导航:首页 > 文档加密 > 学习同态加密

学习同态加密

发布时间:2023-09-05 20:13:31

Ⅰ 区块链中现代密码学

1983年 - David Chaum描述的盲签
1997年 - Adam Back发明的HashCash(工作证明制度的一个例子)
2001年 - Ron Rivest,Adi Shamir和Yael Tauman向加密社区提出了环签名
2004年 - Patrick P. Tsang和Victor K.提出使用环签名系统进行投票和电子现金;
2008年 - 由Satoshi Nakamoto出版的Bitcoin白皮书
2011年 - 比特币系统中的匿名分析,Fergal Reid和Martin Harrigan
2012 - 目的地址比特币匿名(CryptoNote中的一次性地址)。

安全多方计算起源于1982年姚期智的百万富翁问题。后来Oded Goldreich有比较细致系统的论述。

姚氏百万富翁问题是由华裔计算机科学家、图灵奖获得者姚启智教授首先提出的。该问题表述为:两个百万富翁Alice和Bob想知道他们两个谁更富有,但他们都不想让对方知道自己财富的任何信息。该问题有一些实际应用:假设Alice希望向Bob购买一些商品,但她愿意支付的最高金额为x元;Bob希望的最低卖出价为y元。Alice和Bob都非常希望知道x与y哪个大。如果x>y,他们都可以开始讨价还价;如果z<y,他们就不用浪费口舌。但他们都不想告诉对方自己的出价,以免自己在讨价还价中处于不利地位。

该方案用于对两个数进行比较,以确定哪一个较大。Alice知道一个整数i;Bob知道一个整数j, Alice与B0b希望知道究竟i>=j还是j>i,但都不想让对方知道自己的数。为简单起见,假设j与i的范围为[1,100】。Bob有一个公开密钥Eb和私有密钥Db。

安全多方计算(Secure Multi-Party Computation)的研究主要是针对无可信第三方的情况下, 如何安全地计算一个约定函数的问题. 安全多方计算在电子选举、电子投票、电子拍卖、秘密共享、门限签名等场景中有着重要的作用。

同态加密(Homomorphic Encryption)是很久以前密码学界就提出来的一个Open Problem。早在1978年,Ron Rivest, Leonard Adleman, 以及Michael L. Dertouzos就以银行为应用背景提出了这个概念[RAD78]。对,你没有看错,Ron Rivest和Leonard Adleman分别就是着名的RSA算法中的R和A。

什么是同态加密?提出第一个构造出全同态加密(Fully Homomorphic Encryption)[Gen09]的Craig Gentry给出的直观定义最好:A way to delegate processing of your data, without giving away access to it.

这是什么意思呢?一般的加密方案关注的都是数据存储安全。即,我要给其他人发个加密的东西,或者要在计算机或者其他服务器上存一个东西,我要对数据进行加密后在发送或者存储。没有密钥的用户,不可能从加密结果中得到有关原始数据的任何信息。只有拥有密钥的用户才能够正确解密,得到原始的内容。我们注意到,这个过程中用户是不能对加密结果做任何操作的,只能进行存储、传输。对加密结果做任何操作,都将会导致错误的解密,甚至解密失败。

同态加密方案最有趣的地方在于,其关注的是数据处理安全。同态加密提供了一种对加密数据进行处理的功能。也就是说,其他人可以对加密数据进行处理,但是处理过程不会泄露任何原始内容。同时,拥有密钥的用户对处理过的数据进行解密后,得到的正好是处理后的结果。

有点抽象?我们举个实际生活中的例子。有个叫Alice的用户买到了一大块金子,她想让工人把这块金子打造成一个项链。但是工人在打造的过程中有可能会偷金子啊,毕竟就是一克金子也值很多钱的说… 因此能不能有一种方法,让工人可以对金块进行加工(delegate processing of your data),但是不能得到任何金子(without giving away access to it)?当然有办法啦,Alice可以这么做:Alice将金子锁在一个密闭的盒子里面,这个盒子安装了一个手套。工人可以带着这个手套,对盒子内部的金子进行处理。但是盒子是锁着的,所以工人不仅拿不到金块,连处理过程中掉下的任何金子都拿不到。加工完成后。Alice拿回这个盒子,把锁打开,就得到了金子。

这里面的对应关系是:盒子:加密算法盒子上的锁:用户密钥将金块放在盒子里面并且用锁锁上:将数据用同态加密方案进行加密加工:应用同态特性,在无法取得数据的条件下直接对加密结果进行处理开锁:对结果进行解密,直接得到处理后的结果同态加密哪里能用?这几年不是提了个云计算的概念嘛。同态加密几乎就是为云计算而量身打造的!我们考虑下面的情景:一个用户想要处理一个数据,但是他的计算机计算能力较弱。这个用户可以使用云计算的概念,让云来帮助他进行处理而得到结果。但是如果直接将数据交给云,无法保证安全性啊!于是,他可以使用同态加密,然后让云来对加密数据进行直接处理,并将处理结果返回给他。这样一来:用户向云服务商付款,得到了处理的结果;云服务商挣到了费用,并在不知道用户数据的前提下正确处理了数据;

