DES加密 java与 C# 可以相互加密解密
这里的KEY采用Base64编码,便用分发,因为Java的Byte范围为-128至127,c#的Byte范围是0-255
核心是确定Mode和Padding,关于这两个的意思可以搜索3DES算法相关文章
一个是C#采用CBC Mode,PKCS7 Padding,Java采用CBC Mode,PKCS5Padding Padding,
另一个是C#采用ECB Mode,PKCS7 Padding,Java采用ECB Mode,PKCS5Padding Padding,
Java的ECB模式不需要IV
对字符加密时,双方采用的都是UTF-8编码
C# 代码
/// <summary>
/// DES3加密解密
/// </summary>
public class Des3
{
#region CBC模式**
/// <summary>
/// DES3 CBC模式加密
/// </summary>
/// <param name="key">密钥</param>
/// <param name="iv">IV</param>
/// <param name="data">明文的byte数组</param>
/// <returns>密文的byte数组</returns>
public static byte[] Des3EncodeCBC( byte[] key, byte[] iv, byte[] data )
{
//复制于MSDN
try
{
// Create a MemoryStream.
MemoryStream mStream = new MemoryStream();
tdsp = new ();
tdsp.Mode = CipherMode.CBC; //默认值
tdsp.Padding = PaddingMode.PKCS7; //默认值
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
CryptoStream cStream = new CryptoStream( mStream,
tdsp.CreateEncryptor( key, iv ),
CryptoStreamMode.Write );
// Write the byte array to the crypto stream and flush it.
cStream.Write( data, 0, data.Length );
cStream.FlushFinalBlock();
// Get an array of bytes from the
// MemoryStream that holds the
// encrypted data.
byte[] ret = mStream.ToArray();
// Close the streams.
cStream.Close();
mStream.Close();
// Return the encrypted buffer.
return ret;
}
catch ( CryptographicException e )
{
Console.WriteLine( "A Cryptographic error occurred: {0}", e.Message );
return null;
}
}
/// <summary>
/// DES3 CBC模式解密
/// </summary>
/// <param name="key">密钥</param>
/// <param name="iv">IV</param>
/// <param name="data">密文的byte数组</param>
/// <returns>明文的byte数组</returns>
public static byte[] Des3DecodeCBC( byte[] key, byte[] iv, byte[] data )
{
try
{
// Create a new MemoryStream using the passed
// array of encrypted data.
MemoryStream msDecrypt = new MemoryStream( data );
tdsp = new ();
tdsp.Mode = CipherMode.CBC;
tdsp.Padding = PaddingMode.PKCS7;
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
CryptoStream csDecrypt = new CryptoStream( msDecrypt,
tdsp.CreateDecryptor( key, iv ),
CryptoStreamMode.Read );
// Create buffer to hold the decrypted data.
byte[] fromEncrypt = new byte[data.Length];
// Read the decrypted data out of the crypto stream
// and place it into the temporary buffer.
csDecrypt.Read( fromEncrypt, 0, fromEncrypt.Length );
//Convert the buffer into a string and return it.
return fromEncrypt;
}
catch ( CryptographicException e )
{
Console.WriteLine( "A Cryptographic error occurred: {0}", e.Message );
return null;
}
}
#endregion
#region ECB模式
/// <summary>
/// DES3 ECB模式加密
/// </summary>
/// <param name="key">密钥</param>
/// <param name="iv">IV(当模式为ECB时,IV无用)</param>
/// <param name="str">明文的byte数组</param>
/// <returns>密文的byte数组</returns>
public static byte[] Des3EncodeECB( byte[] key, byte[] iv, byte[] data )
{
try
{
// Create a MemoryStream.
