导航:首页 > 文档加密 > 应用锁密码加密存储算法

应用锁密码加密存储算法

发布时间:2023-09-09 12:02:48

⑴ 求安卓加密,安卓应用加密方式

android是用java语言开发的,java语言,JDK给我们提供了非常多的加密算法

如基本的单向加密算法:

  1. BASE64 严格地说,属于编码格式,而非加密算法

  2. MD5(Message Digest algorithm 5,信息摘要算法)

  3. SHA(Secure Hash Algorithm,安全散列算法)

  4. HMAC(Hash Message Authentication Code,散列消息鉴别码)


复杂的对称加密(DES、PBE)、非对称加密算法:

  1. DES(Data Encryption Standard,数据加密算法)

  2. PBE(Password-based encryption,基于密码验证)

  3. RSA(算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman)DH(Diffie-Hellman算法,密钥一致协议)

  4. DSA(Digital Signature Algorithm,数字签名)

  5. ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学)


以下就是讲解BASE64、MD5、SHA、HMAC几种方法

MD5、SHA、HMAC这三种加密算法,可谓是非可逆加密,就是不可解密的加密方法。我们通常只把他们作为加密的基础。单纯的以上三种的加密并不可靠。


一. BASE64
按 照RFC2045的定义,Base64被定义为:Base64内容传送编码被设计用来把任意序列的8位字节描述为一种不易被人直接识别的形式。(The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable.)
常见于邮件、http加密,截取http信息,你就会发现登录操作的用户名、密码字段通过BASE64加密的。


二. MD5

MD5 -- message-digest algorithm 5 (信息-摘要算法)缩写,广泛用于加密和解密技术,常用于文件校验。校验?不管文件多大,经过MD5后都能生成唯一的MD5值。好比现在的ISO校验,都 是MD5校验。怎么用?当然是把ISO经过MD5后产生MD5的值。一般下载linux-ISO的朋友都见过下载链接旁边放着MD5的串。就是用来验证文 件是否一致的。


三. SHA

SHA(Secure Hash Algorithm,安全散列算法),数字签名等密码学应用中重要的工具,被广泛地应用于电子商务等信息安全领域。虽然,SHA与MD5通过碰撞法都被破解了, 但是SHA仍然是公认的安全加密算法,较之MD5更为安全。


四. HMAC
HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个 标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证 等。

⑵ 手机应用怎么加密

操作了方法如下:

1、打开管家

在桌面找到“手机管家”。

⑶ 常见加密算法原理及概念

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方;接收方收到加密后的报文后,结合密钥和解密算法解密组合后得出原始数据。由于加解密算法是公开的,因此在这过程中,密钥的安全传递就成为了至关重要的事了。而密钥通常来说是通过双方协商,以物理的方式传递给对方,或者利用第三方平台传递给对方,一旦这过程出现了密钥泄露,不怀好意的人就能结合相应的算法拦截解密出其加密传输的内容。

对称加密算法拥有着算法公开、计算量小、加密速度和效率高得特定,但是也有着密钥单一、密钥管理困难等缺点。

常见的对称加密算法有:
DES:分组式加密算法,以64位为分组对数据加密,加解密使用同一个算法。
3DES:三重数据加密算法,对每个数据块应用三次DES加密算法。
AES:高级加密标准算法,是美国联邦政府采用的一种区块加密标准,用于替代原先的DES,目前已被广泛应用。
Blowfish:Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥才能解密,反之亦然。
下图为简单非对称加密算法的常见流程:

发送方Bob从接收方Alice获取其对应的公钥,并结合相应的非对称算法将明文加密后发送给Alice;Alice接收到加密的密文后,结合自己的私钥和非对称算法解密得到明文。这种简单的非对称加密算法的应用其安全性比对称加密算法来说要高,但是其不足之处在于无法确认公钥的来源合法性以及数据的完整性。
非对称加密算法具有安全性高、算法强度负复杂的优点,其缺点为加解密耗时长、速度慢,只适合对少量数据进行加密,其常见算法包括:
RSA :RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其游碰乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,可用于加密,也能用于签名。
DSA :数字签名算法没磨陆,仅能用于签名,不能用于加解密。
DSS :数字签名标准,技枯顷能用于签名,也可以用于加解密。
ELGamal :利用离散对数的原理对数据进行加解密或数据签名,其速度是最慢的。

