‘壹’ 《机器学习》pdf下载在线阅读,求百度网盘云资源
《机器学习》([美] Tom Mitchell)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:机器学习
作者:[美] Tom Mitchell
译者:曾华军
豆瓣评分:8.3
出版社:机械工业出版社
出版年份:2008-3
页数:282
内容简介:《机器学习》展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。《机器学习》综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。《机器学习》可作为计算机专业 本科生、研究生教材,也可作为相关领域研究人员、教师的参考书。
作者简介:TOM M.Mitchell是卡内基梅隆大学的教授,讲授“机器(AAA)的主席:美国《Machine Leaming》杂志、国际机器学习年度会议(ICML)的创始人:多种技术杂志的撰稿人,曾发表过许多文章,出版过多本专着,是机器学习领域的着名学者。
‘贰’ 《Python机器学习实践指南》pdf下载在线阅读,求百度网盘云资源
《Python机器学习实践指南》(库姆斯 (Alexander T.Combs))电子书网盘下载免费在线阅读
链接:https://pan..com/s/1nMOsRgeY_BgwPngI6OowGw
书名:Python机器学习实践指南
作者:库姆斯 (Alexander T.Combs)
译者:黄申
豆瓣评分:7.0
出版社:人民邮电出版社
出版年份:2017-5-1
页数:251
内容简介:
机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致。
全书共有10 章。第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、IPO 市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。
本书适合Python 程序员、数据分析人员、对算法感兴趣的读者、机器学习领域的从业人员及科研人员阅读。
作者简介:
Alexander T. Combs 是一位经验丰富的数据科学家、策略师和开发人员。他有金融数据抽取、自然语言处理和生成,以及定量和统计建模的背景。他目前是纽约沉浸式数据科学项目的一名全职资深讲师。
‘叁’ 《机器学习实战》pdf下载在线阅读,求百度网盘云资源
《机器学习实战》(Peter Harrington)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1-WjldGdKT5Hza8IXzI2uXg
书名:机器学习实战
作者:Peter Harrington
译者:李锐
豆瓣评分:8.1
出版社:人民邮电出版社
出版年份:2013-6
页数:332
内容简介:
机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。
本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。
全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。
作者简介:
Peter Harrington
拥有电气工程学士和硕士学位,他曾经在美国加州和中国的英特尔公司工作7年。Peter拥有5项美国专利,在三种学术期刊上发表过文章。他现在是Zillabyte公司的首席科学家,在加入该公司之前,他曾担任2年的机器学习软件顾问。Peter在业余时间还参加编程竞赛和建造3D打印机。
‘肆’ 《Python机器学习经典实例》pdf下载在线阅读,求百度网盘云资源
《Python机器学习经典实例》([美] Prateek Joshi)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/127gBmSIIhTtvV3wDCX90fg
书名:Python机器学习经典实例
作者:[美] Prateek Joshi
译者:陶俊杰
豆瓣评分:5.8
出版社:人民邮电出版社
出版年份:2017-8
页数:264
内容简介:
在如今这个处处以数据驱动的世界中,机器学习正变得越来越大众化。它已经被广泛地应用于不同领域,如搜索引擎、机器人、无人驾驶汽车等。本书首先通过实用的案例介绍机器学习的基础知识,然后介绍一些稍微复杂的机器学习算法,例如支持向量机、极端随机森林、隐马尔可夫模型、条件随机场、深度神经网络,等等。
本书是为想用机器学习算法开发应用程序的Python 程序员准备的。它适合Python 初学者阅读,不过熟悉Python 编程方法对体验示例代码大有裨益。
作者简介:
作者简介:
Prateek Joshi
人工智能专家,重点关注基于内容的分析和深度学习,曾在英伟达、微软研究院、高通公司以及硅谷的几家早期创业公司任职。
译者简介:
陶俊杰
长期从事数据分析工作,酷爱Python,每天都和Python面对面,乐此不疲。本科毕业于北京交通大学机电学院,硕士毕业于北京交通大学经管学院。曾就职于中国移动设计院,目前在京东任职。
