发给 B 为例,确定角色:A 为加密者,B 为解密者。首先由 B 随机确定一个 KEY,称之为私钥,将这个 KEY 始终保存在机器 B 中而不发出来;然后,由这个 KEY 计算出另一个 KEY,称之为公钥。这个公钥的特性是几乎不可能通过它自身计算出生成它的私钥。接下来通过网络把这个公钥传给 A,A 收到公钥后,利用公钥对信息加密,并把密文通过网络发送到 B,最后 B 利用已知的私钥,就能对密文进行解码了。以上就是 RSA 算法的工作流程。

由于进行的都是大数计算,使得 RSA 最快的情况也比 DES 慢上好几倍,无论是软件还是硬件实现。速度一直是 RSA 的缺陷。一般来说只用于少量数据加密。RSA 的速度是对应同样安全级别的对称密码算法的1/1000左右。

比起 DES 和其它对称算法来说,RSA 要慢得多。实际上一般使用一种对称算法来加密信息,然后用 RSA 来加密比较短的公钥,然后将用 RSA 加密的公钥和用对称算法加密的消息发送给接收方。

这样一来对随机数的要求就更高了,尤其对产生对称密码的要求非常高,否则的话可以越过 RSA 来直接攻击对称密码。

和其它加密过程一样,对 RSA 来说分配公钥的过程是非常重要的。分配公钥的过程必须能够抵挡中间人攻击。假设 A 交给 B 一个公钥,并使 B 相信这是A 的公钥,并且 C 可以截下 A 和 B 之间的信息传递,那么 C 可以将自己的公钥传给 B,B 以为这是 A 的公钥。C 可以将所有 B 传递给 A 的消息截下来,将这个消息用自己的密钥解密,读这个消息,然后将这个消息再用 A 的公钥加密后传给 A。理论上 A 和 B 都不会发现 C 在偷听它们的消息,今天人们一般用数字认证来防止这样的攻击。

(1) 针对 RSA 最流行的攻击一般是基于大数因数分解。1999年,RSA-155 (512 bits) 被成功分解,花了五个月时间(约8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央内存的 Cray C916计算机上完成。

RSA-158 表示如下:

2009年12月12日,编号为 RSA-768 (768 bits, 232 digits) 数也被成功分解。这一事件威胁了现通行的1024-bit 密钥的安全性,普遍认为用户应尽快升级到2048-bit 或以上。

RSA-768表示如下:

(2) 秀尔算法
量子计算里的秀尔算法能使穷举的效率大大的提高。由于 RSA 算法是基于大数分解 (无法抵抗穷举攻击),因此在未来量子计算能对 RSA 算法构成较大的威胁。一个拥有 N 量子位的量子计算机,每次可进行2^N 次运算,理论上讲,密钥为1024位长的 RSA 算法,用一台512量子比特位的量子计算机在1秒内即可破解。

DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 签名算法的变种,被美国 NIST 作为 DSS (DigitalSignature Standard)。 DSA 是基于整数有限域离散对数难题的。

简单的说,这是一种更高级的验证方式,用作数字签名。不单单只有公钥、私钥,还有数字签名。私钥加密生成数字签名,公钥验证数据及签名,如果数据和签名不匹配则认为验证失败。数字签名的作用就是校验数据在传输过程中不被修改,数字签名,是单向加密的升级。

椭圆加密算法(ECC)是一种公钥加密算法,最初由 Koblitz 和 Miller 两人于1985年提出,其数学基础是利用椭圆曲线上的有理点构成 Abel 加法群上椭圆离散对数的计算困难性。公钥密码体制根据其所依据的难题一般分为三类:大整数分解问题类、离散对数问题类、椭圆曲线类。有时也把椭圆曲线类归为离散对数类。

ECC 的主要优势是在某些情况下它比其他的方法使用更小的密钥 (比如 RSA),提供相当的或更高等级的安全。ECC 的另一个优势是可以定义群之间的双线性映射,基于 Weil 对或是 Tate 对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。