聚合签名由Boneh等人提出,主要是通过聚合多个签名为一个签名,来提高签名与验证的效率。要对多个用户的数据进行签名,聚合签名能够极大地降低签名计算复杂度。CL就是聚合签名。

零知识证明过程有两个参与方,一方叫证明者,一方叫验证者。证明者掌握着某个秘密,他想让验证者相信他掌握着秘密,但是又不想泄漏这个秘密给验证者。

双方按照一个协议,通过一系列交互,最终验证者会得出一个明确的结论,证明者是或不掌握这个秘密。

对于比特币的例子,一笔转帐交易合法与否,其实只要证明三件事:

发送的钱属于发送交易的人
发送者发送的金额等于接收者收到金额
发送者的钱确实被销毁了
整个证明过程中,矿工其实并不关心具体花掉了多少钱,发送者具体是谁,接受者具体是谁。矿工只关心系统的钱是不是守恒的。

zcash 就是用这个思路实现了隐私交易。

零知识证明的三条性质对应:

(1)完备性。如果证明方和验证方都是诚实的,并遵循证明过程的每一步,进行正确的计算,那么这个证明一定是成功的,验证方一定能够接受证明方。
(2)合理性。没有人能够假冒证明方,使这个证明成功。
(3)零知识性。证明过程执行完之后,验证方只获得了“证明方拥有这个知识”这条信息,而没有获得关于这个知识本身的任何一点信息。

只有环成员,没有管理者,不需要环成员之间的合作,签名者利用自己的私钥和集合中其他成员的公钥就能独立的进行签名,不需要其他人的帮助,集合中的其他成员可能不知道自己被包含在了其中。
环签名可以被用作成一种泄露秘密的方式,例如,可以使用环形签名来提供来自“白宫高级官员”的匿名签名,而不会透露哪个官员签署了该消息。 环签名适用于此应用程序,因为环签名的匿名性不能被撤销,并且因为用于环签名的组可以被即兴创建。

1)密钥生成。为环中每个成员产生一个密钥对(公钥PKi,私钥SKi)
2)签名。签名者用自己的私钥和任意n个环成员的公钥为消息m生成签名a
3)签名验证。签名者根据环签名和消息m,验证签名是否是环中成员所签。如果有效就接收,如果无效就丢弃。

群签名的一般流程

盲数字签名(Blind Signature)简称盲签名——是一种数字签名的方式,在消息内容被签名之前,对于签名者来说消息内容是不可见的。1982年大卫·乔姆首先提出了盲签名的概念。盲签名因为具有盲性这一特点,可以有效保护所签署消息的具体内容,所以在电子商务和电子选举等领域有着广泛的应用。

类比例子:对文件签名就是通过在信封里放一张复写纸,签名者在信封上签名时,他的签名便透过复写纸签到文件上。

所谓盲签名,就是先将隐蔽的文件放进信封里,而除去盲因子的过程就是打开这个信封,当文件在一个信封中时,任何人不能读它。对文件签名就是通过在信封里放一张复写纸,签名者在信封上签名时,他的签名便透过复写纸签到文件上。

一般来说,一个好的盲签名应该具有以下的性质:

不可伪造性。除了签名者本人外,任何人都不能以他的名义生成有效的盲签名。这是一条最基本的性质。
不可抵赖性。签名者一旦签署了某个消息,他无法否认自己对消息的签名。
盲性。签名者虽然对某个消息进行了签名,但他不可能得到消息的具体内容。
不可跟踪性。一旦消息的签名公开后,签名者不能确定自己何时签署的这条消息。
满足上面几条性质的盲签名,被认为是安全的。这四条性质既是我们设计盲签名所应遵循的标准,又是我们判断盲签名性能优劣的根据。

另外,方案的可操作性和实现的效率也是我们设计盲签名时必须考虑的重要

因素。一个盲签名的可操作性和实现速度取决于以下几个方面:

1,密钥的长度;
2,盲签名的长度;
3,盲签名的算法和验证算法。
盲签名具体步骤
1,接收者首先将待签数据进行盲变换,把变换后的盲数据发给签名者。
2,经签名者签名后再发给接收者。
3,接收者对签名再作去盲变换,得出的便是签名者对原数据的盲签名。
4,这样便满足了条件①。要满足条件②,必须使签名者事后看到盲签名时不能与盲数据联系起来,这通常是依靠某种协议来实现的。

Ⅱ 零知识证明

https://arxiv.org/abs/1906.07221

零知识简洁的非交互知识论证(zk SNARK)是一种真正巧妙的方法,可以在不透露任何其他信息的情况下证明某件事是真的,然而,为什凯谈么它盯丛碰首先是有用的呢?

