导航:首页 > 文档加密 > 加密机主密钥lmk怎么来的

加密机主密钥lmk怎么来的

发布时间:2023-08-19 22:48:41

㈠ 对称密钥加密技术的工作流程

SQL Server 2005一个令人激动的特性是内置了加密的功能。在这个新版的SQL Server中,开发团队直接在T-SQL中加入了加密工具、证书创建和密钥管理的功能。对于因为法律要求或商业需求而需要加密表中的数据的人来说,这是一个好礼物。对于犹豫是否用加密来保证数据安全的人来说,做决定也更容易了。这篇文章介绍新的加密功能是怎么工作,怎么使用。

TSQL现在支持使用对称密钥和非对称密钥,证书和密码。本文介绍如何创建、管理和使用对称密钥和证书。

根据涉及的内容,我决定把本文分为三节:

第一部分:服务主密钥和数据库主密钥
第二部分:证书
第三部分:对称密钥

1. 服务主密钥和数据库主密钥

图:SQL Server 2005加密层次结构

1.1 服务主密钥

当第一次需要使用服务主密钥对链接服务器密码、凭据或数据库主密钥进行加密时,便会自动生成服务主密钥。服务主密钥为 SQL Server 加密层次结构的根。服务主密钥直接或间接地保护树中的所有其他密钥和机密内容。使用本地计算机密钥和 Windows 数据保护 API 对服务主密钥进行加密。该 API 使用从 SQL Server 服务帐户的 Windows 凭据中派生出来的密钥。

因为服务主密钥是自动生成且由系统管理的,它只需要很少的管理。服务主密钥可以通过BACKUP SERVICE MASTER KEY语句来备份,格式为:

BACKUP SERVICE MASTER KEY TO FILE = 'path_to_file' ENCRYPTION BY PASSWORD = 'password'

'path_to_file' 指定要将服务主密钥导出到的文件的完整路径(包括文件名)。此路径可以是本地路径,也可以是网络位置的 UNC 路径。

'password' 用于对备份文件中的服务主密钥进行加密的密码。此密码应通过复杂性检查。

应当对服务主密钥进行备份,并将其存储在另外一个单独的安全位置。创建该备份应该是首先在服务器中执行的管理操作之一。

如果需要从备份文件中恢复服务主密钥,使用RESTORE SERVICE MASTER KEY语句。

RESTORE SERVICE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password' [FORCE]

'path_to_file' 指定存储服务主密钥的完整路径(包括文件名)。path_to_file 可以是本地路径,也可以是网络位置的 UNC 路径。

PASSWORD = 'password' 指定对从文件中导入的服务主密钥进行解密时所需的密码。

FORCE 即使存在数据丢失的风险,也要强制替换服务主密钥。

注:如果你在使用RESTORE SERVICE MASTER KEY时不得不使用FORCE选项,你可能会遇到部分或全部加密数据丢失的情况。

如果你的服务主密钥泄露了,或者你想更改SQL Server服务帐户,你可以通过ALTERSERVICE MASTER KEY语句重新生成或者恢复服务主密钥。它的用法请参考联机丛书。

因为服务主密钥是SQL Server自动生成的,所以,它没有对应的CREATE和DROP语句。

1.2 数据库主密钥

正如每个SQL Server有一个服务主密钥,每个数据库有自己的数据库主密钥。数据库主密钥通过CREATE MASTER KEY语句生成:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'
这个语句创建数据库主密钥,使用指定的密码加密它,并保存在数据库中。同时,数据库主密钥也被使用服务主密钥加密之后保存在master数据库中,这就是所谓的“自动密钥管理”。这个特性我们待会再讲。

象服务主密钥一样,你可以备份和恢复数据库主密钥。使用BACKUP MASTER KEY备份数据库主密钥。语法类似于备份服务主密钥:
BACKUP MASTER KEY TO FILE = 'path_to_file'
ENCRYPTION BY PASSWORD = 'password'

恢复数据库主密钥使用RESTORE MASTER KEY语句,它需要使用DECRYPTION BY PASSWORD子句提供备份时指定的加密密码,还要使用ENCRYPTION BY PASSWORD子句,SQL Server使用它提供的密码来加密数据库主密钥之后保存在数据库中。
RESTORE MASTER KEY FROM FILE = 'path_to_file'
DECRYPTION BY PASSWORD = 'password'
ENCRYPTION BY PASSWORD = 'password'
[ FORCE ]