ECC 被广泛认为是在给定密钥长度的情况下,最强大的非对称算法,因此在对带宽要求十分紧的连接中会十分有用。

比特币钱包公钥的生成使用了椭圆曲线算法,通过椭圆曲线乘法可以从私钥计算得到公钥, 这是不可逆转的过程。

https://github.com/esxgx/easy-ecc

Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 算法。

https://www.jianshu.com/p/58c1750c6f22

DH,全称为"Diffie-Hellman",它是一种确保共享 KEY 安全穿越不安全网络的方法,也就是常说的密钥一致协议。由公开密钥密码体制的奠基人 Diffie 和 Hellman 所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。也就是由甲方产出一对密钥 (公钥、私钥),乙方依照甲方公钥产生乙方密钥对 (公钥、私钥)。

以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥 (SecretKey) 对数据加密。这样,在互通了本地密钥 (SecretKey) 算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯。

具体例子可以移步到这篇文章: 非对称密码之DH密钥交换算法

参考:
https://blog.csdn.net/u014294681/article/details/86705999

https://www.cnblogs.com/wangzxblog/p/13667634.html

https://www.cnblogs.com/taoxw/p/15837729.html

https://www.cnblogs.com/fangfan/p/4086662.html

https://www.cnblogs.com/utank/p/7877761.html

https://blog.csdn.net/m0_59133441/article/details/122686815

https://www.cnblogs.com/muliu/p/10875633.html

https://www.cnblogs.com/wf-zhang/p/14923279.html

https://www.jianshu.com/p/7a927db713e4

https://blog.csdn.net/ljx1400052550/article/details/79587133

https://blog.csdn.net/yuanjian0814/article/details/109815473

⑷ 用于文件加密的算法有哪些,以及它们的原理

MD5全称"message-digest algorithm 5"(信息-摘要算法)。

90年代初由MIT计算机科学实验室和RSA Data Security Inc联合开发。

MD5算法采用128位加密方式,即使一台计算机每秒可尝试10亿条明文,要跑出原始明文也要1022年。在802.1X认证中,一直使用此算法。

加密算法之二---ELGamal

ELGamal算法是一种较为常见的加密算法,他基于1984年提出的公钥密码体制和椭圆曲线加密体系。即能用于数据加密,又能用于数字签名,起安全性依赖于计算有限领域上离散对数这一数学难题。

着名的DSS和Schnorr和美国国家标准X9.30-199X中ELGamal为唯一认可加密方式。并且椭圆曲线密码加密体系增强了ELGamal算法的安全性。

ELGamal在加密过程中,生成的密文长度是明文的两倍。且每次加密后都会在密文中生成一个随即数K。

加密算法之三---BlowFish

BlowFish算法由着名的密码学专家部鲁斯·施耐尔所开发,是一个基于64位分组及可变密钥长度[32-448位]的分组密码算法。

BlowFish算法的核心加密函数名为BF_En,为一种对称算法,加密强度不够。

加密算法之四---SHA

SHA(即Secure Hash Algorithm,安全散列算法)是一种常用的数据加密算法,由美国国家标准与技术局于1993年做为联邦信息处理标准公布,先版本SHA-1,SHA-2。

SHA算法与MD5类似,同样按2bit数据块为单位来处理输入,但它能产生160bit的信息摘要,具有比MD5更强的安全性。

SHA收到一段明文,然后以不可逆方式将它转为一段密文,该算法被广泛运用于数字签名及电子商务交易的身份认证中。(

⑸ 非对称加密之ECC椭圆曲线(go语言实践)

椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为 ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。

ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA加密算法——提供相当的或更高等级的安全。

椭圆曲线密码学的许多形式有稍微的不同,所有的都依赖于被广泛承认的解决椭圆曲线离散对数问题的 困难性上。与传统的基于大质数因子分解困难性的加密方法不同,ECC通过椭圆曲线方程式的性质产生密钥。

ECC 164位的密钥产生的一个安全级相当于RSA 1024位密钥提供的保密强度,而且计算量较小,处理速度 更快,存储空间和传输带宽占用较少。目前我国 居民二代身份证 正在使用 256 位的椭圆曲线密码,虚拟 货币 比特币 也选择ECC作为加密算法。

具体算法详解参考:

⑹ 首次将椭圆曲线用于密码学,建立公开密钥加密的算法是在那一年

椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为 ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。

椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。

椭圆曲线密码学:

椭圆曲线密码学(英语:Elliptic curve cryptography,缩写为ECC),一种建立公开密钥加密的算法,基于椭圆曲线数学。椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的。

