导航:首页 > 文档加密 > 用户请求传输加密

用户请求传输加密

发布时间:2023-12-21 23:25:20

① 移动端与后端数据传输加密

对称加密:对称加密加密与解密使用的是同样的密钥,所以速度快,但由于需要将密钥在网络传输,所以安全性不高
非对称加密:非对称加密使用了一对密钥,公钥与私钥,所以安全性高,但加密与解密速度慢。
方案:将对称加密的密钥使用非对称加密的公钥进行加密,然后发送出去,接收方使用私钥进行解密得到对称加密的密钥,然后双方可以使用对称加密来进行沟通。
方案的流程介绍:
1、APP客户端需要和服务器进行数据交互,它的APP首先生成了一个随机数作为对称密钥(比如AES加密的密钥)。
2、APP客户端向服务器请求公钥
3、服务器将公钥发送给APP客户端
4、APP客户端使用服务器的公钥将自己的对称密钥(比如AES加密的密钥)加密
5、APP客户端将加密后的对称密钥发送给服务器
6、服务器使用私钥解密得到APP客户端的对称密钥
7、APP客户端与服务器可以使用对称密钥来对沟通的内容进行加密与解密了
App端和后台数据加密分两部分:
1.数据传输的时候加密 (一般采用Https协议在传输层加密)
2.数据本身的加密 (使用各种加密算法
RSA非对称加密:公钥加密,私钥解密。公钥私钥由服务端生成,公钥放在客户端私密保存,私钥放在服务端。安全性高,运算速度慢
AES对成加密:运算速度快切安全性高
上面网络通信过程是安全的,可以保证通信数据即使被截取了,也无法获得任何有效信息;即使被篡改了,也无法被客户端和服务端验证通过。
具体可参考的博文:(记得后续实践哦)
https://blog.csdn.net/wangjiang_qianmo/article/details/88073848?utm_medium=distribute.pc_relevant.none-task-blog--1.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog--1.channel_param

② 如何实现https加密传输

1、生成证书请求文件CSR

用户进行https证书申请的第一步就是要生成CSR证书请求文件,系统会产生2个密钥,一个是公钥就是这个CSR文件,另外一个是私钥,存放在服务器上。要生成CSR文件,站长可以参考WEB SERVER的文档,一般APACHE等,使用OPENSSL命令行来生成KEY+CSR2个文件,Tomcat,JBoss,Resin等使用KEYTOOL来生成JKS和CSR文件,IIS通过向导建立一个挂起的请求和一个CSR文件。

温馨提醒:如果是在沃通申请https证书,其数字证书商店(https://buy.wosign.com)已经支持CSR文件由系统自动生成,用户无需事先在Web服务器上生成CSR文件。请参考:SSL证书请求文件(CSR)生成指南网页链接

2、将CSR提交给CA机构认证

CA机构一般有2种认证方式:

(1)域名认证,一般通过对管理员邮箱认证的方式,这种方式认证速度快,但是签发的证书中没有企业的名称,只显示网站域名,也就是我们经常说的域名型https证书。

(2)企业文档认证,需要提供企业的营业执照。国外https证书申请CA认证一般一小时之内,紧急时5分钟。

同时认证以上2种方式的证书,叫EV https证书,EV https证书可以使浏览器地址栏变成绿色,所以认证也最严格。EV https证书多应用于金融、电商、证券等对信息安全保护要求较高的领域。

3、获取https证书并安装

在收到CA机构签发的https证书后,将https证书部署到服务器上,一般APACHE文件直接将KEY+CER复制到文件上,然后修改HTTPD.CONF文件;TOMCAT等需要将CA签发的证书CER文件导入JKS文件后,复制到服务器,然后修改SERVER.XML;IIS需要处理挂起的请求,将CER文件导入。

③ 网络数据加密主要有哪三种方式

一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。
1.链路加密

对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全保证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到的消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。

2.节点加密

尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。

3.端到端加密

端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密(又称脱线加密或包加密),消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。