同样,FORCE表示你将忽略在解密过程中的错误。

建议你在创建了数据库主密钥之后立即备份数据库主密钥,并把它保存到一个安全的地方。同样,使用FORCE语句可能导致已加密数据的丢失。

要删除数据库主密钥,使用DROP MASTER KEY语句,它删除当前数据库的主密钥。在执行之前,确定你在正确的数据库上下文中。

1.3 自动密钥管理

当创建数据库主密钥时,它被使用提供的密码加密然后被保存到当前数据库中。同时,它被使用服务主密钥加密并保存到master数据库中。这份保存的数据库主密钥允许服务器在需要的时候解密数据库主密钥,这就是自动密钥管理。没有自动密钥管理的话,你必须在每次使用证书或密钥加密或解密数据(它需要使用数据库主密钥)时使用OPEN MASTER KEY语句同时提供加密的密码。使用自动密钥管理,你不需要执行OPEN MASTER KEY语句,也不需要提供密码。

自动密钥管理的缺点就是每个sysadmin角色的成员都能够解密数据库主密钥。你可以通过ALTER MASTER KEY语句的DROP ENCRYPTION BY SERVICE MASTER KEY子句,从而不使用自动密钥管理。ALTER MASTER KEY的使用方法参见联机丛书。

㈡ 加密技术

对称加密就是指,加密和解密使用同一个密钥的加密方式。需要用到的有加密算法和加密秘钥。例如加密算法可以类似这样的加密规则(a ->b,b->w,c->a)

发送方使用密钥将明文数据加密成密文,然后发送出去,接收方收到密文后,使用同一个密钥将密文解密成明文读取。

优点:加密计算量小、速度快,效率高,适合对大量数据进行加密的场景。
缺点:(1)密钥不适合在网上传输(容易被截取),(2)密钥维护麻烦

DES 、3DES、Blowfish、IDEA、RC4、RC5、RC6和AES。

数据加密标准DES属于常规密钥密码体制,是一种分组密码。加密前,先对整个明文进行分组,每一组长为64位,然后对每一个64位二进制数据进行加密处理,产生一组64位密文数据。最后将各组密文串接起来,即得出整个的密文。使用的密钥为64位(实际密钥长度为56位,有8位用于奇偶检验)

DES的保密性取决于密钥的保密,而算法是公开的。尽管人们在破译DES方面取得了许多进展,但至今仍未能找到比穷举搜索密钥更有效的方法。DES是世界上第一个公认的实用密码算法标准,它曾对密码学的发展做出了重大贡献。目前较为严重的问题是DES的密钥长度,现在已经设计出搜索DES密钥的专用芯片。

DES算法安全性取决于密钥长度,56位密钥破解需要3.5到21分钟,128位密钥破解需要5.4 * 10^18次方年

注意的是:这里是没有密钥的情况下,直接穷举密钥尝试破解。如果密钥在传送过程中被人截取了,就相当于直接知道加密规则了,根本不需要破解,因此密钥在网络中传送还是不安全。

与对称加密算法不同,非对称加密算法需要密钥对,即两个密钥:公开密钥(公钥)和私有密钥(私钥)。

公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

公钥和私钥是怎么来的?
操作系统随机生成一个随机数,将这个随机数通过某个函数进行运算,分成两部分,公钥和私钥

优点:安全性高
缺点:加密与解密速度慢。

RSA、ECC(移动设备用)、Diffie-Hellman、El Gamal、DSA(数字签名用)。

答案是不能
鉴于非对称加密的机制,我们可能会有这种思路:服务器先把公钥直接明文传输给浏览器,之后浏览器向服务器传数据前都先用这个公钥加密好再传,这条数据的安全似乎可以保障了! 因为只有服务器有相应的私钥能解开这条数据
然而 由服务器到浏览器的这条路怎么保障安全? 如果服务器用它的的私钥加密数据传给浏览器,那么浏览器用公钥可以解密它,而这个公钥是一开始通过明文传输给浏览器的,这个公钥被谁劫持到的话,他也能用该公钥解密服务器传来的信息了。所以 目前似乎只能保证由浏览器向服务器传输数据时的安全性 (其实仍有漏洞,下文会说)。

