古典加密算法分为替代算法和置换移位法。
1、替代算法
替代算法用明文的字母由其他字母或数字或符号所代替。最着名的替代算法是恺撒密码。凯撒密码的原理很简单,其实就是单字母替换。
例子:
明文:abcdefghijklmnopq
密文:defghijklmnopqrst
2、置换移位法
使用置换移位法的最着名的一种密码称为维吉尼亚密码。它以置换移位为基础的周期替换密码。
在维吉尼亚密码中,加密密钥是一个可被任意指定的字符串。加密密钥字符依次逐个作用于明文信息字符。明文信息长度往往会大于密钥字符串长度,而明文的每一个字符都需要有一携铅个对应的密钥字符,因此密钥就需要不断循环,直至明文每一个字符都对应一个密钥字符。
其他常见的加密算法
1、DES算法是密码体制中的对称密码体制,把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位。
2、3DES是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高。
3、RC2和RC4是对称算法,用变长密钥对大量数据进行加密,比DES快。
4、IDEA算法是在DES算法的基础上发展辩衡好出来的,是作为迭代的分组密码实现的,使用128位的密钥和8个循环。
5、RSA是由RSA公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法。
6、DSA,即数字签名算拦拆法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法。
7、AES是高级加密标准对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael算法。
B. 灰度值是什么是怎么测量的
灰度值是指将灰度对象转换为 RGB 时,每个对象的颜色值。把白色与黑色之间按对数关系分成若干级,称为“灰度等级”,使用黑白或灰度扫描仪测量生成的图像通常以灰度显示。
在计算机领域中,灰度(Gray scale)数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。
灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑白两种颜色,灰度图像在黑色与白色之间还有许多级的颜色深度。但是,在数字图像领域之外,“黑白图像”也表示“灰度图像”,例如灰度的照片通常叫做“黑白照片”。
在一些关于数字图像的文章中单色图像等同于灰度图像,在另外一些文章中又等同于黑白图像。灰度使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像。
每个灰度对象都具有从 0%(白色)到100%(黑色)的亮度值。 使用黑白或灰度扫描仪生成的图像通常以灰度显示。
(2)古典算法加密灰度图像扩展阅读
灰度等级范围一般从0到255,白色为255,黑色为0,故黑白图片也称灰度图像,在医学、图像识别领域有很广泛的用途。
灰度分布是指灰度图像的灰度值的分布情况,反映了图像的最基本的统计特征。灰度分布主要应用于图像分割中,通过对灰度图像的灰度分布的理解,来分析图像一些性质。
灰度直方图是关于灰度级分布的函数,是对图像中灰度级分布的统计。灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其出现的频率。灰度直方图是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中某种灰度出现的频率。
如果将图像总像素亮度(灰度级别)看成是一个随机变量,则其分布情况就反映了图像的统计特性,这可用probability density function (PDF)来刻画和描述,表现为灰度直方图。可以通过直方图的状态来评断图像的一些性质,明亮图像的直方图倾向于灰度级高的一侧;
低对比度图像的直方图窄而集中于灰度级的中部,高对比度图像的直方图成分覆盖的灰度级很宽而且像素的分布没有不太均匀,只有少量的垂线比其他高许多。
直观上来说:若一幅图像其像素占有全部可能的灰度级并且分布均匀,则这样的图像有高对比度和多变的灰度色调。
从概率的观点来理解,灰度出现的频率可看作其出现的概率,这样直方图就对应于概率密度函数(probabilitydensityfunction),而概率分布函数就是直方图的累积和,即概率密度函数的积分。
C. 古典加密算法有哪些 古典加密算法