零知识证明在无数应用中是有利的,包括:

关于私人数据的证明声明:

匿名授权:

匿名付款:

外包计算:

尽管表面上听起来很棒,但底层方法是数学和密码学的“奇迹”,自 1985 年在主要着作“交互式证明系统的知识复杂性中引入以来,已经进行了第四个十年的研究 随后引入了非交互式证明,这在区块链的背景下尤为重要。

在任何零知识证明系统中,都有一个验证人想要说服验证人某些陈述是真实的,而不披露任何其他信息,例如,验证人了解到验证人的银行账户中有X多个,但没有其他信息(即,未披露实际金额)。协议应满足三个属性:

让我们从简单开始,并尝试证明某些东西,而不必担心零知识,非交互性,其形式和适用性。

想象一下,我们有一个长度为 10 数组,我们想向验证者(例如程序)证明所有这些位都设置为 1,即我们知道一个数组,使得每个元素都等于 1。

验证者一次只能检查 (即读取) 一个元素。为了验证语句,可以通过以某种任意顺序读取元素,并检查它是否真正等于1,如果是,则在第一次检查后该语句的置信度为10%,或者如果该位不等于1,则语句完全无效。验证者必须进入下一轮,直到他获得足够的信心。在一些情况下,可以信任证明者并且只需要50% 置信度,在需要95% 置信度的其他情况下,必须检查所有单元。很明显,这种证明协议的缺点是,必须进行与元素数量成比例的检查数量,如果我们考虑数百万个元素的数组,这是不切实际的。

让我们考虑多项式,有一个曲线对应于多项式: 。多郑蠢项式有一个有利的性质,即如果我们有两个不相等的次数最多为 d 的多项式,它们相交的点不超过 d。 例如,让我们稍微修改原始多项式 。如果我们想找到两个多项式的交点,我们需要将它们等同起来。例如,要找到多项式与x轴相交的位置 (即 ),我们将 等同,并且此类方程的解将是那些共享点: , 和 。

同样,我们可以将多项式的原始版本和修改版本等同起来,以找到它们的交点。所得的多项式为1,且有明显的解 。因此只有一个交点。

对于任意次数为 d 的多项式,任何此类方程的结果始终是另一个次数最多为 d 的多项式,因为没有乘法可以产生更高的次数。 示例: ,简化为 。代数基本定理告诉我们,d 次多项式最多可以有 d 个解。因此,我们可以得出结论,任意点处的任何多项式的求值类似于其唯一身份的表示。让我们在x = 10处评估我们的示例多项式。

事实上,在所有要计算的x选项中,最多只有3个选项在这些多项式中具有相同的计算,而所有其他选项都会不同。这就是为什么如果证明者声称知道一些多项式 (无论其次数有多大),他们可以遵循一个简单的协议来验证语句:

例如,如果我们考虑 x 从 1 到 的整数范围,则评估不同的点数为 。 此后,x 意外“击中”任何 个共享点的概率等于 ,这被认为可以忽略不计。

注意:与无效位检查协议相比,新协议只需要一轮,并且在声明中给出了压倒性的信心(假设 d 充分小于范围的上限,几乎 100%)。

这就是为什么多项式是zk-SNARK的核心,尽管也可能存在其他证明介质。

我们从证明多项式知识的问题开始,然后采用通用方法。 在此过程中,我们将发现多项式的许多其他性质。 到目前为止的讨论集中,关注一个弱的证明概念上,即各方必须相互信任,因为还没有措施来执行协议的规则。 例如,证明者不需要知道多项式,他可以使用任何其他可用的方法来得出正确的结果。 此外,如果验证者的多项式评估的幅度不大,比如说 10,验证者可以猜测一个数字,并且它被接受的概率是不可忽略的。 我们必须解决协议的这种弱点,但首先知道多项式意味着什么? 多项式可以表示为以下形式(其中 n 是多项式的次数):

如果有人说他知道一个 1 次多项式(即 ),那意味着他真正知道的是系数 。 此外,系数可以有任何值,包括 0。让我们说,证明者声称知道3次多项式,使得x = 1和x = 2是所有可能解中的两个。这样的有效多项式之一是 。

代数的基本定理指出,只要多项式是可解的,任何多项式都可以分解为线性多项式 (即代表直线的1次多项式)。因此,我们可以将任何有效多项式表示为其因子的乘积:

同样,如果这些因子中的任何一个为零,则整个方程为零,因此,所有 都是唯一的解。我们的示例可以分解为以下多项式:

x的值是:0,1,2,你可以很容易地在多项式的任一形式上检查这一点。

回到证明者声称他知道根为 1 和 2 的 3 次多项式,这意味着他的多项式具有以下形式:

换句话说,(x − 1) 和 (x − 2) 是所讨论的多项式的余因子。因此,如果证明者想要证明他的多项式确实具有这些根而不公开多项式本身,则他需要证明他的多项式p(x) 是那些协因子 的乘法,称为目标多项式,和一些任意多项式h(x) ,即:

换句话说,p(x) 具有t(x) 的所有根。找到h(x) 的自然方法是通过除法 。如果证明者找不到这样的h(x),这意味着p(x) 没有必要的协因子t(x),在这种情况下,多项式除法将具有余数。在我们的示例中,如果我们将 除以 。我们得到了无余数的结果 。

使用我们的多项式身份检查协议,我们可以比较多项式 和 :

为了将其付诸实践,让我们在示例中执行此协议:

相反,如果证明者使用不同的 ,它没有正确的辅因子,例如 ,那么:

我们将得到 ,余数为 ,即: 。这意味着证明者必须将余数除以 才能评估 。因此,由于验证者对x的随机选择,因此对于余数 被t(x) 整除的概率很低,因此,如果验证者将检查p和h补是整数,这样的证明将被拒绝。但是,该检查要求多项式系数也必须是整数。

现在,我们可以在不学习多项式本身的情况下检查多项式的特定属性,因此这已经为我们提供了某种形式的零知识和简洁。尽管如此,此构造仍存在多个问题:

我们将在以下部分解决所有问题。

在上文中,如果将 和 不是明文给出,而是作为黑匣子给出,那将是理想的选择,因此人们无法篡改协议,但仍然能够计算对这些模糊值。类似于哈希函数,因此在计算时很难返回到原始输入。

这正是同态加密的目的。也就是说,它允许对一个值进行加密,并能够对这种加密应用算术运算。有多种方法可以实现加密的同态特性,我们将简要介绍一种简单的方法。

一般的想法是,我们选择一个基数的自然数g(比如5),然后对一个值进行加密,我们将g乘以该值的幂。例如,如果我们想要加密数字3:

其中125是3的加密。如果要将这个加密的数字乘以2,则将其提高为2的指数:

我们能够将未知值乘以2,并对其进行加密。我们还可以通过乘法添加两个加密值,例如3+2:

同样,我们可以通过除法减去加密的数字,例如5 − 3:

但是,由于基数5是公共的,因此很容易回到秘密数字,将加密的数字除以5,直到结果为1。除法的次数即为明文。

这就是模算法发挥作用的地方。模运算的思想如下:我们声明只选择前n个自然数,即0,1,…,n-1而不是拥有一个无限的数字集。如果任何给定的整数不在这个范围内,我们将其“环绕”。例如,让我们先选择六个数字。为了说明这一点,请考虑一个具有六个相等单位刻度的圆;这是我们的射程。

现在让我们看看数字8将落在哪里。 打个比方,我们可以把它想象成一根绳子,它的长度是八个单位。如果我们把绳子连接到圆圈的开头并开始将绳子缠绕在它周围,旋转一圈后,我们还剩下一部分绳子.因此,如果我们继续这个过程,绳子将在2处结束。

它是模运算的结果。 不管绳子有多长,它总是会停在圆圈的刻度之一处。 因此,模运算将使其保持在一定范围内。 15 个单位的绳索将在 3 处停止,即 6 + 6 + 3(两个完整的圆圈,剩余 3 个单位)。 负数的工作方式相同,唯一的区别是我们将其包装在相反的方向,对于 -8,结果将是 4。

而且,我们可以进行算术运算,结果总是在n个数的范围内。 我们现在将使用符号“mod ”来表示数字的范围。 例如:3 × 5 = 3 (mod 6); 5 + 2 = 1 (mod 6).

此外,最重要的特性是运算顺序无关紧要,例如,我们可以先执行所有运算,然后在每次运算后应用模或应用模。例如: 相当于:2 × 4 = 2 (mod 6); 2 − 1 = 1 (mod 6); 1 × 3 = 3 (mod 6).

那到底为什么有帮助呢?事实证明,如果我们使用模算术,则具有运算结果,回到原始数字是不平凡的,因为许多不同的组合将具有相同的结果: 5 × 4 = 2 (mod 6); 4 × 2 = 2 (mod 6); 2 × 1 = 2 (mod 6).

如果没有模算术,结果的大小为它的解决方案提供了线索。 否则,这条信息会被隐藏,而常见的算术属性会被保留。

如果我们回到同态加密并使用模运算,例如模 7,我们将得到:

和不同的指数会有相同的结果:

这是很难找到指数的地方。 事实上,如果模数足够大,这样做就变得不可行,而现代密码学的很大一部分是基于这个问题的“难度”。该方案的所有同态属性都保留在模领域中:

encryption:
multiplication:
addition:

让我们明确说明加密函数: ,其中 v 是我们要加密的值。

这种同态加密方案存在局限性,尽管我们可以将加密值乘以未加密值,但我们不能将两个加密值乘以 (和除以),也不能对加密值求幂。虽然从第一印象来看是不幸的,但这些属性将成为zk-SNARK的基石。

有了这样的工具,我们现在可以评估一个加密随机值为x的多项式,并相应地修改零知识协议。

让我们看看如何评估多项式 。正如我们以前建立的那样,多项式就是知道它的系数,在这种情况下,它们是: 1,-3,2。因为同态加密不允许对加密值求幂,所以我们必须得到从1到3的x幂的加密值: , , ,这样我们可以对加密多项式求值如下:

作为这些操作的结果,我们在我们未知的某个 x 处对我们的多项式进行了加密。 这是一个非常强大的机制,并且由于同态特性,相同多项式的加密计算在加密空间中总是相同的。我们现在可以更新协议的先前版本,对于d次多项式:

Verifier:

Prover:

Verifier:

由于证明者对s一无所知,因此很难提出不合法但仍匹配的评估。

虽然在这样的协议中,证明者的敏捷性是有限的,但他仍然可以使用任何其他方法来伪造证明,而无需实际使用所提供的 s 幂的加密,例如,如果证明者声称仅使用 2 次幂 和 有一个令人满意的多项式 ,这在当前协议中无法验证。

多项式的知识是其系数 。 我们在协议中“分配”这些系数的方式是通过对秘密值 s 的相应加密幂求幂(即 )。 我们已经在选择 s 的加密幂时限制了证明者,但这种限制并未强制执行,例如,可以使用任何可能的方法来找到满足方程 的任意值 和 并将它们提供给验证者而不是 和 。 例如,对于一些随机 , 和 ,其中 可以从提供的 s 的加密幂计算。 这就是为什么验证者需要证明仅使用 s 的幂的加密来计算 和 而没有别的。

让我们考虑一个1次多项式的基本例子,该多项式具有一个变量和一个系数 ,相应地,s的加密 。我们正在寻找的是确保只有s的加密,即 ,被一些任意系数c同态“乘以”,而不是其他任何东西。所以对于任意的c,结果必须是 形式。

一种方法是要求对另一个移位的加密值与原始值一起执行相同的操作,充当“校验和”的算术模拟,确保结果是原始值的取幂。这是通过引入的指数知识假设Knowledge-of-Exponent Assumption (或KEA) 来实现的,更确切地说:

Alice有一个值a,她希望Bob指数到任何幂,唯一的要求是只有这个a可以指数,没有别的,以确保她:

因为 Bob 无法从元组 中提取 ,因此推测 Bob 可以产生有效响应的唯一方法是通过以下过程:

最终,这样的协议向Alice提供了一个证据,证明Bob确实将a乘以他已知的某个值,并且他不能进行任何其他操作,例如乘法、加法,因为这将消除 移位关系。

在同态加密上下文中,幂运算是加密值的乘法。我们可以在简单的单系数多项式 的情况下应用相同的构造:

这种结构限制证明者仅使用提供的加密 s,因此证明者可以仅将系数 c 分配给验证者提供的多项式。 我们现在可以将这种单项多项式方法缩放为多项多项式,因为每个项的系数分配是单独计算的,然后同态地“相加”在一起。 因此,如果向证明者提供 s 的加密幂以及它们的移位值,他可以评估原始多项式和移位多项式,其中必须进行相同的检查。 特别是对于 d 次多项式:

对于我们之前的示例多项式 ,这将是:

现在我们可以确定,验证程序除了使用验证程序提供的多项式外,没有使用任何其他方法,因为没有其他方法来保持 移位。此外,如果验证者希望确保在验证者的多项式中排除一些s的幂,例如j,他将不提供加密 及其移位 。

与我们一开始的相比,我们现在有了一个健壮的协议。 然而,无论加密如何,零知识属性仍然存在一个明显的缺点:虽然理论上多项式系数 可以有很大范围的值,但实际上它可能非常有限(上例中为 6),这意味着 验证者可以暴力破解有限范围的系数组合,直到结果等于证明者的答案。 例如,如果我们考虑每个系数的 100 个值的范围,则 2 次多项式将总共有 100 万个不同的组合,考虑到蛮力将需要不到 100 万次迭代。 此外,即使在只有一个系数且其值为 1 的情况下,安全协议也应该是安全的。

因为验证器只能从验证器发送的数据中提取关于未知多项式p(x)的知识,所以让我们考虑那些提供的值(证明): 。他们参与以下检查:

gp=gh(多项式p(x)有t(x)的根)

(gp)α=gp′t(s)(使用正确形式的多项式)

问题是我们如何改变证据,使支票仍然有效,但无法提取任何知识?从上一节可以得出一个答案:我们可以用一些随机数δ(δ)来“移位”这些值,例如(gp)δ。现在,为了提取知识,首先需要找到被认为不可行的δ。此外,这种随机化在统计学上与随机性是无法区分的。

为了保持关系,让我们检查验证者的检查。证明者的值之一位于方程式的每一侧。因此,如果我们用相同的 δ “移动” 它们中的每一个,方程必须保持平衡。

具体地,证明者对随机 δ 进行采样,并用g α p(s) δ gh(s) δ 对其证明值求幂,并提供给验证者进行验证:

(gp)δ = gh δ t(s) (gp)δ α = gp′ δ

合并后,我们可以观察到支票仍然有效:

注意: 零知识是多么容易被编织到建筑中,这通常被称为 “免费” 零知识。

到目前为止,我们有一个交互式零知识方案。为什么会这样?由于该证明仅对原始验证者有效,其他任何人(其他验证者)都不能信任同一证明,因为:

因此,为了证明语句(在这种情况下是多项式的知识),需要与每个验证者进行单独的交互。

虽然交互式证明系统有其使用案例,例如,当证明人只想说服一个专用的验证人(称为指定验证人),这样证明就不能再用于向其他人证明同一陈述时,当一个人需要同时(例如,在区块链等分布式系统中)或永久地说服多方时,这是非常有效的。验证方需要始终保持在线,并对每个验证方执行相同的计算。