单向加密算法常用于提取数据指纹,验证数据的完整性。发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。接收方在收到加密的报文后进行解密,将解密获取到的明文使用相同的单向加密算法进行加密,得出加密后的密文串。随后将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应。常见的算法包括:MD5、sha1、sha224等等,其常见用途包括:数字摘要、数字签名等等。

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密,常见的密钥交换方式有下面两种:
1、公钥加密,将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用;
2、Diffie-Hellman,DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。DH算法的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。
如:

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合,用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能,其组成包括:签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。
PKI采用证书管理公钥,通过第三方可信任CA中心,把用户的公钥和其他用户信息组生成证书,用于验证用户的身份。
公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

CA证书认证的流程如下图,Bob为了向Alice证明自己是Bob和某个公钥是自己的,她便向一个Bob和Alice都信任的CA机构申请证书,Bob先自己生成了一对密钥对(私钥和公钥),把自己的私钥保存在自己电脑上,然后把公钥给CA申请证书,CA接受申请于是给Bob颁发了一个数字证书,证书中包含了Bob的那个公钥以及其它身份信息,当然,CA会计算这些信息的消息摘要并用自己的私钥加密消息摘要(数字签名)一并附在Bob的证书上,以此来证明这个证书就是CA自己颁发的。Alice得到Bob的证书后用CA的证书(自签署的)中的公钥来解密消息摘要,随后将摘要和Bob的公钥发送到CA服务器上进行核对。CA在接收到Alice的核对请求后,会根据Alice提供的信息核对Bob的证书是否合法,如果确认合法则回复Alice证书合法。Alice收到CA的确认回复后,再去使用从证书中获取的Bob的公钥加密邮件然后发送给Bob,Bob接收后再以自己的私钥进行解密。

⑷ 常用的加密算法有哪些

对称密钥加密

对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。

⑸ 数据在网络上传输为什么要加密现在常用的数据加密算法主要有哪些

数据传输加密技术的目的是对传输中的数据流加密,通常有线路加密与端—端加密两种。线路加密侧重在线路上而不考虑信源与信宿,是对保密信息通过各线路采用不同的加密密钥提供安全保护。

端—端加密指信息由发送端自动加密,并且由TCP/IP进行数据包封装,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息到达目的地,将被自动重组、解密,而成为可读的数据。

数据存储加密技术的目的是防止在存储环节上的数据失密,数据存储加密技术可分为密文存储和存取控制两种。前者一般是通过加密算法转换、附加密码、加密模块等方法实现;后者则是对用户资格、权限加以审查和限制,防止非法用户存取数据或合法用户越权存取数据。

常见加密算法

1、DES(Data Encryption Standard):对称算法,数据加密标准,速度较快,适用于加密大量数据的场合;

2、3DES(Triple DES):是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高;

3、RC2和RC4:对称算法,用变长密钥对大量数据进行加密,比 DES 快;

4、IDEA(International Data Encryption Algorithm)国际数据加密算法,使用 128 位密钥提供非常强的安全性;

5、RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法; 算法如下:

首先, 找出三个数,p,q,r,其中 p,q 是两个不相同的质数,r 是与 (p-1)(q-1) 互为质数的数。

p,q,r这三个数便是 private key。接着,找出 m,使得 rm == 1 mod (p-1)(q-1).....这个 m 一定存在,因为 r 与 (p-1)(q-1) 互质,用辗转相除法就可以得到了。再来,计算 n = pq.......m,n 这两个数便是 public key。

6、DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法;

7、AES(Advanced Encryption Standard):高级加密标准,对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael 算法。

8、BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;

9、MD5:严格来说不算加密算法,只能说是摘要算法;

对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

(5)应用锁密码加密存储算法扩展阅读

数据加密标准

传统加密方法有两种,替换和置换。上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密文中的一个字符。而置换仅将明文的字符按不同的顺序重新排列。单独使用这两种方法的任意一种都是不够安全的,但是将这两种方法结合起来就能提供相当高的安全程度。

数据加密标准(Data Encryption Standard,简称DES)就采用了这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准。

DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8位奇偶校验位组成,因此只有56个可能的密码而不是64个。

每块先用初始置换方法进行加密,再连续进行16次复杂的替换,最后再对其施用初始置换的逆。第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki。

DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外。

参考资料来源:网络-加密算法

参考资料来源:网络-数据加密

⑹ 应用加密怎么设置

1在手机桌面找到【设置】

2打开手机的【设置】找到【安全】

3点击【安全】页面往下拉看到【应用加密】

4点击【应用加密】,进入页面了,选中你要加密的应用图标5选中你要加密的应用图标后,点击开启即可

加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容。 在航空学中,指利用航空摄影像片上已知的少数控制点,通过对像片测量和计算的方法在像对或整条航摄带上增加控制点的作业。

加密之所以安全,绝非因不知道加密解密算法方法,而是加密的密钥是绝对的隐藏,流行的RSA和AES加密算法都是完全公开的,一方取得已加密的数据,就算知道加密算法也好,若没有加密的密钥,也不能打开被加密保护的信息。

单单隐蔽加密算法以保护信息,在学界和业界已有相当讨论,一般认为是不够安全的。公开的加密算法是给黑客和加密家长年累月攻击测试,对比隐蔽的加密算法要安全得多。

⑺ 加密方式有几种

加密方式的种类:

1、MD5

一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。

2、对称加密

对称加密采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。

3、非对称加密

与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密。

如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

(7)应用锁密码加密存储算法扩展阅读

非对称加密工作过程

1、乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。

2、得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。

3、乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。

在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。

同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。

⑻ 目前常用的加密解密算法有哪些

加密算法

加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。

对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。

不对称加密算法不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。

不可逆加密算法 不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。

加密技术

加密算法是加密技术的基础,任何一种成熟的加密技术都是建立多种加密算法组合,或者加密算法和其他应用软件有机结合的基础之上的。下面我们介绍几种在计算机网络应用领域广泛应用的加密技术。

非否认(Non-repudiation)技术 该技术的核心是不对称加密算法的公钥技术,通过产生一个与用户认证数据有关的数字签名来完成。当用户执行某一交易时,这种签名能够保证用户今后无法否认该交易发生的事实。由于非否认技术的操作过程简单,而且直接包含在用户的某类正常的电子交易中,因而成为当前用户进行电子商务、取得商务信任的重要保证。

PGP(Pretty Good Privacy)技术 PGP技术是一个基于不对称加密算法RSA公钥体系的邮件加密技术,也是一种操作简单、使用方便、普及程度较高的加密软件。PGP技术不但可以对电子邮件加密,防止非授权者阅读信件;还能对电子邮件附加数字签名,使收信人能明确了解发信人的真实身份;也可以在不需要通过任何保密渠道传递密钥的情况下,使人们安全地进行保密通信。PGP技术创造性地把RSA不对称加密算法的方便性和传统加密体系结合起来,在数字签名和密钥认证管理机制方面采用了无缝结合的巧妙设计,使其几乎成为最为流行的公钥加密软件包。

数字签名(Digital Signature)技术 数字签名技术是不对称加密算法的典型应用。数字签名的应用过程是,数据源发送方使用自己的私钥对数据校验和或其他与数据内容有关的变量进行加密处理,完成对数据的合法“签名”,数据接收方则利用对方的公钥来解读收到的“数字签名”,并将解读结果用于对数据完整性的检验,以确认签名的合法性。数字签名技术是在网络系统虚拟环境中确认身份的重要技术,完全可以代替现实过程中的“亲笔签字”,在技术和法律上有保证。在公钥与私钥管理方面,数字签名应用与加密邮件PGP技术正好相反。在数字签名应用中,发送者的公钥可以很方便地得到,但他的私钥则需要严格保密。