MemoryStream mStream = new MemoryStream();
tdsp = new ();
tdsp.Mode = CipherMode.ECB;
tdsp.Padding = PaddingMode.PKCS7;
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
CryptoStream cStream = new CryptoStream( mStream,
tdsp.CreateEncryptor( key, iv ),
CryptoStreamMode.Write );
// Write the byte array to the crypto stream and flush it.
cStream.Write( data, 0, data.Length );
cStream.FlushFinalBlock();
// Get an array of bytes from the
// MemoryStream that holds the
// encrypted data.
byte[] ret = mStream.ToArray();
// Close the streams.
cStream.Close();
mStream.Close();
// Return the encrypted buffer.
return ret;
}
catch ( CryptographicException e )
{
Console.WriteLine( "A Cryptographic error occurred: {0}", e.Message );
return null;
}
}
/// <summary>
/// DES3 ECB模式解密
/// </summary>
/// <param name="key">密钥</param>
/// <param name="iv">IV(当模式为ECB时,IV无用)</param>
/// <param name="str">密文的byte数组</param>
/// <returns>明文的byte数组</returns>
public static byte[] Des3DecodeECB( byte[] key, byte[] iv, byte[] data )
{
try
{
// Create a new MemoryStream using the passed
// array of encrypted data.
MemoryStream msDecrypt = new MemoryStream( data );
tdsp = new ();
tdsp.Mode = CipherMode.ECB;
tdsp.Padding = PaddingMode.PKCS7;
// Create a CryptoStream using the MemoryStream
// and the passed key and initialization vector (IV).
CryptoStream csDecrypt = new CryptoStream( msDecrypt,
tdsp.CreateDecryptor( key, iv ),
CryptoStreamMode.Read );
// Create buffer to hold the decrypted data.
byte[] fromEncrypt = new byte[data.Length];
// Read the decrypted data out of the crypto stream
// and place it into the temporary buffer.
csDecrypt.Read( fromEncrypt, 0, fromEncrypt.Length );
//Convert the buffer into a string and return it.
return fromEncrypt;
}
catch ( CryptographicException e )
{
Console.WriteLine( "A Cryptographic error occurred: {0}", e.Message );
return null;
}
}
#endregion
/// <summary>
/// 类测试
/// </summary>
public static void Test()
{
System.Text.Encoding utf8 = System.Text.Encoding.UTF8;
//key为abcdefghijklmnopqrstuvwx的Base64编码
byte[] key = Convert.FromBase64String( "" );
byte[] iv = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 }; //当模式为ECB时,IV无用
byte[] data = utf8.GetBytes( "中国ABCabc123" );
System.Console.WriteLine( "ECB模式:" );
byte[] str1 = Des3.Des3EncodeECB( key, iv, data );
byte[] str2 = Des3.Des3DecodeECB( key, iv, str1 );
System.Console.WriteLine( Convert.ToBase64String( str1 ) );
System.Console.WriteLine( System.Text.Encoding.UTF8.GetString( str2 ) );
System.Console.WriteLine();
System.Console.WriteLine( "CBC模式:" );