1、先通过非对称加密技术,把对称加密的密钥X传给对方,使得这个对称加密的密钥X是安全的
2、后面再通过对称加密技术进行数据传输

详细流程
(1)服务器端拥有用于非对称加密的 公钥A 私钥A’
(2)客户端向网站服务器请求,服务器先把 公钥A 明文给传输浏客户端
(3)客户端随机生成一个用于对称加密的 密钥X ,用 公钥A 加密后传给服务器端。
(4)服务器端拿到后用 私钥A’ 解密得到 密钥X
(5)这样双方就都拥有 密钥X 了,且别人无法知道它。之后双方所有数据都用 密钥X 加密解密。

数字签名是基于公钥密码体制(非对称密钥密码体制)的。

数字签名必须保证以下三点:

上图位用户A使用数字签名向用户B传输一份文件的过程:

什么时候使用这种不对文件加密,而对文件的摘要加密(对文件进行签名)的技术呢?

注意: 这里强调的是只有“A公钥” 上有认证机构CA的数字签名,意思是CA用它的私钥对“A公钥”的内容进行单向散列函数得到的 加密摘要(数字签名) ,该签名放在“A公钥”中(左上角那个),对于B用户来说,它从可靠的路径拿到CA的公钥,使用CA的公钥解密“A公钥”的内容得到的128位的摘要 和 “A公钥”的内容通过单向散列函数计算出来的是否一致,如果是表示认可这个“A公钥”

当用户A遗失或泄露了CA颁发的证书后,为了避免他人使用该证书冒充用户A,用户A向认证机构CA "挂失" 该证书。于是认证机构CA把该证书放入该认证机构的证书吊销列表(CRL)中,并在网上公示。

用户B在收到用户A的公钥时,除了要验证该公钥是否位认证机构颁发的,还要登录认证机构的网站查看该公钥是否已被认证机构吊销变为无效证书。

认证机构CA的作用:

1、http连接很简单,是无状态的,明文传输。https协议 = http协议 + SSL,可以进行加密传输,身份认证
2、http连接的是80端口,https连接的是443端口
3、https协议需要服务器端到CA申请SSL证书,即客户端请求的时候,服务器端发送SSL证书给客户端,SSL证书内容包括公钥、CA机构的数字签名。验证了服务器端的身份以及公钥的可靠性。 (注意:混合加密那里“将公钥A给客户端”,严格的来说是把SSL证书给客户端)

SSL提供以下三个功能
1、 SSL服务器鉴别。允许用户证实服务器的身份。 具有SSL功能的浏览器维持一个表,上面有一些可信赖的认证中心CA和它们的公钥
2、 SSL客户鉴别。允许服务器证实客户的身份。
3、 加密的SSL会话,通过混合加密实现的 。客户和服务器交互的所有数据都是发送方加密,接受方解密

SSL的位置

(1)方法:get,post,head,put,delete,option,trace,connect
(2)URL字段
(3)HTTP协议版本

User-Agent:产生请求的浏览器类型
Aceept:客户端可识别的内容类型列表
Host:主机地址

200:请求被成功处理
301:永久性重定向
302:临时性重定向
403:没有访问权限
404:没有对应资源
500:服务器错误
503:服务器停机

HTTP协议的底层使用TCP协议,所以HTTP协议的长连接和短连接在本质上是TCP层的长连接和短连接。由于TCP建立连接、维护连接、释放连接都是要消耗一定的资源,浪费一定的时间。所对于服务器来说,频繁的请求释放连接会浪费大量的时间,长时间维护太多的连接的话又需要消耗资源。所以长连接和短连接并不存在优劣之分,只是适用的场合不同而已。长连接和短连接分别有如下优点和缺点:

注意: 从HTTP/1.1版本起,默认使用长连接用以保持连接特性。 使用长连接的HTTP协议,会在响应消息报文段加入: Connection: keep-alive。TCP中也有keep alive,但是TCP中的keep alive只是探测TCP连接是否活着,而HTTP中的keep-alive是让一个TCP连接获得更久一点。

㈢ 数据加密原理是什么 数据解密原理介绍【详解】

数据加密和解密,数据加密和解密原理是什么?