因此,我们需要的秘密参数是可重用的,公开的,可信的和不可滥用的。

让我们首先考虑在秘密 (t(s),α) 产生后如何保护它们。我们可以像验证者在发送给证明者之前对s的指数进行加密一样对它们进行加密。然而,我们使用的同态加密不支持两个加密值的乘法,这对于验证检查以使t(s) 和h以及p和 α 的加密相乘都是必需的。这就是密码配对的地方。

密码配对(双线性映射)是一种数学构造,用函数 , 给定来自一组数字的两个加密输入(例如, ,允许将它们确定地映射到不同数字输出集中的乘法表示,即, 。

由于源和输出编号集合不同,因此配对的结果不能用作另一个配对操作的输入。我们可以将输出集 (也称为 “目标集”) 视为来自 “不同的宇宙”。因此,我们不能将结果乘以另一个加密值,并通过名称本身建议我们一次只能乘以两个加密值。在某种意义上,它类似于一个散列函数,它将所有可能的输入值映射到一组可能的输出值中的一个元素,并且它不是平凡可逆的。

注意: 乍一看,这种限制只能阻碍依赖的功能,具有讽刺意味的是,在zk-SNARK情况下,它是该方案的安全性所拥有的最重要的属性。

配对函数 的一个基本(技术上不正确)的数学类比是说明有一种方法可以“交换”每个输入的基数和指数,这样基数 在转换过程中会被修改成指数,例如 。 然后将两个“交换的”输入相乘,使得原始 a 和 b 值在相同的指数下相乘,例如:

因此,由于在“交换”期间使用结果 在另一个配对(例如, )中改变了碱基,因此不会产生所需的加密乘法 。配对的核心属性可以用等式表示:

e(ga, gb) = e(gb, ga) = e(gab, g1) = e(g1, gab) = e(g1, ga)b= e(g1, g1) ab= . . .

从技术上讲,配对的结果是目标集不同生成器g下原始值的加密产物,即 。因此,它具有同态加密的特性,例如,我们可以将多对的加密产物添加到一起:

注意:加密配对利用椭圆曲线来实现这些属性,因此从现在起,符号 将表示曲线上的生成器点,该点将被添加到自身 次,而不是我们在前面部分中使用的乘法群生成器。

有了加密配对,我们现在可以设置安全的公共和可重用参数。让我们假设我们信任一个诚实的一方来生成秘密 s 和 α。一旦 α 和具有相应 α 位移的 s 的所有必要幂被加密(gα, gsi , gαsi for i in 0, 1, ..., d),必须删除原始值。

这些参数通常被称为公共参考字符串common reference string或CRS。CRS生成后,任何prover和verifier都可以使用它来执行非交互式零知识证明协议。虽然不重要,但CRS的优化版本将包括对目标多项式target polynomial 的加密评估。

此外,CRS分为两组(对于 中的 ):

由于能够乘以加密值,verifier可以在协议的最后一步检查多项式,让verification key verifier进程从证明者那里接收到加密多项式评估 gp、gh、gp':

虽然可信设置是有效的,但它并不有效,因为 CRS 的多个用户将不得不相信一个删除的 和 ,因为目前没有办法证明这一点。 因此,有必要最小化或消除这种信任。 否则,不诚实的一方将能够在不被发现的情况下制作假证据。

实现这一点的一种方法是由多方使用前面部分中介绍的数学工具生成复合 CRS,这样这些方都不知道秘密。这是一种方法,让我们考虑三个参与者 Alice、Bob 和 Carol,对应的索引为 A、B 和 C,对于 i 在 1、2、...中。 . . , d:

作为这种协议的结果,我们有复合 和 并且没有参与者知道其他参与者的秘密参数,除非他们串通。事实上,为了学习 和 ,必须与其他所有参与者串通一气。因此,即使一个人是诚实的,也无法提供假证明。

注意:此过程可以根据需要对尽可能多的参与者重复。

可能存在的问题是如何验证参与者是否与 CRS 的每个值一致,因为对手可以采样多个不同的 s1、s2、...。 . . 和α1, α2, . . .,并将它们随机用于 s 的不同幂(或提供随机数作为增强的公共参考字符串),从而使 CRS 无效且不可用。

幸运的是,因为我们可以使用配对来乘以加密值,所以我们能够执行一致性检查,从第一个参数开始,并确保每个下一个参数都是从它派生的。参与者发布的每个 CRS 都可以检查如下:

请注意,虽然我们验证每个参与者都与他们的秘密参数一致,但使用先前发布的 CRS 的要求并未对每个下一个参与者强制执行(在我们的示例中为 Bob 和 Carol)。因此,如果对手是链中的最后一个,他可以忽略先前的 CRS 并从头开始构造有效参数,就好像他是链中的第一个,因此是唯一知道秘密 s 和 α 的人。

我们可以通过额外要求除第一个参与者之外的每个参与者加密和发布他的秘密参数来解决这个问题,例如,Bob 还发布:

这允许验证 Bob 的 CRS 是 Alice 参数的适当倍数,因为 i in 1, 2, . . . , d:

同样,Carol必须证明她的CRS是Alice-Bob的CRS的适当倍数。

这是一个强大的CRS设置方案,不完全依赖任何一方。实际上,即使只有一方是诚实的,并且删除并且从不共享其秘密参数,即使所有其他各方都合谋,它也是非常明智的。因此,CRS 设置中不相关的参与者越多,伪造证据的可能性就越小,如果竞争方参与,其可能性就可以忽略不计。该方案允许涉及对设置的易读性有疑问的其他不受信任的各方,因为验证步骤确保他们不会破坏最终的公共参考字符串 (也包括使用弱 α 和s)。

我们现在准备巩固进化的zk-SNARKOP协议。形式上,为简洁起见,我们将使用大括号来表示由其旁边的下标填充的一组元素,例如si i ∈[d] 表示集合s1,s2,...,sd。

已商定目标多项式t(x)和校准仪多项式的d次:

Setup:

Ⅲ 同态加密联邦学习前景薪资高吗

前景好,薪资高。
1、同态加密的应用非常广泛,可以老缓用于保护金融机构的数据,保护政府机构的数据,保护企业的数据,以及保护个中缓人的数据,信息化网络时代离不开隐私保护,同态加密联邦学习前景很高高。
2、同态加密联邦学习的技术工作人员薪酬范围:40k-70k/月,属于高薪侍培模。

Ⅳ 隐私计算-密码学-同态加密

近年来,随着大数据与人工智能的盛行,针对个人的个性化的推荐技术的不断发展,人们在享受便利的同时,也深深的感觉到无处不在的监控与监事,比如刚刚浏览了一个网站的商品,当去其他网站访问的时候就会推荐类似的产品;刚刚搜索了某件商品,在很多其他的场景中都会给你推荐。这种体验,谈不上不好,也谈不上多坏,但是如果仔细想想,就感觉自己的网上进行裸奔,个人隐私,一清二楚,毫无隐私可言,细思极恐。

不过随着广大用户对于个人隐私的重视程度不断加强,以及法律法规的不断完善,针对个人隐私的保护提出了更高的要求,什么样的数据可以采集、收集与使用,如何使用都是一个比较敏感的问题。十三届全国人大常委会第三十次会议表决通过了《 中华人民共和国个人信息保护法 》,并与2021年11月1日起施行。确立个人信息保护原则、规范处理活动保障权益、禁止“大数据杀熟”规范自动化决策、严格保护敏感个人信息、赋予个人充分权利等。新规施行后,违法的主体将 最高可处五千万以下或者上一年度营业额百分之五 以下的罚款。

鉴于上述情况,近年来隐私计算技术被不断的提及,源于其有优秀的数据保护作用,使得 “数据不出域、数据可用不可见、数据可算不可见” ,限定了数据的使用场景,防止了数据的泄露,而引起了业界的热捧。

隐私计算技术的演进历程如下图描述,以下是杨强教授在KDD 2021中国区的分享材料:

可以看到,隐私计算技术从1979年就开始了,最开始是安全多方计算、到差分隐私、到TEE, 再到最近火的不能再火的联邦学习 ,一系列的技术应运而生。那为啥现在隐私计算这么火呢。

注:隐私计算技术成熟度曲线

但是这些技术本身的安全加密都是采用共同的方法与策略,下面讲述下隐私计算的加密技术。

本文主要介绍同态加密,

众所周知,优秀的程序员需要 严谨的逻辑思维与具象能力 ,当然在材料的时候,可能需要适当的渲染。但是对于技术的理解,对技术的探索,严谨的逻辑与坚实的推理是非常重要的。所以,对于“数据加密”这个命题,需要进行一番探索。

如此三态合一,即可保障数据的全链路的生命周期安全

那么有没有办法解决数据计算的安全问题呢?答案就是 同态加密技术 。保障数据的运行态的安全,那么同态加密技术具体是如何实现,如何应用,并且有哪些限制呢?

什么是同态加密? ,引用Gentry大佬的原话:

同态加密(Homomorphic Encryption, HE),指满足密文同态运算性质的加密算法,即数据经过同态加密之后,对密文进行某些特定的计算,得到的密文计算结果在进行对应的同态解密后的明文等同于对明文数据直接进行相同的计算, 实现数据的“可算不可见” 。同态加密的实现效果如图所示。

举个例子: 国内某家大型的三甲医院,由于历史悠久,并且医术精湛,历史遗留了大量的用户病例数据 。如今思考基于这些病例数据进行建模分析。但是由于数据量特别巨大,医院本身的IT资源有限,计算能力不足。

这个时候,云厂商找了过来。但是对于医院来说,这些数据本身是用户的隐私信息,并且也是医院的核心价值,所以尽管云厂商再三保证数据安全, 但是医院还是不能够放心的将数据上传到云厂商进行计算