byte[] str3 = Des3.Des3EncodeCBC( key, iv, data );
byte[] str4 = Des3.Des3DecodeCBC( key, iv, str3 );
System.Console.WriteLine( Convert.ToBase64String( str3 ) );
System.Console.WriteLine( utf8.GetString( str4 ) );
System.Console.WriteLine();
}
}
java 代码:
import java.security.Key;
import javax.crypto.Cipher;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESedeKeySpec;
import javax.crypto.spec.IvParameterSpec;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;
public class Des3 {
public static void main(String[] args) throws Exception {
byte[] key=new BASE64Decoder().decodeBuffer("");
byte[] keyiv = { 1, 2, 3, 4, 5, 6, 7, 8 };
byte[] data="中国ABCabc123".getBytes("UTF-8");
System.out.println("ECB加密解密");
byte[] str3 = des3EncodeECB(key,data );
byte[] str4 = ees3DecodeECB(key, str3);
System.out.println(new BASE64Encoder().encode(str3));
System.out.println(new String(str4, "UTF-8"));
System.out.println();
System.out.println("CBC加密解密");
byte[] str5 = des3EncodeCBC(key, keyiv, data);
byte[] str6 = des3DecodeCBC(key, keyiv, str5);
System.out.println(new BASE64Encoder().encode(str5));
System.out.println(new String(str6, "UTF-8"));
}
/**
* ECB加密,不要IV
* @param key 密钥
* @param data 明文
* @return Base64编码的密文
* @throws Exception
*/
public static byte[] des3EncodeECB(byte[] key, byte[] data)
throws Exception {
Key deskey = null;
DESedeKeySpec spec = new DESedeKeySpec(key);
SecretKeyFactory keyfactory = SecretKeyFactory.getInstance("desede");
deskey = keyfactory.generateSecret(spec);
Cipher cipher = Cipher.getInstance("desede" + "/ECB/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, deskey);
byte[] bOut = cipher.doFinal(data);
return bOut;
}
/**
* ECB解密,不要IV
* @param key 密钥
* @param data Base64编码的密文
* @return 明文
* @throws Exception
*/
public static byte[] ees3DecodeECB(byte[] key, byte[] data)
throws Exception {
Key deskey = null;
DESedeKeySpec spec = new DESedeKeySpec(key);
SecretKeyFactory keyfactory = SecretKeyFactory.getInstance("desede");
deskey = keyfactory.generateSecret(spec);
Cipher cipher = Cipher.getInstance("desede" + "/ECB/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, deskey);
byte[] bOut = cipher.doFinal(data);
return bOut;
}
/**
* CBC加密
* @param key 密钥
* @param keyiv IV
* @param data 明文
* @return Base64编码的密文
* @throws Exception
*/
public static byte[] des3EncodeCBC(byte[] key, byte[] keyiv, byte[] data)
throws Exception {
Key deskey = null;
DESedeKeySpec spec = new DESedeKeySpec(key);
SecretKeyFactory keyfactory = SecretKeyFactory.getInstance("desede");
deskey = keyfactory.generateSecret(spec);