④ ios 中开发中用户信息中的加密方式有哪些

5.1 通过简单的URLENCODE + BASE64编码防止数据明文传输
5.2 对普通请求、返回数据,生成MD5校验(MD5中加入动态密钥),进行数据完整性(简单防篡改,安全性较低,优点:快速)校验。
5.3 对于重要数据,使用RSA进行数字签名,起到防篡改作用。
5.4 对于比较敏感的数据,如用户信息(登陆、注册等),客户端发送使用RSA加密,服务器返回使用DES(AES)加密。
原因:客户端发送之所以使用RSA加密,是因为RSA解密需要知道服务器私钥,而服务器私钥一般盗取难度较大;如果使用DES的话,可以通过破解客户端获取密钥,安全性较低。而服务器返回之所以使用DES,是因为不管使用DES还是RSA,密钥(或私钥)都存储在客户端,都存在被破解的风险,因此,需要采用动态密钥,而RSA的密钥生成比较复杂,不太适合动态密钥,并且RSA速度相对较慢,所以选用DES)
把相关算法的代码也贴一下吧 (其实使用一些成熟的第三方库或许会来得更加简单,不过自己写,自由点)。注,这里的大部分加密算法都是参考一些现有成熟的算法,或者直接拿来用的。
1、MD5
//因为是使用category,所以木有参数传入啦

-(NSString *) stringFromMD5 {
if(self == nil || [self length] == 0) {
return nil;
}
const char *value = [self UTF8String];
unsigned char outputBuffer[CC_MD5_DIGEST_LENGTH];
CC_MD5(value, strlen(value), outputBuffer);
NSMutableString *outputString = [[NSMutableString alloc] initWithCapacity:CC_MD5_DIGEST_LENGTH * 2];
for(NSInteger count = 0; count < CC_MD5_DIGEST_LENGTH; count++){
[outputString appendFormat:@"%02x",outputBuffer[count]];
}
return [outputString autorelease];
}

2、Base64

+ (NSString *) base64EncodeData: (NSData *) objData {
const unsigned char * objRawData = [objData bytes];
char * objPointer;
char * strResult;

// Get the Raw Data length and ensure we actually have data
int intLength = [objData length];
if (intLength == 0) return nil;

// Setup the String-based Result placeholder and pointer within that placeholder
strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char));
objPointer = strResult;

// Iterate through everything
while (intLength > 2) { // keep going until we have less than 24 bits
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)];
*objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f];

// we just handled 3 octets (24 bits) of data
objRawData += 3;
intLength -= 3;
}

// now deal with the tail end of things
if (intLength != 0) {
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
if (intLength > 1) {
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2];
*objPointer++ = '=';
} else {
*objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4];
*objPointer++ = '=';
*objPointer++ = '=';
}
}

// Terminate the string-based result
*objPointer = '\0';

NSString *rstStr = [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding];
free(objPointer);
return rstStr;
}

3、AES
-(NSData*) EncryptAES: (NSString *) key {
char keyPtr[kCCKeySizeAES256+1];
bzero(keyPtr, sizeof(keyPtr));

[key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];

NSUInteger dataLength = [self length];

size_t bufferSize = dataLength + kCCBlockSizeAES128;
void *buffer = malloc(bufferSize);

size_t numBytesEncrypted = 0;
CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, kCCAlgorithmAES128,
kCCOptionPKCS7Padding | kCCOptionECBMode,
keyPtr, kCCBlockSizeAES128,
NULL,
[self bytes], dataLength,
buffer, bufferSize,
&numBytesEncrypted);
if (cryptStatus == kCCSuccess) {
return [NSData dataWithBytesNoCopy:buffer length:numBytesEncrypted];
}

free(buffer);
return nil;
}

4、RSA

- (NSData *) encryptWithData:(NSData *)content {
size_t plainLen = [content length];
if (plainLen > maxPlainLen) {
NSLog(@"content(%ld) is too long, must < %ld", plainLen, maxPlainLen);
return nil;
}

void *plain = malloc(plainLen);
[content getBytes:plain
length:plainLen];

size_t cipherLen = 128; // currently RSA key length is set to 128 bytes
void *cipher = malloc(cipherLen);