世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为
棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j放在一个格子里,具体情
况如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列
标号。如c对应13,s对应43等。如果接收到密文为
43 15 13 45 42 15 32 15 43 43 11 22 15
则对应的明文即为secure message。
另一种具有代表性的密码是凯撒密码。它是将英文字母向前推移k位。如k=5,则密
文字母与明文与如下对应关系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message,可得密文为XJHZWJRJXXFLJ。此时,k就是密钥。为了
传送方便,可以将26个字母一一对应于从0到25的26个整数。如a对1,b对2,……,y对
25,z对0。这样凯撒加密变换实际就是一个同余式
c≡m+k mod 26
其中m是明文字母对应的数,c是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b作为两
个参数,其中要求k与26互素,明文与密文的对应规则为
c≡km+b mod 26
可以看出,k=1就是前面提到的凯撒密码。于是这种加密变换是凯撒野加密变换的
推广,并且其保密程度也比凯撒密码高。
以上介绍的密码体制都属于单表置换。意思是一个明文字母对应的密文字母是确定
的。根据这个特点,利用频率分析可以对这样的密码体制进行有效的攻击。方法是在大
量的书籍、报刊和文章中,统计各个字母出现的频率。例如,e出现的次数最多,其次
是t,a,o,I等等。破译者通过对密文中各字母出现频率的分析,结合自然语言的字母频
率特征,就可以将该密码体制破译。
鉴于单表置换密码体制具有这样的攻击弱点,人们自然就会想办法对其进行改进,
来弥补这个弱点,增加抗攻击能力。法国密码学家维吉尼亚于1586年提出一个种多表式
密码,即一个明文字母可以表示成多个密文字母。其原理是这样的:给出密钥
K=k[1]k[2]…k[n],若明文为M=m[1]m[2]…m[n],则对应的密文为C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M为data security,密钥k=best,将明
文分解为长为4的序列data security,对每4个字母,用k=best加密后得密文为
C=EELT TIUN SMLR
从中可以看出,当K为一个字母时,就是凯撒密码。而且容易看出,K越长,保密程
度就越高。显然这样的密码体制比单表置换密码体制具有更强的抗攻击能力,而且其加
密、解密均可用所谓的维吉尼亚方阵来进行,从而在操作上简单易行。该密码可用所谓
的维吉尼亚方阵来进行,从而在操作上简单易行。该密码曾被认为是三百年内破译不了
的密码,因而这种密码在今天仍被使用着。
古典密码的发展已有悠久的历史了。尽管这些密码大都比较简单,但它在今天仍有
其参考价值。世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为
棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j放在一个格子里,具体情
况如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列
标号。如c对应13,s对应43等。如果接收到密文为
43 15 13 45 42 15 32 15 43 43 11 22 15
则对应的明文即为secure message。
另一种具有代表性的密码是凯撒密码。它是将英文字母向前推移k位。如k=5,则密
文字母与明文与如下对应关系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message,可得密文为XJHZWJRJXXFLJ。此时,k就是密钥。为了
传送方便,可以将26个字母一一对应于从0到25的26个整数。如a对1,b对2,……,y对
25,z对0。这样凯撒加密变换实际就是一个同余式
c≡m+k mod 26
其中m是明文字母对应的数,c是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b作为两
个参数,其中要求k与26互素,明文与密文的对应规则为
c≡km+b mod 26