Cipher cipher = Cipher.getInstance("desede" + "/CBC/PKCS5Padding");
IvParameterSpec ips = new IvParameterSpec(keyiv);
cipher.init(Cipher.ENCRYPT_MODE, deskey, ips);
byte[] bOut = cipher.doFinal(data);
return bOut;
}
/**
* CBC解密
* @param key 密钥
* @param keyiv IV
* @param data Base64编码的密文
* @return 明文
* @throws Exception
*/
public static byte[] des3DecodeCBC(byte[] key, byte[] keyiv, byte[] data)
throws Exception {
Key deskey = null;
DESedeKeySpec spec = new DESedeKeySpec(key);
SecretKeyFactory keyfactory = SecretKeyFactory.getInstance("desede");
deskey = keyfactory.generateSecret(spec);
Cipher cipher = Cipher.getInstance("desede" + "/CBC/PKCS5Padding");
IvParameterSpec ips = new IvParameterSpec(keyiv);
cipher.init(Cipher.DECRYPT_MODE, deskey, ips);
byte[] bOut = cipher.doFinal(data);
return bOut;
}
}
B. Java和.NET使用DES对称加密的区别
没有区别,DES只是加密的一种算法,Java与.NET语言中只是对这种算法的实现,所以两者是没有任何区别的。算法与密钥本来就是分开的,算法本来就是公开的,语言只是对这种算法的实现而已,在这种情况下DES与语言没有任何相关性,只有自己的算法标准。
但很多人反映的Java中的DES/TDES与.NET中的DES/TDES不通用,其实并不存在这样的问题的。两者是几乎完全通用的。所以没有存在不通用的情况的。
由于语言的实现基于自己的习惯与理解上的不同,不同的语言采用了不同的默认参数(默认值),当然,就算在同种语言下,这些参数不同的时加密与解密也会有所不同的(只会默认默认参数就认为不通用的那些人,真想不通这个问题怎么提出来的)。
事实上DES除了一个key与iv(初始向量)必须保证相同外,还有对加密的不同解释参数,如mode与paddingmode。DES加密是是块加密的一种,在处理块级与未尾块级时,有不同的方式(mode)如电子密码本(CBC)之类的,每个参数有不同的加密行为与意义,当然这只是DES加密标准的一部分,并不能独立出去的。paddingMode则是则块加密当最后一个块不足时的填充方式。而在java与net实现加密或解密时都遵从标准,实现了不同的填充方式以供选择。但由于每个语言的默认值不同,如net中cbc是默认值,而Java中则是另外一个,填充方式的默认值也不相同,所以会出现不设计这两个参数时,在java与net通信时无法正确解密。所谓的不Java与net中DES不同,仅仅只是默认参数不同,如果你能正确设置这两个参数,几乎任何语言中DES加密与解密都是通用的(部分语言中并没有全部实现DES中的标准,所以可能会出现特定语言的某种加密方式无法在另一种语言中解析)。
所以,DES本身没有任何区别,他只是一个标准(你家交流电与他家交流电有什么区别?),对于不同的实现必须依赖于此标准实现,所以DES标准本身而言是相同的。如果说DES在Java与NET中的类库实现有什么区别,那么两种语言类库完全没可比性(两个人有什么区别,一张嘴两只眼睛的标准外,怕是没有相同之处了),而对于DES实现支持上,两者也是几乎相同,Java与net均实现了DES标准全部的规范。
最后想说的是,加密学中只介绍DES,并不说在不同语言中的实现,因为任何语言实现都依赖于相同的DES加解密算法。我觉得这个问题应该问成“在DES在java中与NET中实现的类库默认值有什么不同”才对。
C. 求一个java des32加密解密算法
packagecn.xinxi.des;
importjava.security.Key;
importjava.security.Security;
importjavax.crypto.Cipher;
importjavax.crypto.KeyGenerator;
importjavax.crypto.SecretKey;
importjavax.crypto.SecretKeyFactory;
importjavax.crypto.spec.DESKeySpec;
importorg.apache.commons.codec.binary.Hex;
importorg.bouncycastle.jce.provider.BouncyCastleProvider;
publicclassDES{
privatestaticfinalStringstr="xinxi";
publicstaticvoidmain(String[]args)throwsException{
jdkDES();
bcDES();
}
publicstaticvoidjdkDES()throwsException{
//生成key
//KeyGenerator,密钥生成器
KeyGeneratorkeyGenerator=KeyGenerator.getInstance("DES");
keyGenerator.init(56);//指定keysize这里使用默认值56位
//声称密钥
