❶ 身份认证与加密有何区别与联系
加密和身份验证算法
由于对安全性的攻击方法多种多样,设计者很难预计到所有的攻击方法,因此设计安全性算法和协议非常困难。普遍为人接受的关于安全性方法的观点是,一个好的加密算法或身份验证算法即使被攻击者了解,该算法也是安全的。这一点对于Internet安全性尤其重要。在Internet中,使用嗅探器的攻击者通过侦听系统与其连接协商,经常能够确切了解系统使用的是哪一种算法。
与Internet安全性相关的重要的密码功能大致有5类,包括对称加密、公共密钥加密、密钥交换、安全散列和数字签名。
1. 对称加密
大多数人都熟知对称加密这一加密方法。在这种方法中,每一方都使用相同的密钥来加密或解密。只要掌握了密钥,就可以破解使用此法加密的所有数据。这种方法有时也称作秘密密钥加密。通常对称加密效率很高,它是网络传送大量数据中最常用的一类加密方法。
常用的对称加密算法包括:
• 数据加密标准( DES )。DES首先由IBM公司在7 0年代提出,已成为国际标准。它有5 6位密钥。三重DES算法对DES略作变化,它使用DES算法三次加密数据,从而改进了安全性。
• RC2 、RC4和RC5。这些密码算法提供了可变长度密钥加密方法,由一家安全性动态公司,RSA数据安全公司授权使用。目前网景公司的Navigator浏览器及其他很多Internet客户端和服务器端产品使用了这些密码。
• 其他算法。包括在加拿大开发的用于Nortel公司Entrust产品的CAST、国际数据加密算法( IDEA )、传闻由前苏联安全局开发的GOST算法、由Bruce Schneier开发并在公共域发表的Blowfish算法及由美国国家安全局开发并用于Clipper芯片的契约密钥系统的Skipjack 算法。
安全加密方法要求使用足够长的密钥。短密钥很容易为穷举攻击所破解。在穷举攻击中,攻击者使用计算机来对所有可能的密钥组合进行测试,很容易找到密钥。例如,长度为4 0位的密钥就不够安全,因为使用相对而言并不算昂贵的计算机来进行穷举攻击,在很短的时间内就可以破获密钥。同样,单DES算法已经被破解。一般而言,对于穷举攻击,在可预测的将来,1 2 8位还可能是安全的。
对于其他类型的攻击,对称加密算法也比较脆弱。大多数使用对称加密算法的应用往往使用会话密钥,即一个密钥只用于一个会话的数据传送,或在一次会话中使用几个密钥。这样,如果会话密钥丢失,则只有在此会话中传送的数据受损,不会影响到较长时期内交换的大量数据。
2. 公共密钥加密
公共密钥加密算法使用一对密钥。公共密钥与秘密密钥相关联,公共密钥是公开的。以公共密钥加密的数据只能以秘密密钥来解密,同样可以用公共密钥来解密以秘密密钥加密的数据。这样只要实体的秘密密钥不泄露,其他实体就可以确信以公共密钥加密的数据只能由相应秘密密钥的持有者来解密。尽管公共密钥加密算法的效率不高,但它和数字签名均是最常用的对网络传送的会话密钥进行加密的算法。
最常用的一类公共密钥加密算法是RSA算法,该算法由Ron Rivest 、Adi Shamir 和LenAdleman开发,由RSA数据安全公司授权使用。RSA定义了用于选择和生成公共/秘密密钥对的机制,以及目前用于加密的数学函数。
3. 密钥交换
开放信道这种通信媒体上传送的数据可能被第三者窃听。在Internet这样的开放信道上要实现秘密共享难度很大。但是很有必要实现对共享秘密的处理,因为两个实体之间需要共享用于加密的密钥。关于如何在公共信道上安全地处理共享密钥这一问题,有一些重要的加密算法,是以对除预定接受者之外的任何人都保密的方式来实现的。
Diffie-Hellman密钥交换算法允许实体间交换足够的信息以产生会话加密密钥。按照惯例,假设一个密码协议的两个参与者实体分别是Alice和Bob,Alice使用Bob的公开值和自己的秘密值来计算出一个值;Bob也计算出自己的值并发给Alice,然后双方使用自己的秘密值来计算他们的共享密钥。其中的数学计算相对比较简单,而且不属于本书讨论的范围。算法的概要是Bob和Alice能够互相发送足够的信息给对方以计算出他们的共享密钥,但是这些信息却不足以让攻击者计算出密钥。