随着Internet 的普及,大量的数据、文件在Internet 传送,因此在客观上就需要一种强有力的安全措施来保护机密数据不被窃取或篡改。我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了) 。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip ,它既压缩数据又加密数据。又如,dbms 的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加判启悔密算法都要有高效的加密和解密能力。幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节) 对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86 cpu 系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。对这种“置换表”方式的一个改进就是使用2 个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几旁皮次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a 表,对所有的奇数位置使用b 表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。与使用“置换表”相类似“, 变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer 中,再在buffer 中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient 可以变为listen ,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。但是,还有一种更好的加密算法,只有计算机可以做,就是字/ 字节循环移位和xor 操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移) ,就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难! 而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci 数列。对数列所产生的数做模运算(例如模3) ,得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能! 但是,使用fibbonaci 数列这种伪随机的掘正方式所产生的密码对我们的解密程序来讲是非常容易的。在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load 到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查! 很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。

循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor 操作来产生一个16 位或32 位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如xmodem - crc。这是方法已经成为标准,而且有详细的文档。但是,基于标准crc 算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。

一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常着名的pgp公钥加密以及rsa 加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0) 。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。

rsa 加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa 算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa 加密算法。pgp 算法(以及大多数基于rsa 算法的加密方法) 使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。

我们举一个例子: 假定现在要加密一些数据使用密钥‘12345’。利用rsa 公钥,使用rsa 算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥) ,然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa 私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。但并不是经过加密的数据就是绝对安全的,数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。

㈣ 密码技术(十一)之密钥

  ——秘密的精华

 在使用对称密码、公钥密码、消息认证码、数字签名等密码技术使用,都需要一个称为 密钥 的巨大数字。然而,数字本身的大小并不重要,重要的是 密钥空间的大小 ,也就是可能出现的密钥的总数量,因为密钥空间越大,进行暴力破解就越困难。密钥空间的大小是由 密钥长度 决定的。

 对称密码DES的密钥的实质长度为56比特(7个字节)。
例如,
一个DES密钥用二进制可以表示为:
01010001 11101100 01001011 00010010 00111101 01000010 00000011
用十六进制则可以表示为:
51 EC 4B 12 3D 42 03
而用十进制则可以表示为:
2305928028626269955

 在对称密码三重DES中,包括使用两个DES密钥的DES-EDE2和使用三个DES密钥的DES-EDE3这两种方式。
DES-EDE2的密钥长度实质长度为112比特(14字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F
DES-EDE3的密钥的实质长度为168比特(21字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96

 对称密码AES的密钥长度可以从128、192和256比特中进行选择,当密钥长度为256比特时,比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96
B9 42 DC FD A0 AE F4 5D 60 51 F1

密钥和明文是等价的 。假设明文具有100万的价值,那么用来加密这段明文的密钥也就是具有100万元的价值;如果明文值1亿元,密钥也就值1亿元;如果明文的内容是生死攸关的,那么密钥也同样是生死攸关的。

 在对称密码中,加密和解密使用同一个密钥。由于发送者和接收者需要共享密钥,因此对称密码又称为共享密钥密码。对称密码中所使用的密钥必须对发送者和接收者以外的人保密,否则第三方就能够解密了。

 在消息认证码中,发送者和接收者使用共享的密钥来进行认证。消息认证码只能由持有合法密钥的人计算出来。将消息认证码附加在通信报文后面,就可以识别通信内容是否被篡改或伪装,由于“持有合法的密钥”就是发送者和接收者合法身份的证明,因此消息认证码的密钥必须对发送者以外的人保密,否则就会产生篡改和伪装的风险。

 在数字签名中,签名生成和验证使用不同的密钥,只有持有私钥的本人才能够生成签名,但由于验证签名使用的是公钥,因此任何人都能够验证签名。

 对称密码和公钥密码的密钥都是用于确保机密性的密钥。如果不知道用于解密的合法密钥,就无法得知明文的内容。
 相对地,消息认证码和数字签名所使用的密钥,则是用于认证的密钥。如果不知道合法的密钥,就无法篡改数据,也无法伪装本人的身份。