SecretKeysecreKey=keyGenerator.generateKey();
byte[]bytesKey=secreKey.getEncoded();
//key转换(恢复密钥)
// SecretKeyconvertSecreKey=newSecretKeySpec(bytesKey,"DES");//与下面三行效果貌似差不多
DESKeySpecdesKeySpec=newDESKeySpec(bytesKey);
SecretKeyFactoryfactory=SecretKeyFactory.getInstance("DES");
// System.out.println(keyGenerator.getProvider());
KeyconvertSecreKey=factory.generateSecret(desKeySpec);
//加密
Ciphercipher=Cipher.getInstance("DES/ECB/PKCS5Padding");//加密算法/工作方式/填充方式
cipher.init(Cipher.ENCRYPT_MODE,convertSecreKey);//模式(此处是加密模式)、key
byte[]result=cipher.doFinal(str.getBytes());//参数是要被加密的内容
System.out.println("JDKDES加密结果:"+Hex.encodeHexString(result));//转成16进制
//解密生成key和key转换与加密一样
cipher.init(Cipher.DECRYPT_MODE,convertSecreKey);//模式(此处是解密模式)、key
result=cipher.doFinal(result);
System.out.println("JDKDES解密结果:"+newString(result));
}
publicstaticvoidbcDES()throwsException{
Security.addProvider(newBouncyCastleProvider());
//生成key
KeyGeneratorkeyGenerator=KeyGenerator.getInstance("DES","BC");
// System.out.println(keyGenerator.getProvider());
keyGenerator.init(56);//指定keysize这里使用默认值56位
SecretKeysecreKey=keyGenerator.generateKey();
byte[]bytesKey=secreKey.getEncoded();
//key转换
DESKeySpecdesKeySpec=newDESKeySpec(bytesKey);
SecretKeyFactoryfactory=SecretKeyFactory.getInstance("DES");
KeyconvertSecreKey=factory.generateSecret(desKeySpec);
//加密
Ciphercipher=Cipher.getInstance("DES/ECB/PKCS5Padding");//加密算法/工作方式/填充方式
cipher.init(Cipher.ENCRYPT_MODE,convertSecreKey);//模式(此处是加密模式)、key
byte[]result=cipher.doFinal(str.getBytes());//参数是要被加密的内容
System.out.println("BCDES加密结果:"+Hex.encodeHexString(result));//转成16进制
//解密生成key和key转换与加密一样
cipher.init(Cipher.DECRYPT_MODE,convertSecreKey);//模式(此处是解密模式)、key
result=cipher.doFinal(result);
System.out.println("BCDES解密结果:"+newString(result));
}
}
是你想要的么?
D. JAVA和.NET使用DES对称加密的区别
如果我说没有区别你会信吗?
但答案还真是这样,两者没有任何区别的,只不过实现的语言代码不同而已。
那么java与dot net之间的DES是否可以通用?答案也是完全通用。无论是Java的DES加密还是dot net的DES回密,均可以使用另一种语言且不限于Java或dot net解密。够明白吗?
DES其实只是一个算法,加密与解密我们都知道算法与密码是分离的。算法是公开的,都可以用,而密码是独立于算法的。所以DES在不同的语言中实现的算法根本就是一样的——也正是因为如此不管何种语言都是通用的(除非伪DES,要知道DES算法网上本身能搜到而且是一个标准,最先是由美国安全部门公开的)
再说一下,为什么有人“通”用不起来的原因。DES其实有CBC之类的参数的,也就是针对加密块选用的不同的加密手段。正是这个参数的原因,不同的语言中使用不同的参数做为默认值,所以使用默认的方式进行让两个串进行加解密肯定是不同的。DES使用一种模式(方法)加密,用另一种模式(方法)进行解密能得到正确的结果吗?一些人不怪自己的学艺不精,反说是两种语言的DES不通用(这也就是为什么网络上会出现诸多说java和dot net的DES加密方法不通用的原因)。
即便是自己使用的DES加密的代码也是通用的(前提你要遵守DES分开算法),但不要“重复实现已经实现的东西(专业术语叫造轮子)”。
附:
DES.Model属性取值
CBC 密码块链 (CBC) 模式引入了反馈。每个纯文本块在加密前,通过按位“异或”操作与前一个块的密码文本结合。这样确保了即使纯文本包含许多相同的块,这些块中的每一个也会加密为不同的密码文本块。在加密块之前,初始化向量通过按位“异或”操作与第一个纯文本块结合。如果密码文本块中有一个位出错,相应的纯文本块也将出错。此外,后面的块中与原出错位的位置相同的位也将出错。