可以看出,k=1就是前面提到的凯撒密码。于是这种加密变换是凯撒野加密变换的
推广,并且其保密程度也比凯撒密码高。
以上介绍的密码体制都属于单表置换。意思是一个明文字母对应的密文字母是确定
的。根据这个特点,利用频率分析可以对这样的密码体制进行有效的攻击。方法是在大
量的书籍、报刊和文章中,统计各个字母出现的频率。例如,e出现的次数最多,其次
是t,a,o,I等等。破译者通过对密文中各字母出现频率的分析,结合自然语言的字母频
率特征,就可以将该密码体制破译。
鉴于单表置换密码体制具有这样的攻击弱点,人们自然就会想办法对其进行改进,
来弥补这个弱点,增加抗攻击能力。法国密码学家维吉尼亚于1586年提出一个种多表式
密码,即一个明文字母可以表示成多个密文字母。其原理是这样的:给出密钥
K=k[1]k[2]…k[n],若明文为M=m[1]m[2]…m[n],则对应的密文为C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M为data security,密钥k=best,将明
文分解为长为4的序列data security,对每4个字母,用k=best加密后得密文为
C=EELT TIUN SMLR
从中可以看出,当K为一个字母时,就是凯撒密码。而且容易看出,K越长,保密程
度就越高。显然这样的密码体制比单表置换密码体制具有更强的抗攻击能力,而且其加
密、解密均可用所谓的维吉尼亚方阵来进行,从而在操作上简单易行。该密码可用所谓
的维吉尼亚方阵来进行,从而在操作上简单易行。该密码曾被认为是三百年内破译不了
的密码,因而这种密码在今天仍被使用着。
古典密码的发展已有悠久的历史了。尽管这些密码大都比较简单,但它在今天仍有
其参考价值。
D. 灰度的GBTC是什么意思
灰度比特币信托也就是GBTC,他是是金融工具中的一种,投资者和持有GBTC的人,可以在持有大量比特币的信托基金中交易股票,这释放出了一种信号,就是目前区块链世界已经和传统的股票市场有了千丝万缕的联系。GBTC的价格会和比特币的价格有关联,但是也不完全是锚定比特币的价格,GBTC是非常神奇的同时,在Grayscale里面,除了GBTC以外,还有一些其他的产品可以交易,价格是锚定以太坊、莱特币、比特币现金等等的这些加密货币,已然成为了不小的规模。那么GBTC存在的价值到底在哪儿?又怎么解读它的意义呢?股市和币市是2个不同的市场,虽然他们之前有关联,但是又不完全相同,想在传统的股票市场投资区块链的数字货币,在以往,是不可行的。但是现在有个新的方式,就是灰度比特币信托(GBTC),这样使我们在股票市场就能够参与比特币的交易。原理是灰度比特币信托(GBTC)持有了大量的比特币,灰度比特币信托(GBTC)的价值接近于比特币的价值,会跟随比特币的价格变化而变化。目前看来,灰度比特币信托有着65亿美金的比特币,而且是私人投资的,灰度比特币信托是美国的一家公司,目前这个体量来看,已经算是世界上最大的购买者了,2013年推出,迄今7年时间,发展速度非常快灰度比特币信托(GBTC)的运作方式详解:当有投资者看重GBTC,想要大量购买,就可以抢基金会投资资金,基金会的资金,投资者即可用来大量的购买比特币,这些比特币在灰度比特币信托(GBTC)在证卷交易所上市以后,任何在股市开户的投资者都可以在交易所交易GBTC,需要申明的是,GBTC的价格跟随BTC波动,价格接近于BTC,但是又不完全就是BTC,两个系统之间的微妙影响力决定了这个特性。目前来看,GBTC的价格要高于BTC,存在一定的溢价,对于前期的投资者来说,溢价意味着获利,但是对于现在的投资者来说,溢价增加了目前投资的风险为什么我们不直接购买比特币,而要买灰度比特币信托(GBTC)呢?1,不用考虑比特币的存储之类的安全问题2,不用考虑大体量持有的合法性,已经税务方面的优惠性3,比特币不能和传统的股票直接交易,但是GBTC可以E. 古典密码两种加密方式
古典加密算法:置换密码
置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。置换密码有时又称为换位密码。
矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而形成密文。例如,明文为attack
begins
at
five,密钥为cipher,将明文按照每行6列的形式排在矩阵中,形成如下形式:
a
t
t
a
c
k
b
e
g
i
n
s
a
t
f
i
v
e
根据密钥cipher中各字母在字母表中出现的先后顺序,给定一个置换:
1
2
3
4