陈小莉
长期从事数据分析工作,喜欢Python。本科与硕士毕业于北京交通大学电信学院。目前在中科院从事科技文献与专利分析工作。
‘伍’ 求 机器学习周志华pdf
链接:
《机器学习》展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。
‘陆’ 《Python机器学习预测分析核心算法Python语言编程教程书籍》pdf下载在线阅读,求百度网盘云资源
《Python机器学习》([美] Michael Bowles)电子书网盘下载免费在线阅读
资源链接:
链接: https://pan..com/s/1R9hSyI6FDigKF-96ALYQ2g
书名:Python机器学习
作者:[美] Michael Bowles
译者:沙嬴
豆瓣评分:6.4
出版社:人民邮电出版社
出版年份:2016-12
页数:320
内容简介:
在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知
所措。本书从算法和Python 语言实现的角度,帮助读者认识机器学习。
书专注于两类核心的“算法族”,即惩罚线性回归和集成方法,并通过代码实例来
展示所讨论的算法的使用原则。全书共分为7 章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。
本书主要针对想提高机器学习技能的Python 开发人员,帮助他们解决某一特定的项
目或是提升相关的技能。
作者简介:
Michael Bowles 在硅谷黑客道场教授机器学习,提供机器学习项目咨询,同时参与了多家创业公司,涉及的领域包括生物信息学、金融高频交易等。他在麻省理工学院获得助理教授教职后,创建并运营了两家硅谷创业公司,这两家公司都已成功上市。他在黑客道场的课程往往听者云集并且好评颇多。
‘柒’ 《白话机器学习算法》pdf下载在线阅读,求百度网盘云资源
《白话机器学习算法》([新加坡] 黄莉婷)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1EwNiO6Nf1SqGcxnDvLTzwQ
书名:白话机器学习算法
作者:[新加坡] 黄莉婷
译者:武传海
豆瓣评分:6.8
出版社:人民邮电出版社
出版年份:2019-2
页数:128
内容简介:
与使用数学语言或计算机编程语言讲解算法的书不同,本书另辟蹊径,用通俗易懂的人类语言以及大量有趣的示例和插图讲解10多种前沿的机器学习算法。内容涵盖k均值聚类、主成分分析、关联规则、社会网络分析等无监督学习算法,以及回归分析、k最近邻、支持向量机、决策树、随机森林、神经网络等监督学习算法,并概述强化学习算法的思想。任何对机器学习和数据科学怀有好奇心的人都可以通过本书构建知识体系。
作者简介:
黄莉婷(Annalyn Ng),高级数据分析师,剑桥大学心理测量中心硕士,曾受邀在迪士尼研究中心研究客户行为科学,并通过数据挖掘技术帮助三星和雅虎等公司制定营销和人员招聘等方面的策略。
苏川集(Kenneth Soo),斯坦福大学统计学硕士,华威大学高材生,曾从事网络随机故障下应用程序的双目标稳健优化研究,善于用通俗的语言介绍数据科学。
‘捌’ 《机器学习》pdf下载在线阅读,求百度网盘云资源
《机器学习》(周志华)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1JOJeNfgMu0yr0cDH35z4lw
书名:机器学习
作者:周志华
豆瓣评分:8.7
出版社:清华大学出版社
出版年份:2016-1-1
页数:425
内容简介:
机器学习是计算机科学与告卜人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介.
全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.前3章之外的后续各章均相对独立, 读者可根据自己的兴趣和时岩此间情况选择使用. 根据课时情况, 一个学期的本科生课程可考虑讲授前9章或前10章; 研究生课程则不妨使用全书.
书中除第1章外, 每章都给出了十道习题. 有的习题是帮助读者巩固本章学习, 有的是为了引导读者扩展相关知识. 一学期的一般课程可使用这些袜枣穗习题, 再辅以两到三个针对具体数据集的大作业. 带星号的习题则有相当难度, 有些并无现成答案, 谨供富有进取心的读者启发思考.
本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
作者简介:
周志华,南京大学教授,计算机科学与技术系副主任,软件新技术国家重点实验室常务副主任,机器学习与数据挖掘研究所(LAMDA)所长,校、系学术委员会委员;ACM杰出科学家,IEEE Fellow,IAPR Fellow,中国计算机学会会士;长江学者特聘教授,国家杰出青年基金获得者。2007年创建南京大学机器学习与数据挖掘研究所(LAMDA),2010年11月任软件新技术国家重点实验室常务副主任,2013年5月任计算机系副主任。