ECB 电子密码本 (ECB) 模式分别加密每个块。这意味着任何纯文本块只要相同并且在同一消息中,或者在用相同的密钥加密的不同消息中,都将被转换成同样的密码文本块。如果要加密的纯文本包含大量重复的块,则逐块破解密码文本是可行的。另外,随时准备攻击的对手可能在您没有察觉的情况下替代和交换个别的块。如果密码文本块中有一个位出错,相应的整个纯文本块也将出错。
OFB 输出反馈 (OFB) 模式将少量递增的纯文本处理成密码文本,而不是一次处理整个块。此模式与 CFB 相似;这两种模式的唯一差别是移位寄存器的填充方式不同。如果密码文本中有一个位出错,纯文本中相应的位也将出错。但是,如果密码文本中有多余或者缺少的位,则那个位之后的纯文本都将出错。
CFB 密码反馈 (CFB) 模式将少量递增的纯文本处理成密码文本,而不是一次处理整个块。该模式使用在长度上为一个块且被分为几部分的移位寄存器。例如,如果块大小为 8 个字节,并且每次处理一个字节,则移位寄存器被分为 8 个部分。如果密码文本中有一个位出错,则一个纯文本位出错,并且移位寄存器损坏。这将导致接下来若干次递增的纯文本出错,直到出错位从移位寄存器中移出为止。
CTS 密码文本窃用 (CTS) 模式处理任何长度的纯文本并产生长度与纯文本长度匹配的密码文本。除了最后两个纯文本块外,对于所有其他块,此模式与 CBC 模式的行为相同。
DES.Padding属性的取值
None 不填充。
PKCS7 PKCS #7 填充字符串由一个字节序列组成,每个字节填充该字节序列的长度。
Zeros 填充字符串由设置为零的字节组成。
ANSIX923 ANSIX923 填充字符串由一个字节序列组成,此字节序列的最后一个字节填充字节序列的长度,其余字节均填充数字零。
ISO10126 ISO10126 填充字符串由一个字节序列组成,此字节序列的最后一个字节填充字节序列的长度,其余字节填充随机数据。
当Mode不同时,解密的内密内容能与相同吗?PaddingMode不同时,解密的内容的结尾部分能相同吗(填充结果只涉及到最后的一个块).所以当不管何种语言使用相同的Mode及PaddingMode时,加解密的结果是相同的(当然不排除部分语言不实现全部的Mode和PaddingMode)但,基本的都是实现了的,所以基本上任何两种语言之间的DES都可以实现相同的加解密结果!而java和dot net中的DES显然指的是算法,两者是相同的,可以随意使用(Java中dot net中的Mode默认值是不同的,一定要设置相同的Mode和PaddingMode才可以的,不要双方都采用默认值,那样真的通不起来)
E. 为什么 CryptoJS DES 加密的结果和 Java DES 不一样
最近需要对数据进行加密/解密, 因此选用了CryptoJS库, 对数据做DES算法的加密/解密
首选查看官方示例, 将密文进行Base64编码, 掉进一个大坑
<script src="htt p:/ /crypto-js.googlecod e.c om/svn/tags/3.1.2/build/rollups/tripledes.js"></script>
<script>
var encrypted = CryptoJS.DES.encrypt("Message", "Secret Passphrase");
// ciphertext changed every time you run it
// 加密的结果不应该每次都是一样的吗?
console.log(encrypted.toString(), encrypted.ciphertext.toString(CryptoJS.enc.Base64));
var decrypted = CryptoJS.DES.decrypt(encrypted, "Secret Passphrase");
console.log(decrypted.toString(CryptoJS.enc.Utf8));
</script>
对这些加密算法不了解, 只能求助Google
des encrypion: js encrypted value does not match the java encrypted value
In cryptoJS you have to convert the key to hex and useit as word just like above (otherwise it will be considered as passphrase)
For the key, when you pass a string, it's treated as a passphrase and used to derive an actual key and IV. Or you can pass a WordArray that represents the actual key.
原来是我指定key的方式不对, 直接将字符串做为参数, 想当然的以为这就是key, 其实不然, CryptoJS会根据这个字符串算出真正的key和IV(各种新鲜名词不解释, 问我也没用, 我也不懂 -_-")
那么我们只需要将key和iv对应的字符串转成CryptoJS的WordArray类型, 在DES加密时做为参数传入即可, 这样对Message这个字符串加密, 每次得到的密文都是YOa3le0I+dI=
var keyHex = CryptoJS.enc.Utf8.parse('abcd1234');
var ivHex = CryptoJS.enc.Utf8.parse('inputvec');
var encrypted = CryptoJS.DES.encrypt('Message', keyHex, { iv: ivHex });
这样是不是就万事OK了? 哪有, 谁知道这坑是一个接一个啊.