OSStatus returnCode = SecKeyEncrypt(publicKey, kSecPaddingPKCS1, plain,
plainLen, cipher, &cipherLen);

NSData *result = nil;
if (returnCode != 0) {
NSLog(@"SecKeyEncrypt fail. Error Code: %ld", returnCode);
}
else {
result = [NSData dataWithBytes:cipher
length:cipherLen];
}

free(plain);
free(cipher);

return result;
}

⑤ HTTPS 到底加密了些什么内容

https其实是有两部分组成:http + SSL / TLS,也就是在http上又加了一层处理加密信息的模块。服务端和客户端的信息传输都会通过TLS进行加密,所以传输的数据都是加密后的数据。具体是如何进行加密,解密,验证的,且看下图。

1. 客户端发起https请求

客户端发起https请求就是指用户在浏览器里输入一个https网址,然后连接到server的443端口。

2. 服务器端的配置

采用https协议的服务器必须要有一套SSL数字证书,需要向CA组织(如WoSign沃通CA)申请。这套SSL证书其实就是一对公钥和私钥。如果对公钥和私钥不太理解,可以想象成一把钥匙和一个锁头,只是全世界只有你一个人有这把钥匙,你可以把锁头给别人,别人可以用这个锁把重要的东西锁起来,然后发给你,因为只有你一个人有这把钥匙,所以只有你才能看到被这把锁锁起来的东西。

3. 传送证书

这个证书其实就是公钥,只是包含了很多信息,如证书的颁发机构,证书过期时间等等。

4. 客户端解析证书

这部分工作是有客户端的TLS来完成的,首先会验证公钥是否有效,比如颁发机构,过期时间等等,如果发现异常,则会弹出一个警告框,提示证书存在问题。如果证书没有问题,那么就生成一个随机值。然后用证书对该随机值进行加密。就好像上面说的,把随机值用锁头锁起来,这样除非有钥匙,不然看不到被锁住的内容。

5. 传送加密信息

这部分传送的是用SSL证书加密后的随机值,目的就是让服务端得到这个随机值,以后客户端和服务端的通信就可以通过这个随机值来进行加密解密了。

6. 服务段解密信息

服务端用私钥解密后,得到了客户端传过来的随机值(私钥),然后把内容通过该值进行对称加密。所谓对称加密就是,将信息和私钥通过某种算法混合在一起,这样除非知道私钥,不然无法获取内容,而正好客户端和服务端都知道这个私钥,所以只要加密算法够彪悍,私钥够复杂,数据就够安全。

7. 传输加密后的信息

这部分信息是服务段用私钥加密后的信息,可以在客户端被还原。

8. 客户端解密信息

客户端用之前生成的私钥解密服务段传过来的信息,于是获取了解密后的内容。整个过程第三方即使监听到了数据,也束手无策。

⑥ 网络传输数据如何加密

MD5 和 RSA 是网络传输中最常用的两个算法;
1、MD5加密是不可逆的,通过MD5加密之后得到的加密字符串是不能再逆向解密的。
2、RSA加密是可逆的,通过RSA加密之后得到的加密字符串。可以利用加密的公钥进行解密,需要注意的是公钥最好不要在网络中传输。

阅读全文

与用户请求传输加密相关的资料

热点内容
2g视频怎么压缩 浏览:607
康佳电视服务器异常怎么解决 浏览:838
怎么用c语言编译简单的小游戏 浏览:814
服务器如何以域用户登录 浏览:602
安卓os14怎么默认桌面 浏览:549
应用市场下载在哪个文件夹 浏览:895
安卓上的谷歌地图怎么用 浏览:183
安卓命令行打包 浏览:516
编程文字与数字教学视频 浏览:817
如何看手机号码注册哪些app 浏览:413
linux查看总内存 浏览:852
python进程间共享 浏览:438
js如何获取本地服务器地址 浏览:70
gfx什么时候支持安卓十一系统 浏览:942
压缩机90兆帕 浏览:932
程序员调侃语句 浏览:582
不是php函数的是 浏览:1002
压缩文件好处 浏览:787
3d266期神童三胆计算法 浏览:191
通过爱思助手怎么下载app 浏览:323