 当我们访问以https://开头的网页时,Web服务器和浏览器之间会进行基于SSL/TLS的加密通信。在这样的通信中所使用的密钥是仅限于本次通信的一次密钥,下次通信时就不能使用了,想这样每次通信只能使用一次的密钥称为 会话密钥
 由于会话密钥只在本次通信中有效,万一窃听者获取了本次通信的会话密钥,也只能破译本次通信的内容。
 虽然每次通信都会更换会话密钥,但如果用来生成密钥的伪随机数生成器品质不好,窃听者就有可能预测出下次生成会话密钥,这样就会产生通信内容被破译的风险。
 相对于每次通信更换的会话密钥,一直被重复使用的密钥称为 主密钥

 一般来说,加密的对象是用户直接使用的信息,这样的情况下所使用的密钥称为CEK(Contents Encryting Key,内容加密密钥);相对地,用于加密密钥的密钥则称为KEK(Key Encryting Key,密钥加密密钥)。

 在很多情况下,之前提到的会话密钥都是被作为CEK使用的,而主密钥则是被作为KEK使用的。

 生成密钥的最好方法就是使用随机数,因为米哟啊需要具备不易被他人推测的性质。在可能的情况下最好使用能够生成密码学上的随机数的硬件设备,但一般我们都是使用伪随机数生成器这一专门为密码学用途设计的软件。
 在生成密钥时,不能自己随便写出一些像“3F 23 52 28 E3....”这样的数字。因为尽管你想生成的是随机的数字,但无论如何都无法避免人为偏差,而这就会成为攻击者的目标。
 尽管生成伪随机数的算法有很多种,但密码学用途伪随机生成器必须是专门针对密码学用途而设计的。例如,有一些伪随机数生成器可以用于游戏和模拟算法,尽管这些伪随机数生成器所生成的数列看起也是随机的,但只要不是专门为密码学用途设计的,就不能用来生成密钥,因为这些伪随机数生成器不具备不可预测性这一性质。

 有时候我们也会使用人类的可以记住的口令(pasword或passphrase)来生成密钥。口令指的是一种由多个单词组成的较长的password。
 严格来说,我们很少直接使用口令来作为密钥使用,一般都是将口令输入单向散列函数,然后将得到的散列值作为密钥使用。
 在使用口令生成密钥时,为了防止字典攻击,需要在口令上附加一串称为盐(salt)的随机数,然后在将其输入单向散列函数。这种方法称为“基于口令的密码(Password Based Encryption,PBE)”。

 在使用对称密码时,如何在发送者和接收者之间共享密钥是一个重要的问题,要解决密钥配送问题,可以采用事先共享密钥,使用密钥分配中心,使用公钥密码等方法,除了上述方法,之前还提到一种解决密钥配送的问题的方法称为Diffie-Hellman密钥交换。

 有一种提供通信机密性的技术称为 密钥更新 (key updating),这种方法就是在使用共享密钥进行通信的过程中,定期更改密钥。当然,发送者和接收者必须同时用同样的方法来改变密钥才行。
 在更新密钥时,发送者和接收者使用单向散列函数计算当前密钥的散列值,并将这个散列值用作新的密钥。简单说,就是 用当前密钥散列值作为下一个密钥
 我们假设在通信过程中的某个时间点上,密钥被窃听者获取了,那么窃听者就可以用这个密钥将之后的通信内容全部解密。但是,窃听者却无法解密更新密钥这个时间点之前的内容,因为这需要用单向散列函数的输出反算出单向散列函数的输入。由于单向散列函数具有单向性,因此就保证了这样的反算是非常困难的。
 这种防止破译过去的通信内容机制,称为 后向安全 (backward security)。

 由于会话密钥在通信过程中仅限于一次,因此我们不需要保存这种秘密。然而,当密钥需要重复使用时,就必须要考虑保存密钥的问题了。

 人类是 无法记住具有实用长度的密钥 的。例如,像下面这样一个AES的128比特的密钥,一般人是很难记住的。
51 EC 4B 12 3D 42 03 30 04 DB 98 95 93 3F 24 9F
就算勉强记住了,也只过不是记住一个密钥而已。但如果要记住多个像这样的密钥并且保证不忘记,实际上是非常困难的。