我们再试试Java这边的DES加密是不是和这个结果一样, 具体实现请参考Simple Java Class to DES Encrypt Strings
果真掉坑里了, Java通过DES加密Message这个字符串得到的结果是8dKft9vkZ4I=和CryptoJS算出来的不一样啊...亲
继续求助Google
C# and Java DES Encryption value are not identical
SunJCE provider uses ECB as the default mode, and PKCS5Padding as the default padding scheme for DES.(JCA Doc)
This means that in the case of the SunJCE provider,
Cipher c1 = Cipher.getInstance("DES/ECB/PKCS5Padding");
and
Cipher c1 = Cipher.getInstance("DES");
are equivalent statements.
原来是CryptoJS进行DES加密时, 默认的模式和padding方式和Java默认的不一样造成的, 必须使用ECB mode和PKCS5Padding, 但是CryptoJS中只有Pkcs7, 不管了, 试试看...
<script src="htt p:/ /crypto-js.googleco de.c om/svn/tags/3.1.2/build/rollups/tripledes.js"></script>
<script src="ht tp:/ /crypto-js.googleco de.c om/svn/tags/3.1.2/build/components/mode-ecb.js"></script>
<script>
var keyHex = CryptoJS.enc.Utf8.parse('abcd1234');
var encrypted = CryptoJS.DES.encrypt('Message', keyHex, {
mode: CryptoJS.mode.ECB,
padding: CryptoJS.pad.Pkcs7
});
console.log(encrypted.toString(), encrypted.ciphertext.toString(CryptoJS.enc.Base64));
</script>
咦...使用Pkcs7能得到和Java DES一样的结果了, 哇塞...好神奇
那我们试试统一Java也改成Cipher.getInstance("DES/ECB/PKCS7Padding")试试, 结果得到一个大大的错误
Error:java.security.NoSuchAlgorithmException: Cannot find any provider supporting DES/ECB/PKCS7Padding
没办法, 继续Google
java.security.NoSuchAlgorithmException: Cannot find any provider supporting AES/ECB/PKCS7PADDING
I will point out that PKCS#5 and PKCS#7 actually specify exactly the same type of padding (they are the same!), but it's called #5 when used in this context. :)
这位大侠给出的解释是: PKCS#5和PKCS#7是一样的padding方式, 对加密算法一知半解, 我也只能暂且认可这个解释了.
忙完了DES的加密, 接下来就是使用CryptoJS来解密了. 我们需要直接解密DES加密后的base64密文字符串. CryptoJS好像没有提供直接解密DES密文字符串的方法啊, 他的整个加密/解密过程都是内部自己在玩, 解密时需要用到加密的结果对象, 这不是坑我吗?
只好研究下CryptoJS DES加密后返回的对象, 发现有一个属性ciphertext, 就是密文的WordArray, 那么解密的时候, 我们是不是只要提供这个就行了呢?
var keyHex = CryptoJS.enc.Utf8.parse('abcd1234');
// direct decrypt ciphertext
var decrypted = CryptoJS.DES.decrypt({
ciphertext: CryptoJS.enc.Base64.parse('8dKft9vkZ4I=')
}, keyHex, {
mode: CryptoJS.mode.ECB,
padding: CryptoJS.pad.Pkcs7
});
console.log(decrypted.toString(CryptoJS.enc.Utf8));
果不其然, 到此为止, 问题全部解决, 豁然开朗...
完整代码请参考CryptoJS-DES.html
Use CryptoJS encrypt message by DES and direct decrypt ciphertext, compatible with Java Cipher.getInstance("DES")