Diffie-Hellman算法通常称为公共密钥算法,但它并不是一种公共密钥加密算法。该算法可用于计算密钥,但密钥必须和某种其他加密算法一起使用。但是,Diffie-Hellman算法可用于身份验证。Network Associates公司的P G P公共密钥软件中就使用了此算法。
密钥交换是构成任何完整的Internet安全性体系都必备的。此外,IPsec安全性体系结构还包括Internet密钥交换( I K E )及Internet安全性关联和密钥管理协议( ISAKMP )。
4. 安全散列
散列是一定量数据的数据摘要的一种排序。检查数字是简单的散列类型,而安全散列则产生较长的结果,经常是1 2 8位。对于良好的安全散列,攻击者很难颠倒设计或以其他方式毁灭。安全散列可以与密钥一起使用,也可以单独使用。其目的是提供报文的数字摘要,用来验证已经收到的数据是否与发送者所发送的相同。发送者计算散列并将其值包含在数据中,接收者对收到的数据进行散列计算,如果结果值与数据中所携带的散列值匹配,接收者就可以确认数据的完整性。
❷ 怎么利用数字证书完成身份验证,客户和服务器端的加密和解密
在自己的站点上部署ssl证书就完成了服务端的加密和身份认证,做双向认证后就能对客户进行身份认证(需要客户端证书),所以,需要独立IP的站点一个,ssl证书一张,客户端证书一张就能完成你的要求——沃通(wosign)专业的数字证书CA机构
❸ 请根据所学知识,谈谈信息加密和身份认证的原理是怎样的
信息加密和身份认证的原理,我的不同行业的原理应该也不相同,比如说我是学习软件的,那么,我们在设计软件或者设计网站过程中,我们所认为的这种加密和,身份认证主要就是靠一些关键字词,只有这些关键字才能触发褚健,引起相应链接的跳转。比如说我们在网站设置登录名和密码的时候,这个主要就是靠数据库的存储,也就如果申请的话,这些数据就能够存到数据库里,他下次再登录,如果能在数据库中找到对应的用户名和密码的时候,那他录成功,如果不可以,那这个,就没有办法登录
❹ 配置“连接安全规则”,保证和“服务器2”之间的通信安全,要求入站和出站都要求身份验证,完整性算法采
了解连接安全规则
应用到: Windows 7, Windows Server 2008 R2连接安全包括在两台计算机开始通信之前对它们进行身份验证,并确保在两台计算机之间发送的信息的安全性。高级安全 Windows 防火墙使用 Internet 协议安全 (IPsec) 实现连接安全,方法是使用密钥交换、身份验证、数据完整性和数据加密(可选)。
注意
与单方面操作的防火墙规则不同,连接安全规则要求通信的双方计算机都具有采用连接安全规则的策略或其他兼容的 IPSec 策略。
连接安全规则使用 IPsec 确保其通过网络时的流量安全。使用连接安全规则指定必须对两台计算机之间的连接进行身份验证或加密。可能还要必须创建防火墙规则以允许由连接安全规则保护的网络流量。
❺ 一种身份认证系统中数据加密算法的设计 要求:用于身份认证的ID和口令都要进行加密,设计出一种加密算法。
l iceEncryptText 文本加密解密
http://dl.icese.net/src.php?f=iceEncryptText.src.rar
❻ 身份认证与数字签名的区别是什么
主要区别是,性质不同、目的作用不同、方法不同,具体如下:
一、性质不同
1、身份认证
身份认证一般指身份验证,又称“验证”、“鉴权”,是指通过一定的手段,完成对用户身份的确认。
2、数字签名
数字签名(又称公钥数字签名)是只有信息的发送者才能产生的别人无法伪造的一段数字串,这段数字串同时也是对信息的发送者发送信息真实性的一个有效证明。
