㈠ 人工智能智能系统指南的目录
出版者的话
专家指导委员会
译者序
序
第2版序
致谢
第1章 基于知识的智能系统概述
1.1 智能机器概述
1.2 人工智能发展历史
1.3 小结
复习题
参考文献
第2章 基于规则的专家系统
2.1 知识概述
2.2 规则是一种知识表达技术
2.3 专家系统研发团队中的主要参与者
2.4 基于规则的专家系统的结构
2.5 专家系统的基本特征
2.6 前向链接和后向链接推理技术
2.7 实例
2.8 冲突的解决方案
2.9 基于规则的专家系统的优缺点
2.10 小结
复习题
参考文献
第3章 基于规则的专家系统的不确定管理
3.1 不确定性简介
3.2 基本概率论
3.3 贝叶斯推理
3.4 FORECAST:贝叶斯证据累积
3.5 贝叶斯方法的偏差
3.6 确定因子理论和证据推理
3.7 FORECAST:确定因子的应用
3.8 贝叶斯推理和确定因子的比较
3.9 小结
复习题
参考文献
第4章 模糊专家系统
4.1 概述
4.2 模糊集
4.3 语言变量和模糊限制语
4.4 模糊集的操作
4.5 模糊规则
4.6 模糊推理
4.7 建立模糊专家系统
4.8 小结
复习题
参考文献
参考书目
第5章 基于框架的专家系统
5.1 框架简介
5.2 作为知识表达技术的框架
5.3 基于框架系统中的继承
5.4 方法和守护程序
5.5 框架和规则的交互
5.6 基于框架的专家系统实例:Buy Smart
5.7 小结
复习题
参考文献
参考书目
第6章 人工神经网络
6.1 人脑工作机制简介
6.2 作为简单计算元素的神经元
6.3 感知器
6.4 多层神经网络
6.5 多层神经网络的加速学习
6.6 Hopfield神经网络
6.7 双向相关记忆
6.8 自组织神经网络
6.9 小结
复习题
参考文献
第7章 进化计算
7.1 进化是智能的吗
7.2 模拟自然进化
7.3 遗传算法
7.4 遗传算法如何工作
7.5 实例:用遗传算法来维护计划
7.6 进化策略
7.7 遗传编程
7.8 小结
复习题
参考文献
参考书目
第8章 混合智能系统
8.1 概述
8.2 神经专家系统
8.3 神经模糊系统
8.4 ANFIS:自适应性神经模糊推理系统
8.5 进化神经网络
8.6 模糊进化系统
8.7 小结
复习题
参考文献
第9章 知识工程和数据挖掘
9.1 知识工程简介
9.2 专家系统可以解决的问题
9.3 模糊专家系统可以解决的问题
9.4 神经网络可以解决的问题
9.5 遗传算法可以解决的问题
9.6 混合智能系统可以解决的问题
9.7 数据挖掘和知识发现
9.8 小结
复习题
参考文献
术语表
附录 人工智能工具和厂商
㈡ 如何自学人工智能
数学知识
我想在大多数学校里,数学都是理工科学生的必修课,微积分、线性代数、概率论与数理统计,这些都比较基础实用,我觉得这个数学基础对入门人工智能足够了,人工智能应用数学最多的也就是求导、矩阵的运算和分解、概率的统计与分析。
编程能力
工欲善其事、必先利其器,人工智能方向编程语言使用最多的应该就是Python了,在很多学校理工科学生应该都会必修一门编程课,有的是C,有的是C++,就算这些都没用过,也应该对Matlab了解一些,我觉得有一些编程基础入门Python算是比较简单的,网上资源很多,社区支持也很强大。
机器学习
我这里所说的机器学习是广义上的机器学习,涵盖深度学习。无论是做传统的机器学习回归和分类,还是做深度学习,无论是做计算机视觉,还是做自然语言处理,都离不开机器学习,后面我会介绍一些我认为比较好的学习资源,对于机器学习,我划分为两个方面:(1) 框架层面;(2) 理论层面。
㈢ 有哪些关于人工智能的书籍可供推荐
看到这个问题有点小兴奋,我来推荐一份人工智能书单。
1、机器学习精讲
机器学习原理算法与应用教程,精简机器学习入门手册,美亚机器学习深度学习畅销书,全彩印刷,扫描书中二维码可阅读补充内容,人工智能和机器学习领域众多知名专家推荐。
2、动手学深度学习
目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。
为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。
3、深度学习
本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等。
并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。
4、人工智能(第2版)
本书是作者结合多年教学经验、精心撰写的一本人工智能教科书,堪称“人工智能的网络全书”。全书涵盖了人工智能简史、搜索方法、知情搜索、博弈中的搜索、人工智能中的逻辑、知识表示、产生式系统、专家系统、机器学习和神经网络、遗传算法、自然语言处理、自动规划、机器人技术、高级计算机博弈、人工智能的历史和未来等主题。
5、Python 神经网络编程
本书将带领您进行一场妙趣横生却又有条不紊的旅行——从一个非常简单的想法开始,逐步理解神经网络的工作机制。您无需任何超出中学范围的数学知识,并且本书还给出易于理解的微积分简介。本书的目标是让尽可能多的普通读者理解神经网络。读者将学习使用Python开发自己的神经网络,训练它识别手写数字,甚至可以与专业的神经网络相媲美。
㈣ 人工智能入门书籍
人工智能是计算机科学的一个分支,并不是一个单一学科,图像识别、自然语言处理、机器人、语言识别、专家系统等等,每一个研究都富有挑战。对人工智能感兴趣,但无法确定具体方向,如何了解人工智能现状和研究领域?
笔者推荐4本科普书,对于大多数人来说,阅读难度不高,公式和理论少,内容有趣,能读得下去;信息较新鲜且全,要有一定阅读价值,能够有深入的思考当然更好。书单不长,只用做科普入门。
1、《超级智能》
2、《我们最后的发明:人工智能与人类时代的终结》
3、《智能时代》
4、《人工智能:国家人工智能战略行动抓手》