PKI(Public Key Infrastructure)技术 PKI技术是一种以不对称加密技术为核心、可以为网络提供安全服务的公钥基础设施。PKI技术最初主要应用在Internet环境中,为复杂的互联网系统提供统一的身份认证、数据加密和完整性保障机制。由于PKI技术在网络安全领域所表现出的巨大优势,因而受到银行、证券、政府等核心应用系统的青睐。PKI技术既是信息安全技术的核心,也是电子商务的关键和基础技术。由于通过网络进行的电子商务、电子政务等活动缺少物理接触,因而使得利用电子方式验证信任关系变得至关重要,PKI技术恰好能够有效解决电子商务应用中的机密性、真实性、完整性、不可否认性和存取控制等安全问题。一个实用的PKI体系还必须充分考虑互操作性和可扩展性。PKI体系所包含的认证中心(CA)、注册中心(RA)、策略管理、密钥与证书管理、密钥备份与恢复、撤销系统等功能模块应该有机地结合在一起。

加密的未来趋势

尽管双钥密码体制比单钥密码体制更为可靠,但由于计算过于复杂,双钥密码体制在进行大信息量通信时,加密速率仅为单钥体制的1/100,甚至是 1/1000。正是由于不同体制的加密算法各有所长,所以在今后相当长的一段时期内,各类加密体制将会共同发展。而在由IBM等公司于1996年联合推出的用于电子商务的协议标准SET(Secure Electronic Transaction)中和1992年由多国联合开发的PGP技术中,均采用了包含单钥密码、双钥密码、单向杂凑算法和随机数生成算法在内的混合密码系统的动向来看,这似乎从一个侧面展示了今后密码技术应用的未来。

在单钥密码领域,一次一密被认为是最为可靠的机制,但是由于流密码体制中的密钥流生成器在算法上未能突破有限循环,故一直未被广泛应用。如果找到一个在算法上接近无限循环的密钥流生成器,该体制将会有一个质的飞跃。近年来,混沌学理论的研究给在这一方向产生突破带来了曙光。此外,充满生气的量子密码被认为是一个潜在的发展方向,因为它是基于光学和量子力学理论的。该理论对于在光纤通信中加强信息安全、对付拥有量子计算能力的破译无疑是一种理想的解决方法。

由于电子商务等民用系统的应用需求,认证加密算法也将有较大发展。此外,在传统密码体制中,还将会产生类似于IDEA这样的新成员,新成员的一个主要特征就是在算法上有创新和突破,而不仅仅是对传统算法进行修正或改进。密码学是一个正在不断发展的年轻学科,任何未被认识的加/解密机制都有可能在其中占有一席之地。

目前,对信息系统或电子邮件的安全问题,还没有一个非常有效的解决方案,其主要原因是由于互联网固有的异构性,没有一个单一的信任机构可以满足互联网全程异构性的所有需要,也没有一个单一的协议能够适用于互联网全程异构性的所有情况。解决的办法只有依靠软件代理了,即采用软件代理来自动管理用户所持有的证书(即用户所属的信任结构)以及用户所有的行为。每当用户要发送一则消息或一封电子邮件时,代理就会自动与对方的代理协商,找出一个共同信任的机构或一个通用协议来进行通信。在互联网环境中,下一代的安全信息系统会自动为用户发送加密邮件,同样当用户要向某人发送电子邮件时,用户的本地代理首先将与对方的代理交互,协商一个适合双方的认证机构。当然,电子邮件也需要不同的技术支持,因为电子邮件不是端到端的通信,而是通过多个中间机构把电子邮件分程传递到各自的通信机器上,最后到达目的地。

阅读全文

与应用锁密码加密存储算法相关的资料

热点内容
通达信海洋状态指标源码 浏览:548
工作压力大有什么好的解压方法 浏览:925
数字还可以怎样加密 浏览:116
为什么安卓没白鸟 浏览:237
程序员投行 浏览:317
java多线程读取文件 浏览:148
香港外贸服务器有什么好处 浏览:614
邓伦参加密室大逃脱结果变成团宠 浏览:849
购买文件服务器怎么选择 浏览:722
空调压缩机高压报警 浏览:502
u盘数控程序放哪个文件夹 浏览:855
python模拟微信登录其他APP 浏览:304
绑扎钢筋加密区规范 浏览:671
怎么更换手机壁纸安卓 浏览:808
闲鱼app卖手机怎么走验机 浏览:821
安卓三个按键音怎么关闭 浏览:64
esp8266手机app源码 浏览:713
服务器如何建立多个站点 浏览:151
加密狗可以在笔记本上做账吗 浏览:888
学生云服务器推荐 浏览:509