二、目的作用不同
1、身份认证
身份验证的目的是确认当前所声称为某种身份的用户,确实是所声称的用户。
2、数字签名
数字签名是非对称密钥加密技术与数字摘要技术的应用,用于鉴别数字信息。
三、方法不同
1、身份认证
身份验证的方法有很多,基本上可分为:基于共享密钥的身份验证、基于生物学特征的身份验证和基于公开密钥加密算法的身份验证。不同的身份验证方法,安全性也各有高低。
2、数字签名
数字签名算法依靠公钥加密技术来实现的。在公钥加密技术里,每一个使用者有一对密钥:一把公钥和一把私钥。公钥可以自由发布,但私钥则秘密保存,还有一个要求就是要让通过公钥推算出私钥的做法不可能实现。
普通的数字签名算法包括三种算法:
①、密码生成算法。
②、标记算法。
③、验证算法。
❼ 数据加密与解密的身份认证
身份认证是基于加密技术的一种网络防范行为,它的作用就是用来确定用户是否是真实的。简单的例子就是电子邮件,当用户收到一封电子邮件时,邮件上面标有发信人的姓名和信箱地址,很多人可能会简单地认为发信人就是信上说明的那个人,但实际上伪造一封电子邮件对于一个通常人来说是极为容易的事。在这种情况下,用户需要用电子邮件源身份认证技术来防止电子邮件伪造,这样就有理由用户写信的人就是信头上说明的人,有些站点提供入站FTP和WWW服务,当然用户通常接触的这类服务是匿名服务,用户的权力要受到限制,但也有的这类服务不是匿名的,如公司为了信息交流提供用户的合作伙伴非匿名的FTP服务,或开发小组把他们的Web网页上载到用户的WWW服务器上,现在的问题就是,用户如何确定正在访问用户服务器的人就是合法用户呢?采用身份认证便可以解决这个问题。
有些时候,用户可能需要对一些机密文件进行加密,并不一定因为要在网络间进行传输,而是要防止别人窃得计算机密码而获得该机密文件,因此要对数据实行加密,从而实现多重保护。例如,通常使用的VPN系统;又如在UNIX系统中常用的crypt(3)命令对文件进行加密,尽管这些加密手段已不是那么先进,甚至有被破解的较大可能性,但是最起码可以保证文件的完整无误地传输到信息接受方。
❽ 高分求答案:请写出数字加密,身份认证,防止数据非法篡改的全过程
说具体些。采纳答案留QQ帮你
❾ 数据加密与解密的加密过程
因特网作为信息传输的载体是不安全的信息媒介,它所遵循的通讯协议(TCP/IP协议)本身具有脆弱性。当初设计该协议的初衷并非出于对通信安全的考虑,而是出于对通信自由的考量。因此,一些基于TCP/IP协议的服务也是极不安全;另一方面,因特网给众多的商家带来了无限的商机,许多网络黑客依照经济利益或个人爱好,往往专门跟踪Internet的特殊群体或个别敏感用户,盗取他们的网络身份或银行帐户信息,再冒充合法用户的身份,进一步侵入信息系统,非法盗取经济、政治、军事机密。为了保证因特网的安全和充分发挥其商业信息交换的价值,人们选择了数据加密技术,对访问Internet网络的用户实施身份认证。
加密技术在网络应用方面概括起来有:数据加密、身份认证、数字签名和(不可否认性)防止个人否认事实的行为(撒谎)。其次就是对于黑客的非法入侵行为在网络上进行拦截。许多安全防护体系是基于密码的,密码一旦泄露出去可以导致很多的安全隐患,甚至导致网络的全面崩溃。当人在网络上进行访问时必须进入第一道门坎——登录(Login)。系统要求你键入的密码(Password)以明文的形式被传输到用户服务器上,系统自动对你的用户身份进行鉴别,这就是身份认证。确定你的身份后才容许你访问该网络或进行彼此通讯。
❿ 如何利用加密技术进行身份认证