正当这个事情推进不下去的时候,云厂商从密码行业花大价钱招来某个大牛,大牛提出一个方案,这样吧,我们现在有 这样一门技术,不需要传输明文数据,只需要传输密文就好,而且加密秘钥由医院自己保存,我们基于上传的密文数据做不解密的密态运算( 并计算函数医院提供就好),这样数据不会泄露,云厂商对数据无感知,之后传回密文结果,医院自己解密就好 。医院一听非常高兴,那就这么办吧。

下面将核心流程描述下。

这里,大家可能有个问题,这个f应该是什么样的函数,有什么样的限制条件?HE方案是支持任意的数据处理方法f,还是说只支持满足一定条件的f呢?根据f的限制条件不同,HE方案实际上分为了两类:

Paillier加密算法是Pascal paillier[1]在1999年发明的概率公钥加密算法,该算法 基于复合剩余类的困难问题,是一种满足加法的同态加密算法 ,已经广泛应用在加密信号处理或第三方数据处理领域。

前面我们分析过 同态加密的核心流程 ,大家可以一起回忆一下。核心的函数包括:秘钥生成、明文加密、密文解密,下面我们来一步一步的分析,并且描述下,

秘钥的生成主要有如下的步骤,

下面介绍一个完整的同态运算,m由 组成,介绍下同态加密的是如何使用密文计算的。

Ⅳ 信息安全安全前沿技术有哪些

信息安全基本上都是都是攻与防的对抗,正是这种对抗促使了信息安全的发展,因此攻也属于信息安全非常重要的一块。因而前沿的东西都在攻防这一块儿,这也是为什么各大安全公司都有攻防实验室的原因。由于种种原因,攻击技术远远超前于防护技术,最近几年流行的威胁情报也是为了解决如何更快的发现攻击并做情报共享,堵住同类型攻击。

把信息安全划分为北向和南向,北向偏理论,务虚;南向偏技术,务实。当然本人属于南向。

北向前沿:机器学习和深度学习在信息安全中的运用,威胁情报的识别,大数据和云技术在信息安全领域的运用等。
南向前沿:关注blackhat吧,目前都在研究智能硬件设备的安全,物联网安全,智能家居安全,车联网安全,工控安全等等。这些领域目前还都处于攻击技术领先的状态。
至于代表人物,没有,谁敢来代表一个方向的前沿,有也是吹牛瞎忽悠的人。

Ⅵ 同态加密简介

同态加密是数据加密方式的一种,特点是允许数据在加密情况下实现数学或逻辑运算。

同态加密通常为非对称性加密。因此在介绍同态加密之前,简单介绍一下非对称性加密。非对称性加密分为三个步骤:

1. 生成一对钥匙,一个公钥pub和一个密钥priv;

2. 使用公钥pub加密原始数据,得到加密数据,公式:pub(原始数据)= 加密数据 ;

3. 使用密钥priv解密加密数据,得到原始数据,公式:priv( 加密数据 )= 原始数据 ;

同态加密允许对 加密数据 进行处理,得到的解密结果等价于在原始数据下做运算。以联邦学习用到的Paillier算法举例,假设我有两个数 和 ,我希望把它们扔给第三方做加法运算,即 + 。同时不希望第三方知道 、 及它们之和的具体值,同态加密可以派上用场,具体步骤如下:

1. (本地)生成一对钥匙,公钥pub和密钥priv,公钥用于加密,密钥用于解密;

2. (本地)使用公钥pub分别加密 和 ,得到 ( )和 ( );

3. (第三方)使用 函数处理 和 ,即 ;

4. (本地)使用密钥priv解密 ,即 ;

4中  =  + 。第三方通过上述步骤3实现了 和 在加密状态下做加法的操作。

为了更直观认识上述步骤,假设 =100, =200,步骤就变成:

1. (本地)生成一对钥匙,公钥pub和密钥priv,公钥用于加密,密钥用于解密;

2. (本地)使用公钥pub分别加密 和 ,得到 =1234, =4321 (举例);

3.(第三方) 使用 函数处理 和 ,即 =12345678;

4. (本地)使用解密priv解密 ,得到  = 300。

第三方在不知道 =100和 =200,但是通过 函数依然可以在加密情况下实现相加运算。

阅读全文

与学习同态加密相关的资料

热点内容
怎么获得联通app登陆密码 浏览:215
压力大就试试解压神器 浏览:185
dedecmsphp文件修改 浏览:536
贷款解压省内都可以办理吗 浏览:469
思科服务器如何发布www任务 浏览:682
怎么在苹果里面下王者安卓版的 浏览:686
c语言改编程序没保存 浏览:437
msdos编译教程 浏览:978
怎么去文件夹后缀 浏览:445
粉笔app笔试真题在哪里 浏览:108
晋江小说阅读app怎么注册填写验证 浏览:157
安卓手机如何将手机app安装到u盘 浏览:520
指针编译在哪运行 浏览:810
dnf大枪压缩补丁 浏览:355
linux命令env 浏览:914
浙江app遥控锁哪里有 浏览:708
qq别人加密了怎样才能给他解开 浏览:253
程序员离职开店 浏览:770
excel不能对多重区域使用此命令 浏览:969
手机影像算法盘点 浏览:729