ECC的主要优势是在某些情况下它比其他的方法使用更小的密钥——比如RSA加密算法——提供相当的或更高等级的安全。ECC的另一个优势是可以定义群之间的双线性映射。

基于Weil对或是Tate对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。其缺点是同长度密钥下加密和解密操作的实现比其他机制花费的时间长。

但由于可以使用更短的密钥达到同级的安全程度,所以同级安全程度下速度相对更快。一般认为160比特的椭圆曲线密钥提供的安全强度与1024比特RSA密钥相当。

⑺ 椭圆加密算法的方程

椭圆曲线密码体制来源于对椭圆曲线的研究,所谓椭圆曲线指的是由韦尔斯特拉斯(Weierstrass)方程:
y2+a1xy+a3y=x3+a2x2+a4x+a6 (1)
所确定的平面曲线。其中系数ai(I=1,2,…,6)定义在某个域上,可以是有理数域、实数域、复数域,还可以是有限域GF(pr),椭圆曲线密码体制中用到的椭圆曲线都是定义在有限域上的。
椭圆曲线上所有的点外加一个叫做无穷远点的特殊点构成的集合连同一个定义的加法运算构成一个Abel群。在等式
mP=P+P+…+P=Q (2)
中,已知m和点P求点Q比较容易,反之已知点Q和点P求m却是相当困难的,这个问题称为椭圆曲线上点群的离散对数问题。椭圆曲线密码体制正是利用这个困难问题设计而来。椭圆曲线应用到密码学上最早是由Neal Koblitz 和Victor Miller在1985年分别独立提出的。
椭圆曲线密码体制是目前已知的公钥体制中,对每比特所提供加密强度最高的一种体制。解椭圆曲线上的离散对数问题的最好算法是Pollard rho方法,其时间复杂度为,是完全指数阶的。其中n为等式(2)中m的二进制表示的位数。当n=234, 约为2117,需要1.6x1023 MIPS 年的时间。而我们熟知的RSA所利用的是大整数分解的困难问题,目前对于一般情况下的因数分解的最好算法的时间复杂度是子指数阶的,当n=2048时,需要2x1020MIPS年的时间。也就是说当RSA的密钥使用2048位时,ECC的密钥使用234位所获得的安全强度还高出许多。它们之间的密钥长度却相差达9倍,当ECC的密钥更大时它们之间差距将更大。更ECC密钥短的优点是非常明显的,随加密强度的提高,密钥长度变化不大。
德国、日本、法国、美国、加拿大等国的很多密码学研究小组及一些公司实现了椭圆曲线密码体制,我国也有一些密码学者
做了这方面的工作。许多标准化组织已经或正在制定关于椭圆曲线的标准,同时也有许多的厂商已经或正在开发基于椭圆曲线的产品。对于椭圆曲线密码的研究也是方兴未艾,从ASIACRYPTO’98上专门开辟了ECC的栏目可见一斑。
在椭圆曲线密码体制的标准化方面,IEEE、ANSI、ISO、IETF、ATM等都作了大量的工作,它们所开发的椭圆曲线标准的文档有:IEEE P1363 P1363a、ANSI X9.62 X9.63、 ISO/IEC14888等。
2003年5月12日中国颁布的无线局域网国家标准 GB15629.11 中,包含了全新的WAPI(WLAN Authentication and Privacy Infrastructure)安全机制,能为用户的WLAN系统提供全面的安全保护。这种安全机制由 WAI和WPI两部分组成,分别实现对用户身份的鉴别和对传输的数据加密。WAI采用公开密钥密码体制,利用证书来对WLAN系统中的用户和AP进行认证。证书里面包含有证书颁发者(ASU)的公钥和签名以及证书持有者的公钥和签名,这里的签名采用的就是椭圆曲线ECC算法。
加拿大Certicom公司是国际上最着名的ECC密码技术公司,已授权300多家企业使用ECC密码技术,包括Cisco 系统有限公司、摩托罗拉、Palm等企业。Microsoft将Certicom公司的VPN嵌入微软视窗移动2003系统中。
以下资料摘自:http://www.hids.com.cn/data.asp

⑻ ECC椭圆曲线加密算法(一)

btc address:
eth address:

随着区块链的大热,椭圆曲线算法也成了密码学的热门话题。在Bitcoin 生成地址 中使用到了椭圆曲线加密算法。

椭圆曲线的一般表现形式:

椭圆曲线其实不是椭圆形的,而是下面的图形:

Bitcoin使用了 secp256k1 这条特殊的椭圆曲线,公式是:

这个东西怎么加密的呢?