一、电子商务安全问题 保证交易数据的安全是电子商务系统的关键。由于Internet本身的开放性,使电子商务系统面临着各种各样的安全威胁。目前电子商务主要存在的安全隐患有以下几个方面: (1)对合法用户的身份冒充。攻击者通过非法手段盗用合法用户的身份信息,仿冒合法用户的身份与他人进行交易,从而获得非法利益。 (2)对信息的窃取。攻击者在网络的传输信道上,通过物理或逻辑的手段,对数据进行非法的截获与监听,从而得到通信中敏感的信息。 (3)对信息的篡改。攻击者有可能对网络上的信息进行截获后篡改其内容,如修改消息次序、时间,注入伪造消息等,从而使信息失去真实性和完整性。 (4)拒绝服务。攻击者使合法接入的信息、业务或其他资源受阻,例如使一个业务口被滥用而使其他用户不能正常工作。 (5)对发出的信息予以否认。某些用户可能对自己发出的信息进行恶意的否认,以推卸自己应承担的责任。 (6)非法入侵和病毒攻击。计算机网络会经常遭受非法的入侵攻击以及计算机病毒的破坏。 电子商务的一个重要技术特征是利用计算机技术来传输和处理商业信息。因此,电子商务安全从整体上可分为计算机网络安全和商务交易安全两大部分。 二、计算机网络安全措施 计算机网络安全的内容包括计算机网络设备安全、计算机网络系统安全、数据库安全等。其特征是针对计算机网络本身可能存在的安全问题,实施网络安全增强方案,以保证计算机网络自身的安全性为目标。 计算机网络安全措施主要包括保护网络安全、保护应用服务安全和保护系统安全三个方面,各个方面都要结合考虑安全防护的物理安全、防火墙、信息安全、Web安全、媒体安全等等。 (一)保护网络安全。网络安全是为保护商务各方网络端系统之间通信过程的安全性。保证机密性、完整性、认证性和访问控制性是网络安全的重要因素。保护网络安全的主要措施如下: (1)全面规划网络平台的安全策略。 (2)制定网络安全的管理措施。 (3)使用防火墙。 (4)尽可能记录网络上的一切活动。 (5)注意对网络设备的物理保护。 (6)检验网络平台系统的脆弱性。 (7)建立可靠的识别和鉴别机制。 (二)保护应用安全。保护应用安全,主要是针对特定应用(如Web服务器、网络支付专用软件系统)所建立的安全防护措施,它独立于网络的任何其他安全防护措施。虽然有些防护措施可能是网络安全业务的一种替代或重叠,如Web浏览器和Web服务器在应用层上对网络支付结算信息包的加密,都通过IP层加密,但是许多应用还有自己的特定安全要求。 由于电子商务中的应用层对安全的要求最严格、最复杂,因此更倾向于在应用层而不是在网络层采取各种安全措施。 虽然网络层上的安全仍有其特定地位,但是人们不能完全依靠它来解决电子商务应用的安全性。应用层上的安全业务可以涉及认证、访问控制、机密性、数据完整性、不可否认性、Web安全性、EDI和网络支付等应用的安全性。 (三)保护系统安全。保护系统安全,是指从整体电子商务系统或网络支付系统的角度进行安全防护,它与网络系统硬件平台、操作系统、各种应用软件等互相关联。涉及网络支付结算的系统安全包含下述一些措施: (1)在安装的软件中,如浏览器软件、电子钱包软件、支付网关软件等,检查和确认未知的安全漏洞。 (2)技术与管理相结合,使系统具有最小穿透风险性。如通过诸多认证才允许连通,对所有接入数据必须进行审计,对系统用户进行严格安全管理。 (3)建立详细的安全审计日志,以便检测并跟踪入侵攻击等。 三、商务交易安全措施 商务交易安全则紧紧围绕传统商务在互联网络上应用时产生的各种安全问题,在计算机网络安全的基础上,如何保障电子商务过程的顺利进行。 各种商务交易安全服务都是通过安全技术来实现的,主要包括加密技术、认证技术和电子商务安全协议等。 (一)加密技术。加密技术是电子商务采取的基本安全措施,交易双方可根据需要在信息交换的阶段使用。加密技术分为两类,即对称加密和非对称加密。 (1)对称加密。对称加密又称私钥加密,即信息的发送方和接收方用同一个密钥去加密和解密数据。它的最大优势是加/解密速度快,适合于对大数据量进行加密,但密钥管理困难。如果进行通信的双方能够确保专用密钥在密钥交换阶段未曾泄露,那么机密性和报文完整性就可以通过这种加密方法加密机密信息、随报文一起发送报文摘要或报文散列值来实现。 (2)非对称加密。