 我们记不住密钥,但如果将密钥保存下来又可能会被窃取。这真是一个头疼的问题。这个问题很难得到彻底解决,但我们可以考虑一些合理的解决方法。
 将密钥保存生文件,并将这个文件保存在保险柜等安全地方。但是放在保险柜里的话,出门就无法使用了。这种情况,出门时就需要随身携带密钥。而如果将密钥放在存储卡随身携带的话,就会产生存储卡丢失、被盗等风险。
 万一密钥被盗,为了能够让攻击者花更多的时间才能真正使用这个密钥,我们可以使用将密钥加密后保存的方法,当然,要将密钥加密,必须需要另一个密钥。像这样用于密码加密的密钥,一般称为KEK。
 对密钥进行加密的方法虽然没有完全解决机密性的问题,但在现实中却是一个非常有效地方法,因为这样做可以减少需要保管密钥的数量。
 假设计算机上有100万个文件,分别使用不同的密钥进行加密生成100万个密文,结果我们手上就产生了100万个密钥,而要保管100万个密钥是很困难的。
 于是,我们用一个密钥(KEK)将这100万个密钥进行加密,那么现在我们只要保管者一个KEK就可以了,这一个KEK的价值相当于签名的100万个密钥的价值的总和。
 用1个密钥来代替多个密钥进行保管的方法,和认证机构的层级化非常相似。在后者中,我们不需要信任多个认证机构,而只需要信任一个根CA就可以了。同样的,我们也不需要确保多个密钥的机密性,而只需要确保一个KEK的机密性就可以了。

 密钥的作废和生成是同等重要的,这是因为密钥和明文是等价的。

 假设Alice向Bob发送了一封加密邮件。Bob在解密之后阅读了邮件的内容,这时本次通信所使用的密钥对于Alice和Bob来说就不需要了。不在需要的密钥必须妥善删除,因为如果被窃听者Eve获取,之前发送的加密邮件就会被解密。

 如果密钥是计算机上的一个文件,那么仅仅删除这个文件是不足以删除密钥的,因为有一些技术能够让删除的文件“恢复”。此外,很多情况下文件的内容还会残留在计算机的内存中,因此必须将这些痕迹完全抹去。简而言之,要完全删除密钥,不但要用到密码软件,还需要在设计计算机系统时对信息安全进行充分的考虑

 如果包含密钥的文件被误删或者保管密钥的笔记本电脑损坏了,会怎么样?
 如果丢失了对称密钥密码的共享密钥,就无法解密密文了。如果丢失了消息认证码的密钥,就无法向通信对象证明自己的身份了。
 公钥密码中,一般不太会发送丢失公钥的情况,因为公钥是完全公开的,很有可能在其他电脑上存在副本。
 最大的问题是丢失公钥密码的私钥。如果丢失了公钥密码的私钥,就无法解密用公钥密码加密的密文了。此外,如果丢失了数字签名的私钥,就无法生成数字签名了。

 Diffie-Hellman密钥交换(Diffie-Hellman key exchange)是1976年由Whitfield Diffie和Martin Hellman共同发明的一种算法。使用这种算法,通信双方仅通过交换一些可以公开的信息就能够生成共享秘密数字,而这一秘密数字就可以被用作对称密码的密钥。IPsec 中就使用了经过改良的Diffie-Hellman密钥交换。

2 Alice 生成一个随机数A
 A是一个1 ~ P-2之间的整数。这个数是一个只有Alice知道的密码数字,没有必要告诉Bob,也不能让Eve知道。

Alice计算出的密钥=Bob计算出的密钥

  在步骤1-7中,双方交换数字一共有4个,P、G、G A mod P 和 G B mod P。根据这4个数字计算出Alice和Bob的共享密钥是非常困难的。
 如果Eve能欧知道A和B的任意一个数,那么计算G A*B 就很容易了,然而仅仅根据上面的4个数字很难求出A和B的。
 根据G A mod P 计算出A的有效算法到现在还没有出现,这问题成为有限域(finite field) 的 离散对数问题

 Diffie-Hellman密钥交换是利用了“离散对数问题”的复杂度来实现密钥的安全交换的,如果将“离散对数问题”改为“椭圆曲线上离散对数问题”,这样的算法就称为 椭圆曲线Diffie-Hellman 密钥交换。
 椭圆曲线Diffie-Hellman密钥交换在总体流程上是不变的,只是所利用的数学问题不同而已。椭圆曲线Diffie-Hellman密钥交换能够用较短的密钥长度实现较高的安全性。