5
6
f
=
1
4
5
3
2
6
根据上面的置换,将原有矩阵中的字母按照第1列,第4列,第5列,第3列,第2列,第6列的顺序排列,则有下面形式:
a
a
c
t
t
k
b
i
n
g
e
s
a
i
v
f
t
e
从而得到密文:aacttkbingesaivfte
F. 密码学 - 古典加密
信息理论之父:克劳德 香农
论文《通信的数学理论》
如果没有信息加密,信息直接被中间人拦截查看、修改。
明文Plain text
密文Cipher text
加密Encryption/Encrypherment:将明文转化为密文
解密Decrytion/Decipherment:讲密文还原为明文
加密钥匙EK Encryption Key:加密时配合加密算法的数据
解密钥匙EK Encryption Key:解密时配合解密算法的数据
各个字符按照顺序进行n个字符错位的加密方法。
(凯撒是古罗马军事家政治家)
多次使用恺撒密码来加密并不能获得更大的安全性,因为使用偏移量A加密得到的结果再用偏移量B加密,等同于使用A+B的偏移量进行加密的结果。
凯撒密码最多只有25个密匙 +1到+25 安全强度几乎为0
(密钥为0或26时,明文在加密前后内容不变)
暴力枚举
根据密文,暴力列出25个密匙解密后的结果。
凯撒密码的例子是所有 单字母替代式密码 的典范,它只使用一个密码字母集。
我们也可以使用多字母替代式密码,使用的是多个密码字母集。
加密由两组或多组 密码字母集 组成,加密者可自由的选择然后用交替的密码字母集加密讯息。
(增加了解码的困难度,因为密码破解者必须找出这两组密码字母集)
另一个多字母替代式密码的例子“维吉尼亚密码”,将更难解密
(法语:Vigenère cypher),
它有26组不同用来加密的密码字母集。
每个密码字母集就是多移了一位的凯撒密码。
维吉尼亚方格(替换对照表):
维吉尼亚密码引入了密匙概念。
同一明文在密文中的每个对应,可能都不一样。
移位式密码,明文中出现的字母依然出现在密文中,只有字母顺序是依照一个定义明确的计划改变。
许多移位式密码是基于几何而设计的。一个简单的加密(也易被破解),可以将字母向右移1位。
例如,明文"Hello my name is Alice."
将变成"olleH ym eman si ecilA."
密码棒(英语:scytale)也是一种运用移位方法工具。
如
明文分组,按字符长度来分,每5个字母分一组。
并将各组内的字符的顺序进行替换。
具体例子
纵栏式移项密码
先选择一个关键字,把原来的讯息由左而右、由上而下依照关键字长度转写成长方形。接着把关键字的字母依照字母集顺序编号,例如A就是1、B就是2、C就是3等。例如,关键字是CAT,明文是THE SKY IS BLUE,则讯息应该转换成这样:
C A T
3 1 20
T H E
S K Y
I S B
L U E
最后把讯息以行为单位,依照编号大小调换位置。呈现的应该是A行为第一行、C行为第二行、T行为第三行。然后就可以把讯息"The sky is blue"转写成HKSUTSILEYBE。
另一种移位式密码是中国式密码(英语:Chinese cipher),移位的方法是将讯息的字母加密成由右而左、上下交替便成不规则的字母。范例,如果明文是:THE DOG RAN FAR,则中国式密码看起来像这样:
R R G T
A A O H
F N D E
密码文将写成:RRGT AAOH FNDE
绝大多数的移位式密码与这两个范例相类似,通常会重新排列字母的行或列,然后有系统的移动字母。其它一些例子包括Vertical Parallel和双移位式(英语:Double Transposition)密码。
更复杂的算法可以混合替代和移位成为积密码(proct cipher);现代资料区段密码像是DES反复位移和替代的几个步骤。
行数=栏数
明文,分为N栏(N行) 按照明文本来的顺序,竖着从上往下填。
【实例1】
明文123456
栏数2(行数2)
密文135246
135
246
拆成2行(2栏),竖着看密文——得到明文
【实例2】明文123456789abcdefghi 栏数9 (行数)--->密文1a2b3c4d5e6f7g8h9i
拆成9行竖着看密文.
1a
2b
3c
4d
5e
6f
7g
8h
9i
古典密码【栅栏密码安全度极低】组成栅栏的字母一般一两句话,30个字母。不会太多! 加解密都麻烦
是指研究字母或者字母组合在文本中出现的频率。应用频率分析可以破解古典密码。
工具
在线词频分析 http://textalyser.net/