非对称加密又称公钥加密,使用一对密钥来分别完成加密和解密操作,其中一个公开发布(即公钥),另一个由用户自己秘密保存(即私钥)。信息交换的过程是:甲方生成一对密钥并将其中的一把作为公钥向其他交易方公开,得到该公钥的乙方使用该密钥对信息进行加密后再发送给甲方,甲方再用自己保存的私钥对加密信息进行解密。 (二)认证技术。认证技术是用电子手段证明发送者和接收者身份及其文件完整性的技术,即确认双方的身份信息在传送或存储过程中未被篡改过。 (1)数字签名。数字签名也称电子签名,如同出示手写签名一样,能起到电子文件认证、核准和生效的作用。其实现方式是把散列函数和公开密钥算法结合起来,发送方从报文文本中生成一个散列值,并用自己的私钥对这个散列值进行加密,形成发送方的数字签名;然后,将这个数字签名作为报文的附件和报文一起发送给报文的接收方;报文的接收方首先从接收到的原始报文中计算出散列值,接着再用发送方的公开密钥来对报文附加的数字签名进行解密;如果这两个散列值相同,那么接收方就能确认该数字签名是发送方的。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充、篡改等问题。 (2)数字证书。数字证书是一个经证书授权中心数字签名的包含公钥拥有者信息以及公钥的文件数字证书的最主要构成包括一个用户公钥,加上密钥所有者的用户身份标识符,以及被信任的第三方签名第三方一般是用户信任的证书权威机构(CA),如政府部门和金融机构。用户以安全的方式向公钥证书权威机构提交他的公钥并得到证书,然后用户就可以公开这个证书。任何需要用户公钥的人都可以得到此证书,并通过相关的信任签名来验证公钥的有效性。数字证书通过标志交易各方身份信息的一系列数据,提供了一种验证各自身份的方式,用户可以用它来识别对方的身份。 (三)电子商务的安全协议。除上文提到的各种安全技术之外,电子商务的运行还有一套完整的安全协议。目前,比较成熟的协议有SET、SSL等。 (1)安全套接层协议SSL。SSL协议位于传输层和应用层之间,由SSL记录协议、SSL握手协议和SSL警报协议组成的。SSL握手协议被用来在客户与服务器真正传输应用层数据之前建立安全机制。当客户与服务器第一次通信时,双方通过握手协议在版本号、密钥交换算法、数据加密算法和Hash算法上达成一致,然后互相验证对方身份,最后使用协商好的密钥交换算法产生一个只有双方知道的秘密信息,客户和服务器各自根据此秘密信息产生数据加密算法和Hash算法参数。SSL记录协议根据SSL握手协议协商的参数,对应用层送来的数据进行加密、压缩、计算消息鉴别码MAC,然后经网络传输层发送给对方。SSL警报协议用来在客户和服务器之间传递SSL出错信息。 (2)安全电子交易协议SET。SET协议用于划分与界定电子商务活动中消费者、网上商家、交易双方银行、信用卡组织之间的权利义务关系,给定交易信息传送流程标准。SET主要由三个文件组成,分别是SET业务描述、SET程序员指南和SET协议描述。SET协议保证了电子商务系统的机密性、数据的完整性、身份的合法性。 SET协议是专为电子商务系统设计的。它位于应用层,其认证体系十分完善,能实现多方认证。在SET的实现中,消费者帐户信息对商家来说是保密的。但是SET协议十分复杂,交易数据需进行多次验证,用到多个密钥以及多次加密解密。而且在SET协议中除消费者与商家外,还有发卡行、收单行、认证中心、支付网关等其它参与者。 四、结语 计算机网络安全与商务交易安全实际上是密不可分的,两者相辅相成,缺一不可。没有计算机网络安全作为基础,商务交易安全就无从谈起。没有商务交易安全保障,即使计算机网络本身再安全,仍然无法达到电子商务所特有的安全要求。 随着电子商务的发展,电子交易手段更加多样化,安全问题会变得更加重要和突出。电子商务对计算机网络安全与商务安全的双重要求,使电子商务安全的复杂程度比大多数计算机网络更高,因此电子商务安全应作为系统工程,而不是解决方案来实施。