 基于口令密码(password based encryption,PBE)就是一种根据口令生成密钥并用该密钥进行加密的方法。其中加密和解密使用同一个密钥。
 PBE有很多种实现方法。例如RFC2898和RFC7292 等规范中所描述的PBE就通过java的javax.crypto包等进行了实现。此外,在通过密码软件PGP保存密钥时,也会使用PBE。
PBE的意义可以按照下面的逻辑来理解。

想确保重要消息的机制性。
  ↓
将消息直接保存到磁盘上的话,可能被别人看到。
  ↓
用密钥(CEK)对消息进行加密吧。
  ↓
但是这次又需要确保密钥(CEK)的机密性了。
  ↓
将密钥(CEK)直接保存在磁盘上好像很危险。
  ↓
用另一个密钥(KEK)对密钥进行加密(CEK)吧。
  ↓
等等!这次又需要确保密钥(KEK)的机密性了。进入死循环了。
  ↓
既然如此,那就用口令来生成密钥(KEK)吧。
  ↓
但只用口令容易遭到字典攻击
  ↓
那么就用口令和盐共同生成密钥(KEK)吧。
  ↓
盐可以和加密后的密钥(CEK)一切保存在磁盘上,而密钥(KEK)可以直接丢弃。
  ↓
口令就记在自己的脑子里吧。

PBE加密包括下列3个步骤:

  盐是由伪随机数生成器生成的随机数,在生成密钥(KEK)时会和口令一起被输入单向散列函数。
 密钥(KEK)是根据秘密的口令生成的,加盐好像没有什么意义,那么盐到底起到什么作用呢?
盐是用来防御字典攻击的 。字典攻击是一种事先进行计算并准备好候选密钥列表的方法。
 我们假设在生成KEK的时候没有加盐。那么主动攻击者Mallory就可以根据字典数据事先生成大量的候选KEK。
 在这里,事先是很重要的一点。这意味着Mallory可以在窃取到加密会话的密钥之前,就准备好了大量的候选KEK。当Mallory窃取加密的会话密钥后,就需要尝试将它解密,这是准备好了大量事先生成的候选KEK,就能够大幅度缩短尝试的时间,这就是 字典攻击 (dictionary attack)。
 如果在生成KEK时加盐,则盐的长度越大,候选KEK的数量也会随之增大,事先生成的的候选KEK就会变得非常困难。只要Mallory还没有得到盐,就无法生成候选KEK。这是因为加盐之后,候选KEK的数量会变得非常巨大。

 具有充足长度的密钥是无法用人脑记忆的。口令也是一样,我们也无法记住具有充足比特数的口令。
 在PBE中,我们通过口令生成密钥(KEK),在用这个密钥来加密会话密钥(CEK)。由于通过口令生成的密钥(KEK)强度不如由伪随机数生成器生成的会话密钥(CEK),这就好像是将一个牢固的保险柜的钥匙放在了一个不怎么牢固的保险柜保管,因此在使用基于口令的密钥时,需要将盐和加密后的CEK通过物理方法进行保护。例如将盐和加密后的CEK保存到存储卡随身携带。

 在生成KEK时,通过多次使用单向散列函数就可以提高安全性。例如,将盐和口令输入单向散列函数,进行1000次的散列函数所得到的散列值作为KEK来使用,是一个不错的方法。
 像这样将单向散列函数进行多次迭代的方法称为 拉伸 (stretching)。

该系列的主要内容来自《图解密码技术第三版》
我只是知识的搬运工
文章中的插图来源于原着

阅读全文

与加密机主密钥lmk怎么来的相关的资料

热点内容
怎么用命令方块控制僵尸 浏览:774
大型云服务器有哪些 浏览:466
解压版三国街机 浏览:423
去中心化app里面包含什么 浏览:948
密钥安装命令行 浏览:505
文献编译英文 浏览:659
php调用浏览器 浏览:527
数控车床编程初学实例 浏览:949
cad中筛选命令是什么 浏览:800
数控铣床法兰克编程 浏览:330
怎么样分解压缩包图标 浏览:619
php两年工作经验简历 浏览:765
怎么提前解压房贷 浏览:700
反诈宣传app哪里可以拿到用户资料 浏览:856
华为交换机命令配置 浏览:12
电机pid算法实例c语言 浏览:974
安装ue5未找到金属编译器 浏览:965
l1压缩性骨折微创手术 浏览:617
看电脑配置命令 浏览:110
单片机调用db数值偏移量 浏览:448