19世纪挪威青年 尼尔斯·阿贝尔 从普通的代数运算中,抽象出了加群(也叫阿贝尔群或交换群),使得在加群中,实数的算法和椭圆曲线的算法得到了统一。是什么意思呢?

我们在实数中,使用的加减乘除,同样可以用在椭圆曲线中!
对的,椭圆曲线也可以有加法、乘法运算。

数学中的群是一个集合,我们为它定义了一个二元运算,我们称之为“加法”,并用符号 + 表示。假定我们要操作的群用𝔾表示,要定义的 加法 必须遵循以下四个特性:

如果在增加第5个条件:
交换律:a + b = b + a

那么,称这个群为阿贝尔群。根据这个定义整数集是个阿贝尔群。

岔开一下话题, 伽罗瓦 阿贝尔 分别独立的提出了群论,他们并称为现代群论的创始人,可惜两位天才都是英年早逝。

如上文所说,我们可以基于椭圆曲线定义一个群。具体地说:

在椭圆曲线上有 不重合且不对称的 A 、B两点,两点与曲线相交于X点, X与 x轴 的对称点为R,R即为 A+B 的结果。这就是椭圆曲线的加法定义。

因为椭圆曲线方程存在 项,因此椭圆曲线必然关于x轴对称

曲线: ,
坐标:A=(2,5),B=(3,7)
A、B正好在曲线上,因为坐标满足曲线公式


那如何找到相交的第三个点呢?

通过 A、B两点确定直线方程,
设直线方程: ,m为直线的斜率

进一步得到c=1。

联立方程:

X(-1,-1)的x坐标-1代入方式正好满足方程,所以A、B两点所在直线与曲线相交于 X(-1,-1),则点X的关于x轴的对称点为R(-1,1),即A(2,5)+B(3,5)=R(-1,1)。

根据椭圆曲线的 群律(GROUP LAW) 公式,我们可以方便的计算R点。

曲线方程:
当A=(x1,y1),B=(x2,y2) ,R=A+B=(x3,y3),x1≠x2时,
, m是斜率
x3=
y3=m(x1-x3)-y1

A=(2,5), B=(3,7) , R=(-1,1) 符合上面的公式。

椭圆曲线加法符合交换律么?

先计算(A+B),在计算 A+B+C

先计算B+C, 在计算 B+C+A

看图像,计算结果相同,大家手动算下吧。

那 A + A 呢, 怎么计算呢?

当两点重合时候,无法画出 “过两点的直线”,在这种情况下,
过A点做椭圆曲线的切线,交于X点,X点关于 x轴 的对称点即为 2A ,这样的计算称为 “椭圆曲线上的二倍运算”。

下图即为椭圆曲线乘法运算:

我们将在 ECC椭圆曲线加密算法(二) 介绍有限域,椭圆曲线的离散对数问题,椭圆曲线加密就是应用了离散对数问题。

参考:

https://eng.paxos.com/blockchain-101-foundational-math
https://eng.paxos.com/blockchain-101-elliptic-curve-cryptography
https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introction/

阅读全文

与椭圆加密哪一年提出相关的资料

热点内容
如何在服务器上配置外网网址 浏览:838
阿里云服务器的硬件在哪里 浏览:52
python自动注册谷歌 浏览:329
phpini验证码 浏览:824
解压后的文件怎么驱动 浏览:326
老板要程序员加班 浏览:414
泰尔pdf 浏览:311
视频转码压缩哪款软件好 浏览:647
盯盯拍记录仪下载什么app 浏览:436
新东方新概念英语pdf 浏览:696
python中如何创建菜单栏 浏览:507
中石化app那个叫什么名 浏览:706
借贷宝合集解压密码 浏览:640
python爬取网页代码 浏览:480
efs加密对微信无效 浏览:496
刘秀pdf 浏览:998
脚上长黑刺是什么app 浏览:703
算法工程师上海 浏览:390
php的循环语句怎么写 浏览:289
画圣诞树用什么软件python 浏览:452